/* $OpenBSD: kern_sig.c,v 1.84 2006/06/15 20:08:01 miod Exp $ */ /* $NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $ */ /* * Copyright (c) 1997 Theo de Raadt. All rights reserved. * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94 */ #define SIGPROP /* include signal properties table */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for coredump */ int filt_sigattach(struct knote *kn); void filt_sigdetach(struct knote *kn); int filt_signal(struct knote *kn, long hint); struct filterops sig_filtops = { 0, filt_sigattach, filt_sigdetach, filt_signal }; void proc_stop(struct proc *p); int cansignal(struct proc *, struct pcred *, struct proc *, int); struct pool sigacts_pool; /* memory pool for sigacts structures */ /* * Can process p, with pcred pc, send the signal signum to process q? */ int cansignal(struct proc *p, struct pcred *pc, struct proc *q, int signum) { if (pc->pc_ucred->cr_uid == 0) return (1); /* root can always signal */ if (p == q) return (1); /* process can always signal itself */ #ifdef RTHREADS /* a thread can only be signalled from within the same process */ if (q->p_flag & P_THREAD) return (p->p_thrparent == q->p_thrparent); #endif if (signum == SIGCONT && q->p_session == p->p_session) return (1); /* SIGCONT in session */ /* * Using kill(), only certain signals can be sent to setugid * child processes */ if (q->p_flag & P_SUGID) { switch (signum) { case 0: case SIGKILL: case SIGINT: case SIGTERM: case SIGALRM: case SIGSTOP: case SIGTTIN: case SIGTTOU: case SIGTSTP: case SIGHUP: case SIGUSR1: case SIGUSR2: if (pc->p_ruid == q->p_cred->p_ruid || pc->pc_ucred->cr_uid == q->p_cred->p_ruid || pc->p_ruid == q->p_ucred->cr_uid || pc->pc_ucred->cr_uid == q->p_ucred->cr_uid) return (1); } return (0); } /* XXX * because the P_SUGID test exists, this has extra tests which * could be removed. */ if (pc->p_ruid == q->p_cred->p_ruid || pc->p_ruid == q->p_cred->p_svuid || pc->pc_ucred->cr_uid == q->p_cred->p_ruid || pc->pc_ucred->cr_uid == q->p_cred->p_svuid || pc->p_ruid == q->p_ucred->cr_uid || pc->pc_ucred->cr_uid == q->p_ucred->cr_uid) return (1); return (0); } /* * Initialize signal-related data structures. */ void signal_init(void) { pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl", &pool_allocator_nointr); } /* * Create an initial sigacts structure, using the same signal state * as p. */ struct sigacts * sigactsinit(struct proc *p) { struct sigacts *ps; ps = pool_get(&sigacts_pool, PR_WAITOK); memcpy(ps, p->p_sigacts, sizeof(struct sigacts)); ps->ps_refcnt = 1; return (ps); } /* * Make p2 share p1's sigacts. */ void sigactsshare(struct proc *p1, struct proc *p2) { p2->p_sigacts = p1->p_sigacts; p1->p_sigacts->ps_refcnt++; } /* * Make this process not share its sigacts, maintaining all * signal state. */ void sigactsunshare(struct proc *p) { struct sigacts *newps; if (p->p_sigacts->ps_refcnt == 1) return; newps = sigactsinit(p); sigactsfree(p); p->p_sigacts = newps; } /* * Release a sigacts structure. */ void sigactsfree(struct proc *p) { struct sigacts *ps = p->p_sigacts; if (--ps->ps_refcnt > 0) return; p->p_sigacts = NULL; pool_put(&sigacts_pool, ps); } /* ARGSUSED */ int sys_sigaction(struct proc *p, void *v, register_t *retval) { struct sys_sigaction_args /* { syscallarg(int) signum; syscallarg(const struct sigaction *) nsa; syscallarg(struct sigaction *) osa; } */ *uap = v; struct sigaction vec; struct sigaction *sa; struct sigacts *ps = p->p_sigacts; int signum; int bit, error; signum = SCARG(uap, signum); if (signum <= 0 || signum >= NSIG || (SCARG(uap, nsa) && (signum == SIGKILL || signum == SIGSTOP))) return (EINVAL); sa = &vec; if (SCARG(uap, osa)) { sa->sa_handler = ps->ps_sigact[signum]; sa->sa_mask = ps->ps_catchmask[signum]; bit = sigmask(signum); sa->sa_flags = 0; if ((ps->ps_sigonstack & bit) != 0) sa->sa_flags |= SA_ONSTACK; if ((ps->ps_sigintr & bit) == 0) sa->sa_flags |= SA_RESTART; if ((ps->ps_sigreset & bit) != 0) sa->sa_flags |= SA_RESETHAND; if ((ps->ps_siginfo & bit) != 0) sa->sa_flags |= SA_SIGINFO; if (signum == SIGCHLD) { if ((p->p_flag & P_NOCLDSTOP) != 0) sa->sa_flags |= SA_NOCLDSTOP; if ((p->p_flag & P_NOCLDWAIT) != 0) sa->sa_flags |= SA_NOCLDWAIT; } if ((sa->sa_mask & bit) == 0) sa->sa_flags |= SA_NODEFER; sa->sa_mask &= ~bit; error = copyout(sa, SCARG(uap, osa), sizeof (vec)); if (error) return (error); } if (SCARG(uap, nsa)) { error = copyin(SCARG(uap, nsa), sa, sizeof (vec)); if (error) return (error); setsigvec(p, signum, sa); } return (0); } void setsigvec(struct proc *p, int signum, struct sigaction *sa) { struct sigacts *ps = p->p_sigacts; int bit; int s; bit = sigmask(signum); /* * Change setting atomically. */ s = splhigh(); ps->ps_sigact[signum] = sa->sa_handler; if ((sa->sa_flags & SA_NODEFER) == 0) sa->sa_mask |= sigmask(signum); ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask; if (signum == SIGCHLD) { if (sa->sa_flags & SA_NOCLDSTOP) p->p_flag |= P_NOCLDSTOP; else p->p_flag &= ~P_NOCLDSTOP; /* * If the SA_NOCLDWAIT flag is set or the handler * is SIG_IGN we reparent the dying child to PID 1 * (init) which will reap the zombie. Because we use * init to do our dirty work we never set P_NOCLDWAIT * for PID 1. */ if (p->p_pid != 1 && ((sa->sa_flags & SA_NOCLDWAIT) || sa->sa_handler == SIG_IGN)) p->p_flag |= P_NOCLDWAIT; else p->p_flag &= ~P_NOCLDWAIT; } if ((sa->sa_flags & SA_RESETHAND) != 0) ps->ps_sigreset |= bit; else ps->ps_sigreset &= ~bit; if ((sa->sa_flags & SA_SIGINFO) != 0) ps->ps_siginfo |= bit; else ps->ps_siginfo &= ~bit; if ((sa->sa_flags & SA_RESTART) == 0) ps->ps_sigintr |= bit; else ps->ps_sigintr &= ~bit; if ((sa->sa_flags & SA_ONSTACK) != 0) ps->ps_sigonstack |= bit; else ps->ps_sigonstack &= ~bit; #ifdef COMPAT_SUNOS { extern struct emul emul_sunos; if (p->p_emul == &emul_sunos) { if (sa->sa_flags & SA_USERTRAMP) ps->ps_usertramp |= bit; else ps->ps_usertramp &= ~bit; } } #endif /* * Set bit in p_sigignore for signals that are set to SIG_IGN, * and for signals set to SIG_DFL where the default is to ignore. * However, don't put SIGCONT in p_sigignore, * as we have to restart the process. */ if (sa->sa_handler == SIG_IGN || (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) { p->p_siglist &= ~bit; /* never to be seen again */ if (signum != SIGCONT) p->p_sigignore |= bit; /* easier in psignal */ p->p_sigcatch &= ~bit; } else { p->p_sigignore &= ~bit; if (sa->sa_handler == SIG_DFL) p->p_sigcatch &= ~bit; else p->p_sigcatch |= bit; } splx(s); } /* * Initialize signal state for process 0; * set to ignore signals that are ignored by default. */ void siginit(struct proc *p) { int i; for (i = 0; i < NSIG; i++) if (sigprop[i] & SA_IGNORE && i != SIGCONT) p->p_sigignore |= sigmask(i); } /* * Reset signals for an exec of the specified process. */ void execsigs(struct proc *p) { struct sigacts *ps; int nc, mask; sigactsunshare(p); ps = p->p_sigacts; /* * Reset caught signals. Held signals remain held * through p_sigmask (unless they were caught, * and are now ignored by default). */ while (p->p_sigcatch) { nc = ffs((long)p->p_sigcatch); mask = sigmask(nc); p->p_sigcatch &= ~mask; if (sigprop[nc] & SA_IGNORE) { if (nc != SIGCONT) p->p_sigignore |= mask; p->p_siglist &= ~mask; } ps->ps_sigact[nc] = SIG_DFL; } /* * Reset stack state to the user stack. * Clear set of signals caught on the signal stack. */ ps->ps_sigstk.ss_flags = SS_DISABLE; ps->ps_sigstk.ss_size = 0; ps->ps_sigstk.ss_sp = 0; ps->ps_flags = 0; p->p_flag &= ~P_NOCLDWAIT; if (ps->ps_sigact[SIGCHLD] == SIG_IGN) ps->ps_sigact[SIGCHLD] = SIG_DFL; } /* * Manipulate signal mask. * Note that we receive new mask, not pointer, * and return old mask as return value; * the library stub does the rest. */ int