/* $OpenBSD: kern_sysctl.c,v 1.191 2010/07/26 01:56:27 guenther Exp $ */ /* $NetBSD: kern_sysctl.c,v 1.17 1996/05/20 17:49:05 mrg Exp $ */ /*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Mike Karels at Berkeley Software Design, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_sysctl.c 8.4 (Berkeley) 4/14/94 */ /* * sysctl system call. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __HAVE_TIMECOUNTER #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #ifdef SYSVMSG #include #endif #ifdef SYSVSEM #include #endif #ifdef SYSVSHM #include #endif extern struct forkstat forkstat; extern struct nchstats nchstats; extern int nselcoll, fscale; extern struct disklist_head disklist; extern fixpt_t ccpu; extern long numvnodes; extern void nmbclust_update(void); int sysctl_diskinit(int, struct proc *); int sysctl_proc_args(int *, u_int, void *, size_t *, struct proc *); int sysctl_intrcnt(int *, u_int, void *, size_t *); int sysctl_sensors(int *, u_int, void *, size_t *, void *, size_t); int sysctl_emul(int *, u_int, void *, size_t *, void *, size_t); int sysctl_cptime2(int *, u_int, void *, size_t *, void *, size_t); int (*cpu_cpuspeed)(int *); void (*cpu_setperf)(int); int perflevel = 100; int rthreads_enabled = 0; /* * Lock to avoid too many processes vslocking a large amount of memory * at the same time. */ struct rwlock sysctl_lock = RWLOCK_INITIALIZER("sysctllk"); struct rwlock sysctl_disklock = RWLOCK_INITIALIZER("sysctldlk"); int sys___sysctl(struct proc *p, void *v, register_t *retval) { struct sys___sysctl_args /* { syscallarg(int *) name; syscallarg(u_int) namelen; syscallarg(void *) old; syscallarg(size_t *) oldlenp; syscallarg(void *) new; syscallarg(size_t) newlen; } */ *uap = v; int error, dolock = 1; size_t savelen = 0, oldlen = 0; sysctlfn *fn; int name[CTL_MAXNAME]; if (SCARG(uap, new) != NULL && (error = suser(p, 0))) return (error); /* * all top-level sysctl names are non-terminal */ if (SCARG(uap, namelen) > CTL_MAXNAME || SCARG(uap, namelen) < 2) return (EINVAL); error = copyin(SCARG(uap, name), name, SCARG(uap, namelen) * sizeof(int)); if (error) return (error); switch (name[0]) { case CTL_KERN: fn = kern_sysctl; if (name[1] == KERN_VNODE) /* XXX */ dolock = 0; break; case CTL_HW: fn = hw_sysctl; break; case CTL_VM: fn = uvm_sysctl; break; case CTL_NET: fn = net_sysctl; break; case CTL_FS: fn = fs_sysctl; break; case CTL_VFS: fn = vfs_sysctl; break; case CTL_MACHDEP: fn = cpu_sysctl; break; #ifdef DEBUG case CTL_DEBUG: fn = debug_sysctl; break; #endif #ifdef DDB case CTL_DDB: fn = ddb_sysctl; break; #endif default: return (EOPNOTSUPP); } if (SCARG(uap, oldlenp) && (error = copyin(SCARG(uap, oldlenp), &oldlen, sizeof(oldlen)))) return (error); if (SCARG(uap, old) != NULL) { if ((error = rw_enter(&sysctl_lock, RW_WRITE|RW_INTR)) != 0) return (error); if (dolock) { if (atop(oldlen) > uvmexp.wiredmax - uvmexp.wired) { rw_exit_write(&sysctl_lock); return (ENOMEM); } error = uvm_vslock(p, SCARG(uap, old), oldlen, VM_PROT_READ|VM_PROT_WRITE); if (error) { rw_exit_write(&sysctl_lock); return (error); } } savelen = oldlen; } error = (*fn)(&name[1], SCARG(uap, namelen) - 1, SCARG(uap, old), &oldlen, SCARG(uap, new), SCARG(uap, newlen), p); if (SCARG(uap, old) != NULL) { if (dolock) uvm_vsunlock(p, SCARG(uap, old), savelen); rw_exit_write(&sysctl_lock); } if (error) return (error); if (SCARG(uap, oldlenp)) error = copyout(&oldlen, SCARG(uap, oldlenp), sizeof(oldlen)); return (error); } /* * Attributes stored in the kernel. */ char hostname[MAXHOSTNAMELEN]; int hostnamelen; char domainname[MAXHOSTNAMELEN]; int domainnamelen; long hostid; char *disknames = NULL; struct diskstats *diskstats = NULL; #ifdef INSECURE int securelevel = -1; #else int securelevel; #endif /* * kernel related system variables. */ int kern_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p) { int error, level, inthostid, stackgap; extern int somaxconn, sominconn; extern int usermount, nosuidcoredump; extern long cp_time[CPUSTATES]; extern int stackgap_random; #ifdef CRYPTO extern int usercrypto; extern int userasymcrypto; extern int cryptodevallowsoft; #endif extern int maxlocksperuid; /* all sysctl names at this level are terminal except a ton of them */ if (namelen != 1) { switch (name[0]) { case KERN_PROC: case KERN_PROC2: case KERN_PROF: case KERN_MALLOCSTATS: case KERN_TTY: case KERN_POOL: case KERN_PROC_ARGS: case KERN_SYSVIPC_INFO: case KERN_SEMINFO: case KERN_SHMINFO: case KERN_INTRCNT: case KERN_WATCHDOG: case KERN_EMUL: case KERN_EVCOUNT: #ifdef __HAVE_TIMECOUNTER case KERN_TIMECOUNTER: #endif case KERN_CPTIME2: case KERN_FILE2: break; default: return (ENOTDIR); /* overloaded */ } } switch (name[0]) { case KERN_OSTYPE: return (sysctl_rdstring(oldp, oldlenp, newp, ostype)); case KERN_OSRELEASE: return (sysctl_rdstring(oldp, oldlenp, newp, osrelease)); case KERN_OSREV: return (sysctl_rdint(oldp, oldlenp, newp, OpenBSD)); case KERN_OSVERSION: return (sysctl_rdstring(oldp, oldlenp, newp, osversion)); case KERN_VERSION: return (sysctl_rdstring(oldp, oldlenp, newp, version)); case KERN_MAXVNODES: return(sysctl_int(oldp, oldlenp, newp, newlen, &maxvnodes)); case KERN_MAXPROC: return (sysctl_int(oldp, oldlenp, newp, newlen, &maxproc)); case KERN_MAXFILES: return (sysctl_int(oldp, oldlenp, newp, newlen, &maxfiles)); case KERN_NFILES: return (sysctl_rdint(oldp, oldlenp, newp, nfiles)); case KERN_TTYCOUNT: return (sysctl_rdint(oldp, oldlenp, newp, tty_count)); case KERN_NUMVNODES: return (sysctl_rdint(oldp, oldlenp, newp, numvnodes)); case KERN_ARGMAX: return (sysctl_rdint(oldp, oldlenp, newp, ARG_MAX)); case KERN_NSELCOLL: return (sysctl_rdint(oldp, oldlenp, newp, nselcoll)); case KERN_SECURELVL: level = securelevel; if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &level)) || newp == NULL) return (error); if ((securelevel > 0 || level < -1) && level < securelevel && p->p_pid != 1) return (EPERM); securelevel = level; return (0); case KERN_HOSTNAME: error = sysctl_tstring(oldp, oldlenp, newp, newlen, hostname, sizeof(hostname)); if (newp && !error) hostnamelen = newlen; return (error); case KERN_DOMAINNAME: error = sysctl_tstring(oldp, oldlenp, newp, newlen, domainname, sizeof(domainname)); if (newp && !error) domainnamelen = newlen; return (error); case KERN_HOSTID: inthostid = hostid; /* XXX assumes sizeof long <= sizeof int */ error = sysctl_int(oldp, oldlenp, newp, newlen, &inthostid); hostid = inthostid; return (error); case KERN_CLOCKRATE: return (sysctl_clockrate(oldp, oldlenp, newp)); case KERN_BOOTTIME: return (sysctl_rdstruct(oldp, oldlenp, newp, &boottime, sizeof(struct timeval))); case KERN_VNODE: return (sysctl_vnode(oldp, oldlenp, p)); #ifndef SMALL_KERNEL case KERN_PROC: case KERN_PROC2: return (sysctl_doproc(name, namelen, oldp, oldlenp)); case KERN_PROC_ARGS: return (sysctl_proc_args(name + 1, namelen - 1, oldp, oldlenp, p)); case KERN_FILE2: return (sysctl_file2(name + 1, namelen - 1, oldp, oldlenp, p)); #endif case KERN_FILE: return (sysctl_file(oldp, oldlenp, p)); case KERN_MBSTAT: return (sysctl_rdstruct(oldp, oldlenp, newp, &mbstat, sizeof(mbstat))); #ifdef GPROF case KERN_PROF: return (sysctl_doprof(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); #endif case KERN_POSIX1: return (sysctl_rdint(oldp, oldlenp, newp, _POSIX_VERSION)); case KERN_NGROUPS: return (sysctl_rdint(oldp, oldlenp, newp, NGROUPS_MAX)); case KERN_JOB_CONTROL: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_SAVED_IDS: #ifdef _POSIX_SAVED_IDS return (sysctl_rdint(oldp, oldlenp, newp, 1)); #else return (sysctl_rdint(oldp, oldlenp, newp, 0)); #endif case KERN_MAXPARTITIONS: return (sysctl_rdint(oldp, oldlenp, newp, MAXPARTITIONS)); case KERN_RAWPARTITION: return (sysctl_rdint(oldp, oldlenp, newp, RAW_PART)); case KERN_SOMAXCONN: return (sysctl_int(oldp, oldlenp, newp, newlen, &somaxconn)); case KERN_SOMINCONN: return (sysctl_int(oldp, oldlenp, newp, newlen, &sominconn)); case KERN_USERMOUNT: return (sysctl_int(oldp, oldlenp, newp, newlen, &usermount)); case KERN_RND: return (sysctl_rdstruct(oldp, oldlenp, newp, &rndstats, sizeof(rndstats))); case KERN_ARND: { char buf[256]; if (*oldlenp > sizeof(buf)) *oldlenp = sizeof(buf); if (oldp) { arc4random_buf(buf, *oldlenp); if ((error = copyout(buf, oldp, *oldlenp))) return (error); } return (0); } case KERN_NOSUIDCOREDUMP: return (sysctl_int(oldp, oldlenp, newp, newlen, &nosuidcoredump)); case KERN_FSYNC: return (sysctl_rdint(oldp, oldlenp, newp, 1)); case KERN_SYSVMSG: #ifdef SYSVMSG return (sysctl_rdint(oldp, oldlenp, newp, 1)); #else return (sysctl_rdint(oldp, oldlenp, newp, 0)); #endif case KERN_SYSVSEM: #ifdef SYSVSEM return (sysctl_rdint(oldp, oldlenp, newp, 1)); #else return (sysctl_rdint(oldp, oldlenp, newp, 0)); #endif case KERN_SYSVSHM: #ifdef SYSVSHM return (sysctl_rdint(oldp, oldlenp, newp, 1)); #else return (sysctl_rdint(oldp, oldlenp, newp, 0)); #endif case KERN_MSGBUFSIZE: /* * deal with cases where the message buffer has * become corrupted. */ if (!msgbufp || msgbufp->msg_magic != MSG_MAGIC) return (ENXIO); return (sysctl_rdint(oldp, oldlenp, newp, msgbufp->msg_bufs)); case KERN_MSGBUF: /* see note above */ if (!msgbufp || msgbufp->msg_magic != MSG_MAGIC) return (ENXIO); return (sysctl_rdstruct(oldp, oldlenp, newp, msgbufp, msgbufp->msg_bufs + offsetof(struct msgbuf, msg_bufc))); case KERN_MALLOCSTATS: return (sysctl_malloc(name + 1, namelen - 1, oldp, oldlenp, newp, newlen, p)); case KERN_CPTIME: { CPU_INFO_ITERATOR cii; struct cpu_info *ci; int i; bzero(cp_time, sizeof(cp_time)); CPU_INFO_FOREACH(cii, ci) { for (i = 0; i < CPUSTATES; i++) cp_time[i] += ci->ci_schedstate.spc_cp_time[i]; } return (sysctl_rdstruct(oldp, oldlenp, newp, &cp_time, sizeof(cp_time))); } case KERN_NCHSTATS: return (sysctl_rdstruct(oldp, oldlenp, newp, &nchstats, sizeof(struct nchstats))); case KERN_FORKSTAT: return (sysctl_rdstruct(oldp, oldlenp, newp, &forkstat, sizeof(struct forkstat))); case KERN_TTY: return (sysctl_tty(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); case KERN_FSCALE: return (sysctl_rdint(oldp, oldlenp, newp, fscale)); case KERN_CCPU: return (sysctl_rdint(oldp, oldlenp, newp, ccpu)); case KERN_NPROCS: return (sysctl_rdint(oldp, oldlenp, newp, nprocs)); case KERN_POOL: return (sysctl_dopool(name + 1, namelen - 1, oldp, oldlenp)); case KERN_STACKGAPRANDOM: stackgap = stackgap_random; error = sysctl_int(oldp, oldlenp, newp, newlen, &stackgap); if (error) return (error); /* * Safety harness. */ if ((stackgap < ALIGNBYTES && stackgap != 0) || !powerof2(stackgap) || stackgap >= MAXSSIZ) return (EINVAL); stackgap_random = stackgap; return (0); #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) case KERN_SYSVIPC_INFO: return (sysctl_sysvipc(name + 1, namelen - 1, oldp, oldlenp)); #endif #ifdef CRYPTO case KERN_USERCRYPTO: return (sysctl_int(oldp, oldlenp, newp, newlen, &usercrypto)); case KERN_USERASYMCRYPTO: return (sysctl_int(oldp, oldlenp, newp, newlen, &userasymcrypto)); case KERN_CRYPTODEVALLOWSOFT: return (sysctl_int(oldp, oldlenp, newp, newlen, &cryptodevallowsoft)); #endif case KERN_SPLASSERT: return (sysctl_int(oldp, oldlenp, newp, newlen, &splassert_ctl)); #ifdef SYSVSEM case KERN_SEMINFO: return (sysctl_sysvsem(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); #endif #ifdef SYSVSHM case KERN_SHMINFO: return (sysctl_sysvshm(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); #endif #ifndef SMALL_KERNEL case KERN_INTRCNT: return (sysctl_intrcnt(name + 1, namelen - 1, oldp, oldlenp)); case KERN_WATCHDOG: return (sysctl_wdog(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); case KERN_EMUL: return (sysctl_emul(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); #endif case KERN_MAXCLUSTERS: error = sysctl_int(oldp, oldlenp, newp, newlen, &nmbclust); if (!error) nmbclust_update(); return (error); #ifndef SMALL_KERNEL case KERN_EVCOUNT: return (evcount_sysctl(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); #endif #ifdef __HAVE_TIMECOUNTER case KERN_TIMECOUNTER: return (sysctl_tc(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); #endif case