sys_sigprocmask(struct proc *p, void *v, register_t *retval) { struct sys_sigprocmask_args /* { syscallarg(int) how; syscallarg(sigset_t) mask; } */ *uap = v; int error = 0; int s; *retval = p->p_sigmask; s = splhigh(); switch (SCARG(uap, how)) { case SIG_BLOCK: p->p_sigmask |= SCARG(uap, mask) &~ sigcantmask; break; case SIG_UNBLOCK: p->p_sigmask &= ~SCARG(uap, mask); break; case SIG_SETMASK: p->p_sigmask = SCARG(uap, mask) &~ sigcantmask; break; default: error = EINVAL; break; } splx(s); return (error); } /* ARGSUSED */ int sys_sigpending(struct proc *p, void *v, register_t *retval) { *retval = p->p_siglist; return (0); } /* * Suspend process until signal, providing mask to be set * in the meantime. Note nonstandard calling convention: * libc stub passes mask, not pointer, to save a copyin. */ /* ARGSUSED */ int sys_sigsuspend(struct proc *p, void *v, register_t *retval) { struct sys_sigsuspend_args /* { syscallarg(int) mask; } */ *uap = v; struct sigacts *ps = p->p_sigacts; /* * When returning from sigpause, we want * the old mask to be restored after the * signal handler has finished. Thus, we * save it here and mark the sigacts structure * to indicate this. */ ps->ps_oldmask = p->p_sigmask; ps->ps_flags |= SAS_OLDMASK; p->p_sigmask = SCARG(uap, mask) &~ sigcantmask; while (tsleep(ps, PPAUSE|PCATCH, "pause", 0) == 0) /* void */; /* always return EINTR rather than ERESTART... */ return (EINTR); } /* ARGSUSED */ int sys_osigaltstack(struct proc *p, void *v, register_t *retval) { struct sys_osigaltstack_args /* { syscallarg(const struct osigaltstack *) nss; syscallarg(struct osigaltstack *) oss; } */ *uap = v; struct sigacts *psp; struct osigaltstack ss; int error; psp = p->p_sigacts; if ((psp->ps_flags & SAS_ALTSTACK) == 0) psp->ps_sigstk.ss_flags |= SS_DISABLE; if (SCARG(uap, oss)) { ss.ss_sp = psp->ps_sigstk.ss_sp; ss.ss_size = psp->ps_sigstk.ss_size; ss.ss_flags = psp->ps_sigstk.ss_flags; if ((error = copyout(&ss, SCARG(uap, oss), sizeof(ss)))) return (error); } if (SCARG(uap, nss) == NULL) return (0); error = copyin(SCARG(uap, nss), &ss, sizeof(ss)); if (error) return (error); if (ss.ss_flags & SS_DISABLE) { if (psp->ps_sigstk.ss_flags & SS_ONSTACK) return (EINVAL); psp->ps_flags &= ~SAS_ALTSTACK; psp->ps_sigstk.ss_flags = ss.ss_flags; return (0); } if (ss.ss_size < MINSIGSTKSZ) return (ENOMEM); psp->ps_flags |= SAS_ALTSTACK; psp->ps_sigstk.ss_sp = ss.ss_sp; psp->ps_sigstk.ss_size = ss.ss_size; psp->ps_sigstk.ss_flags = ss.ss_flags; return (0); } int sys_sigaltstack(struct proc *p, void *v, register_t *retval) { struct sys_sigaltstack_args /* { syscallarg(const struct sigaltstack *) nss; syscallarg(struct sigaltstack *) oss; } */ *uap = v; struct sigacts *psp; struct sigaltstack ss; int error; psp = p->p_sigacts; if ((psp->ps_flags & SAS_ALTSTACK) == 0) psp->ps_sigstk.ss_flags |= SS_DISABLE; if (SCARG(uap, oss) && (error = copyout(&psp->ps_sigstk, SCARG(uap, oss), sizeof(struct sigaltstack)))) return (error); if (SCARG(uap, nss) == NULL) return (0); error = copyin(SCARG(uap, nss), &ss, sizeof(ss)); if (error) return (error); if (ss.ss_flags & SS_DISABLE) { if (psp->ps_sigstk.ss_flags & SS_ONSTACK) return (EINVAL); psp->ps_flags &= ~SAS_ALTSTACK; psp->ps_sigstk.ss_flags = ss.ss_flags; return (0); } if (ss.ss_size < MINSIGSTKSZ) return (ENOMEM); psp->ps_flags |= SAS_ALTSTACK; psp->ps_sigstk = ss; return (0); } /* ARGSUSED */ int sys_kill(struct proc *cp, void *v, register_t *retval) { struct sys_kill_args /* { syscallarg(int) pid; syscallarg(int) signum; } */ *uap = v; struct proc *p; struct pcred *pc = cp->p_cred; if ((u_int)SCARG(uap, signum) >= NSIG) return (EINVAL); if (SCARG(uap, pid) > 0) { /* kill single process */ if ((p = pfind(SCARG(uap, pid))) == NULL) return (ESRCH); if (!cansignal(cp, pc, p, SCARG(uap, signum))) return (EPERM); if (SCARG(uap, signum)) psignal(p, SCARG(uap, signum)); return (0); } switch (SCARG(uap, pid)) { case -1: /* broadcast signal */ return (killpg1(cp, SCARG(uap, signum), 0, 1)); case 0: /* signal own process group */ return (killpg1(cp, SCARG(uap, signum), 0, 0)); default: /* negative explicit process group */ return (killpg1(cp, SCARG(uap, signum), -SCARG(uap, pid), 0)); } /* NOTREACHED */ } /* * Common code for kill process group/broadcast kill. * cp is calling process. */ int killpg1(struct proc *cp, int signum, int pgid, int all) { struct proc *p; struct pcred *pc = cp->p_cred; struct pgrp *pgrp; int nfound = 0; if (all) /* * broadcast */ for (p = LIST_FIRST(&allproc); p; p = LIST_NEXT(p, p_list)) { if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || p == cp || !cansignal(cp, pc, p, signum)) continue; nfound++; if (signum) psignal(p, signum); } else { if (pgid == 0) /* * zero pgid means send to my process group. */ pgrp = cp->p_pgrp; else { pgrp = pgfind(pgid); if (pgrp == NULL) return (ESRCH); } LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { if (p->p_pid <= 1 || p->p_flag & P_SYSTEM || !cansignal(cp, pc, p, signum)) continue; nfound++; if (signum && P_ZOMBIE(p) == 0) psignal(p, signum); } } return (nfound ? 0 : ESRCH); } #define CANDELIVER(uid, euid, p) \ (euid == 0 || \ (uid) == (p)->p_cred->p_ruid || \ (uid) == (p)->p_cred->p_svuid || \ (uid) == (p)->p_ucred->cr_uid || \ (euid) == (p)->p_cred->p_ruid || \ (euid) == (p)->p_cred->p_svuid || \ (euid) == (p)->p_ucred->cr_uid) /* * Deliver signum to pgid, but first check uid/euid against each * process and see if it is permitted. */ void csignal(pid_t pgid, int signum, uid_t uid, uid_t euid) { struct pgrp *pgrp; struct proc *p; if (pgid == 0) return; if (pgid < 0) { pgid = -pgid; if ((pgrp = pgfind(pgid)) == NULL) return; LIST_FOREACH(p, &pgrp->pg_members, p_pglist) if (CANDELIVER(uid, euid, p)) psignal(p, signum); } else { if ((p = pfind(pgid)) == NULL) return; if (CANDELIVER(uid, euid, p)) psignal(p, signum); } } /* * Send a signal to a process group. */ void gsignal(int pgid, int signum) { struct pgrp *pgrp; if (pgid && (pgrp = pgfind(pgid))) pgsignal(pgrp, signum, 0); } /* * Send a signal to a process group. If checktty is 1, * limit to members which have a controlling terminal. */ void pgsignal(struct pgrp *pgrp, int signum, int checkctty) { struct proc *p; if (pgrp) LIST_FOREACH(p, &pgrp->pg_members, p_pglist) if ((checkctty == 0 || p->p_flag & P_CONTROLT) && (p->p_flag & P_THREAD) == 0) psignal(p, signum); } /* * Send a signal caused by a trap to the current process. * If it will be caught immediately, deliver it with correct code. * Otherwise, post it normally. */ void trapsignal(struct proc *p, int signum, u_long code, int type, union sigval sigval) { struct sigacts *ps = p->p_sigacts; int mask; mask = sigmask(signum); if ((p->p_flag & P_TRACED) == 0 && (p->p_sigcatch & mask) != 0 && (p->p_sigmask & mask) == 0) { #ifdef KTRACE if (KTRPOINT(p, KTR_PSIG)) { siginfo_t si; initsiginfo(&si, signum, code, type, sigval); ktrpsig(p, signum, ps->ps_sigact[signum], p->p_sigmask, type, &si); } #endif p->p_stats->p_ru.ru_nsignals++; (*p->p_emul->e_sendsig)(ps->ps_sigact[signum], signum, p->p_sigmask, code, type, sigval); p->p_sigmask |= ps->ps_catchmask[signum]; if ((ps->ps_sigreset & mask) != 0) { p->p_sigcatch &= ~mask; if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) p->p_sigignore |= mask; ps->ps_sigact[signum] = SIG_DFL; } } else { ps->ps_sig = signum; ps->ps_code = code; /* XXX for core dump/debugger */ ps->ps_type = type; ps->ps_sigval = sigval; psignal(p, signum); } } /* * Send the signal to the process. If the signal has an action, the action * is usually performed by the target process rather than the caller; we add * the signal to the set of pending signals for the process. * * Exceptions: * o When a stop signal is sent to a sleeping process that takes the * default action, the process is stopped without awakening it. * o SIGCONT restarts stopped processes (or puts them back to sleep) * regardless of the signal action (eg, blocked or ignored). * * Other ignored signals are discarded immediately. */ void psignal(struct proc *p, int signum) { int s, prop; sig_t action; int mask; #ifdef RTHREADS struct proc *q; #endif #ifdef DIAGNOSTIC if ((u_int)signum >= NSIG || signum == 0) panic("psignal signal number"); #endif /* Ignore signal if we are exiting */ if (p->p_flag & P_WEXIT) return; #ifdef RTHREADS LIST_FOREACH(q, &p->p_thrchildren, p_thrsib) { if (q->p_sigdivert & (1 << signum)) { q->p_sigdivert = 0; psignal(q, signum); return; } } #endif KNOTE(&p->p_klist, NOTE_SIGNAL | signum); mask = sigmask(signum); prop = sigprop[signum]; /* * If proc is traced, always give parent a chance. */ if (p->p_flag & P_TRACED) action = SIG_DFL; else { /* * If the signal is being ignored, * then we forget about it immediately. * (Note: we don't set SIGCONT in p_sigignore, * and if it is set to SIG_IGN, * action will be SIG_DFL here.) */ if (p->p_sigignore & mask) return; if (p->p_sigmask & mask) action = SIG_HOLD; else if (p->p_sigcatch & mask) action = SIG_CATCH; else { action = SIG_DFL; if (prop & SA_KILL && p->p_nice > NZERO) p->p_nice = NZERO; /* * If sending a tty stop signal to a member of an * orphaned process group, discard the signal here if * the action is default; don't stop the process below * if sleeping, and don't clear any pending SIGCONT. */ if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0) return; } } if (prop & SA_CONT) { #ifdef RTHREADS LIST_FOREACH(q, &p->p_thrchildren, p_thrsib) psignal(q, signum); #endif p->p_siglist &= ~stopsigmask; } if (prop & SA_STOP) { #ifdef RTHREADS LIST_FOREACH(q, &p->p_thrchildren, p_thrsib) psignal(q, signum); #endif p->p_siglist &= ~contsigmask; p->p_flag &= ~P_CONTINUED; } p->p_siglist |= mask; /* * Defer further processing for signals which are held, * except that stopped processes must be continued by SIGCONT. */ if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP)) return; SCHED_LOCK(s); switch (p->p_stat) { case SSLEEP: /* * If process is sleeping uninterruptibly * we can't interrupt the sleep... the signal will * be noticed when the process returns through * trap() or syscall(). */ if ((p->p_flag & P_SINTR) == 0) goto out; /* * Process is sleeping and traced... make it runnable * so it can discover the signal in issignal() and stop * for the parent. */ if (p->p_flag & P_TRACED) goto run; /* * If SIGCONT is default (or ignored) and process is * asleep, we are finished; the process should not * be awakened. */ if ((prop & SA_CONT) && action == SIG_DFL) { p->p_siglist &= ~mask; goto out; } /* * When a sleeping process receives a stop * signal, process immediately if possible. */ if ((prop & SA_STOP) && action == SIG_DFL) { /* * If a child holding parent blocked, * stopping could cause deadlock. */ if (p->p_flag & P_PPWAIT) goto out; p->p_siglist &= ~mask; p->p_xstat = signum; if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) psignal(p->p_pptr, SIGCHLD); proc_stop(p); goto out; } /* * All other (caught or default) signals * cause the process to run. */ goto runfast; /*NOTREACHED*/ case SSTOP: /* * If traced process is already stopped, * then no further action is necessary. */ if (p->p_flag & P_TRACED) goto out; /* * Kill signal always sets processes running. */ if (signum == SIGKILL) goto runfast; if (prop & SA_CONT) { /* * If SIGCONT is default (or ignored), we continue the * process but don't leave the signal in p_siglist, as * it has no further action. If SIGCONT is held, we * continue the process and leave the signal in * p_siglist. If the process catches SIGCONT, let it * handle the signal itself. If it isn't waiting on * an event, then it goes back to run state. * Otherwise, process goes back to sleep state. */ p->p_flag |= P_CONTINUED; wakeup(p->p_pptr); if (action == SIG_DFL) p->p_siglist &= ~mask; if (action == SIG_CATCH) goto runfast; if (p->p_wchan == 0) goto run; p->p_stat = SSLEEP; goto out; } if (prop & SA_STOP) { /* * Already stopped, don't need to stop again. * (If we did the shell could get confused.) */ p->p_siglist &= ~mask; /* take it away */ goto out; } /* * If process is sleeping interruptibly, then simulate a * wakeup so that when it is continued, it will be made * runnable and can look at the signal. But don't make * the process runnable, leave it stopped. */ if (p->p_wchan && p->p_flag & P_SINTR) unsleep(p); goto out; default: /* * SRUN, SIDL, SZOMB do nothing with the signal, * other than kicking ourselves if we are running. * It will either never be noticed, or noticed very soon. */ if (p == curproc) signotify(p); goto out; } /*NOTREACHED*/ runfast: /* * Raise priority to at least PUSER. */ if (p->p_priority > PUSER) p->p_priority = PUSER; run: setrunnable(p); out: SCHED_UNLOCK(s); } /* * If the current process has received a signal (should be caught or cause * termination, should interrupt current syscall), return the signal number. * Stop signals with default action are processed immediately, then cleared; * they aren't returned. This is checked after each entry to the system for * a syscall or trap (though this can usually be done without calling issignal * by checking the pending signal masks in the CURSIG macro.) The normal call * sequence is * * while (signum = CURSIG(curproc)) * postsig(signum); */ int issignal(struct proc *p) { int signum, mask, prop; int s; for (;;) { mask = p->p_siglist & ~p->p_sigmask; if (p->p_flag & P_PPWAIT) mask &= ~stopsigmask; if (mask == 0) /* no signal to send */ return (0); signum = ffs((long)mask); mask = sigmask(signum); p->p_siglist &= ~mask; /* take the signal! */ /* * We should see pending but ignored signals * only if P_TRACED was on when they were posted. */ if (mask & p->p_sigignore && (p->p_flag & P_TRACED) == 0) continue; if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) { /* * If traced, always stop, and stay * stopped until released by the debugger. */ p->p_xstat = signum; SCHED_LOCK(s); /* protect mi_switch */ psignal(p->p_pptr, SIGCHLD); proc_stop(p); mi_switch(); SCHED_UNLOCK(s); /* * If we are no longer being traced, or the parent * didn't give us a signal, look for more signals. */ if ((p->p_flag & P_TRACED) == 0 || p->p_xstat == 0) continue; /* * If the new signal is being masked, look for other * signals. */ signum = p->p_xstat; mask = sigmask(signum); if ((p->p_sigmask & mask) != 0) continue; p->p_siglist &= ~mask; /* take the signal! */ } prop = sigprop[signum]; /* * Decide whether the signal should be returned. * Return the signal's number, or fall through * to clear it from the pending mask. */ switch ((long)p->p_sigacts->ps_sigact[signum]) { case (long)SIG_DFL: /* * Don't take default actions on system processes. */ if (p->p_pid <= 1) { #ifdef DIAGNOSTIC /* * Are you sure you want to ignore SIGSEGV * in init? XXX */ printf("Process (pid %d) got signal %d\n", p->p_pid, signum); #endif break; /* == ignore */ } /* * If there is a pending stop signal to process * with default action, stop here, * then clear the signal. However, * if process is member of an orphaned * process group, ignore tty stop signals. */ if (prop & SA_STOP) { if (p->p_flag & P_TRACED || (p->p_pgrp->pg_jobc == 0 && prop & SA_TTYSTOP)) break; /* == ignore */ p->p_xstat = signum; if ((p->p_pptr->p_flag & P_NOCLDSTOP) == 0) psignal(p->p_pptr, SIGCHLD); SCHED_LOCK(s); proc_stop(p); mi_switch(); SCHED_UNLOCK(s); break; } else if (prop & SA_IGNORE) { /* * Except for SIGCONT, shouldn't get here. * Default action is to ignore; drop it. */ break; /* == ignore */ } else goto keep; /*NOTREACHED*/ case (long)SIG_IGN: /* * Masking above should prevent us ever trying * to take action on an ignored signal other * than SIGCONT, unless process is traced. */ if ((prop & SA_CONT) == 0 && (p->p_flag & P_TRACED) == 0) printf("issignal\n"); break; /* == ignore */ default: /* * This signal has an action, let * postsig() process it. */ goto keep; } } /* NOTREACHED */ keep: p->p_siglist |= mask; /* leave the signal for later */ return (signum); } /* * Put the argument process into the stopped state and notify the parent * via wakeup. Signals are handled elsewhere. The process must not be * on the run queue. */ void proc_stop(struct proc *p) { #ifdef MULTIPROCESSOR SCHED_ASSERT_LOCKED(); #endif p->p_stat = SSTOP; p->p_flag &= ~P_WAITED; wakeup(p->p_pptr); } /* * Take the action for the specified signal * from the current set of pending signals. */ void postsig(int signum) { struct proc *p = curproc; struct sigacts *ps = p->p_sigacts; sig_t action; u_long code; int mask, returnmask; union sigval sigval; int s, type; #ifdef DIAGNOSTIC if (signum == 0) panic("postsig"); #endif KERNEL_PROC_LOCK(p); mask = sigmask(signum); p->p_siglist &= ~mask; action = ps->ps_sigact[signum]; sigval.sival_ptr = 0; type = SI_USER; if (ps->ps_sig != signum) { code = 0; type = SI_USER; sigval.sival_ptr = 0; } else { code = ps->ps_code; type = ps->ps_type; sigval = ps->ps_sigval; } #ifdef KTRACE if (KTRPOINT(p, KTR_PSIG)) { siginfo_t si; initsiginfo(&si, signum, code, type, sigval); ktrpsig(p, signum, action, ps->ps_flags & SAS_OLDMASK ? ps->ps_oldmask : p->p_sigmask, type, &si); } #endif if (action == SIG_DFL) { /* * Default action, where the default is to kill * the process. (Other cases were ignored above.) */ sigexit(p, signum); /* NOTREACHED */ } else { /* * If we get here, the signal must be caught. */ #ifdef DIAGNOSTIC if (action == SIG_IGN || (p->p_sigmask & mask)) panic("postsig action"); #endif /* * Set the new mask value and also defer further * occurences of this signal. * * Special case: user has done a sigpause. Here the * current mask is not of interest, but rather the * mask from before the sigpause is what we want * restored after the signal processing is completed. */ #ifdef MULTIPROCESSOR s = splsched(); #else s = splhigh(); #endif if (ps->ps_flags & SAS_OLDMASK) { returnmask = ps->ps_oldmask; ps->ps_flags &= ~SAS_OLDMASK; } else returnmask = p->p_sigmask; p->p_sigmask |= ps->ps_catchmask[signum]; if ((ps->ps_sigreset & mask) != 0) { p->p_sigcatch &= ~mask; if (signum != SIGCONT && sigprop[signum] & SA_IGNORE) p->p_sigignore |= mask; ps->ps_sigact[signum] = SIG_DFL; } splx(s); p->p_stats->p_ru.ru_nsignals++; if (ps->ps_sig == signum) { ps->ps_sig = 0; ps->ps_code = 0; ps->ps_type = SI_USER; ps->ps_sigval.sival_ptr = NULL; } (*p->p_emul->e_sendsig)(action, signum, returnmask, code, type, sigval); } KERNEL_PROC_UNLOCK(p); } /* * Force the current process to exit with the specified signal, dumping core * if appropriate. We bypass the normal tests for masked and caught signals, * allowing unrecoverable failures to terminate the process without changing * signal state. Mark the accounting record with the signal termination. * If dumping core, save the signal number for the debugger. Calls exit and * does not return. */ void sigexit(struct proc *p, int signum) { /* Mark process as going away */ p->p_flag |= P_WEXIT; p->p_acflag |= AXSIG; if (sigprop[signum] & SA_CORE) { p->p_sigacts->ps_sig = signum; if (coredump(p) == 0) signum |= WCOREFLAG; } exit1(p, W_EXITCODE(0, signum), EXIT_NORMAL); /* NOTREACHED */ } int nosuidcoredump = 1; /* * Dump core, into a file named "progname.core", unless the process was * setuid/setgid. */ int coredump(struct proc *p) { struct vnode *vp; struct ucred *cred = p->p_ucred; struct vmspace *vm = p->p_vmspace; struct nameidata nd; struct vattr vattr; int error, error1; char name[MAXCOMLEN+6]; /* progname.core */ struct core core; /* * Don't dump if not root and the process has used set user or * group privileges. */ if ((p->p_flag & P_SUGID) && (error = suser(p, 0)) != 0) return (error); if ((p->p_flag & P_SUGID) && nosuidcoredump) return (EPERM); /* Don't dump if will exceed file size limit. */ if (USPACE + ctob(vm->vm_dsize + vm->vm_ssize) >= p->p_rlimit[RLIMIT_CORE].rlim_cur) return (EFBIG); /* * ... but actually write it as UID */ cred = crdup(cred); cred->cr_uid = p->p_cred->p_ruid; cred->cr_gid = p->p_cred->p_rgid; snprintf(name, sizeof name, "%s.core", p->p_comm); NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p); error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR); if (error) { crfree(cred); return (error); } /* * Don't dump to non-regular files, files with links, or files * owned by someone else. */ vp = nd.ni_vp; if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) goto out; /* Don't dump to non-regular files or files with links. */ if (vp->v_type != VREG || vattr.va_nlink != 1 || vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6)) { error = EACCES; goto out; } VATTR_NULL(&vattr); vattr.va_size = 0; VOP_LEASE(vp, p, cred, LEASE_WRITE); VOP_SETATTR(vp, &vattr, cred, p); p->p_acflag |= ACORE; bcopy(p, &p->p_addr->u_kproc.kp_proc, sizeof(struct proc)); fill_eproc(p, &p->p_addr->u_kproc.kp_eproc); core.c_midmag = 0; strlcpy(core.c_name, p->p_comm, sizeof(core.c_name)); core.c_nseg = 0; core.c_signo = p->p_sigacts->ps_sig; core.c_ucode = p->p_sigacts->ps_code; core.c_cpusize = 0; core.c_tsize = (u_long)ctob(vm->vm_tsize); core.c_dsize = (u_long)ctob(vm->vm_dsize); core.c_ssize = (u_long)round_page(ctob(vm->vm_ssize)); error = cpu_coredump(p, vp, cred, &core); if (error) goto out; /* * uvm_coredump() spits out all appropriate segments. * All that's left to do is to write the core header. */ error = uvm_coredump(p, vp, cred, &core); if (error) goto out; error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&core, (int)core.c_hdrsize, (off_t)0, UIO_SYSSPACE, IO_NODELOCKED|IO_UNIT, cred, NULL, p); out: VOP_UNLOCK(vp, 0, p); error1 = vn_close(vp, FWRITE, cred, p); crfree(cred); if (error == 0) error = error1; return (error); } /* * Nonexistent system call-- signal process (may want to handle it). * Flag error in case process won't see signal immediately (blocked or ignored). */ /* ARGSUSED */ int sys_nosys(struct proc *p, void *v, register_t *retval) { psignal(p, SIGSYS); return (ENOSYS); } #ifdef RTHREADS int sys_thrsigdivert(struct proc *p, void *v, register_t *retval) { struct sys_thrsigdivert_args *uap = v; p->p_sigdivert = SCARG(uap, sigmask); return (0); } #endif void initsiginfo(siginfo_t *si, int sig, u_long code, int type, union sigval val) { bzero(si, sizeof *si); si->si_signo = sig; si->si_code = type; if (type == SI_USER) { si->si_value = val; } else { switch (sig) { case SIGSEGV: case SIGILL: case SIGBUS: case SIGFPE: si->si_addr = val.sival_ptr; si->si_trapno = code; break; case SIGXFSZ: break; } } } int filt_sigattach(struct knote *kn) { struct proc *p = curproc; kn->kn_ptr.p_proc = p; kn->kn_flags |= EV_CLEAR; /* automatically set */ /* XXX lock the proc here while adding to the list? */ SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); return (0); } void filt_sigdetach(struct knote *kn) { struct proc *p = kn->kn_ptr.p_proc; SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); } /* * signal knotes are shared with proc knotes, so we apply a mask to * the hint in order to differentiate them from process hints. This * could be avoided by using a signal-specific knote list, but probably * isn't worth the trouble. */ int filt_signal(struct knote *kn, long hint) { if (hint & NOTE_SIGNAL) { hint &= ~NOTE_SIGNAL; if (kn->kn_id == hint) kn->kn_data++; } return (kn->kn_data != 0); }