KERN_MAXLOCKSPERUID: return (sysctl_int(oldp, oldlenp, newp, newlen, &maxlocksperuid)); case KERN_CPTIME2: return (sysctl_cptime2(name + 1, namelen -1, oldp, oldlenp, newp, newlen)); case KERN_RTHREADS: return (sysctl_int(oldp, oldlenp, newp, newlen, &rthreads_enabled)); case KERN_CACHEPCT: { int opct, pgs; opct = bufcachepercent; error = sysctl_int(oldp, oldlenp, newp, newlen, &bufcachepercent); if (error) return(error); if (bufcachepercent > 90 || bufcachepercent < 5) { bufcachepercent = opct; return (EINVAL); } if (bufcachepercent != opct) { pgs = bufcachepercent * physmem / 100; bufadjust(pgs); /* adjust bufpages */ bufhighpages = bufpages; /* set high water mark */ } return(0); } default: return (EOPNOTSUPP); } /* NOTREACHED */ } /* * hardware related system variables. */ char *hw_vendor, *hw_prod, *hw_uuid, *hw_serial, *hw_ver; int hw_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p) { extern char machine[], cpu_model[]; int err, cpuspeed; /* all sysctl names at this level except sensors are terminal */ if (name[0] != HW_SENSORS && namelen != 1) return (ENOTDIR); /* overloaded */ switch (name[0]) { case HW_MACHINE: return (sysctl_rdstring(oldp, oldlenp, newp, machine)); case HW_MODEL: return (sysctl_rdstring(oldp, oldlenp, newp, cpu_model)); case HW_NCPU: return (sysctl_rdint(oldp, oldlenp, newp, ncpus)); case HW_NCPUFOUND: return (sysctl_rdint(oldp, oldlenp, newp, ncpusfound)); case HW_BYTEORDER: return (sysctl_rdint(oldp, oldlenp, newp, BYTE_ORDER)); case HW_PHYSMEM: return (sysctl_rdint(oldp, oldlenp, newp, ptoa(physmem))); case HW_USERMEM: return (sysctl_rdint(oldp, oldlenp, newp, ptoa(physmem - uvmexp.wired))); case HW_PAGESIZE: return (sysctl_rdint(oldp, oldlenp, newp, PAGE_SIZE)); case HW_DISKNAMES: err = sysctl_diskinit(0, p); if (err) return err; if (disknames) return (sysctl_rdstring(oldp, oldlenp, newp, disknames)); else return (sysctl_rdstring(oldp, oldlenp, newp, "")); case HW_DISKSTATS: err = sysctl_diskinit(1, p); if (err) return err; return (sysctl_rdstruct(oldp, oldlenp, newp, diskstats, disk_count * sizeof(struct diskstats))); case HW_DISKCOUNT: return (sysctl_rdint(oldp, oldlenp, newp, disk_count)); #ifndef SMALL_KERNEL case HW_SENSORS: return (sysctl_sensors(name + 1, namelen - 1, oldp, oldlenp, newp, newlen)); #endif case HW_CPUSPEED: if (!cpu_cpuspeed) return (EOPNOTSUPP); err = cpu_cpuspeed(&cpuspeed); if (err) return err; return (sysctl_rdint(oldp, oldlenp, newp, cpuspeed)); case HW_SETPERF: if (!cpu_setperf) return (EOPNOTSUPP); err = sysctl_int(oldp, oldlenp, newp, newlen, &perflevel); if (err) return err; if (perflevel > 100) perflevel = 100; if (perflevel < 0) perflevel = 0; if (newp) cpu_setperf(perflevel); return (0); case HW_VENDOR: if (hw_vendor) return (sysctl_rdstring(oldp, oldlenp, newp, hw_vendor)); else return (EOPNOTSUPP); case HW_PRODUCT: if (hw_prod) return (sysctl_rdstring(oldp, oldlenp, newp, hw_prod)); else return (EOPNOTSUPP); case HW_VERSION: if (hw_ver) return (sysctl_rdstring(oldp, oldlenp, newp, hw_ver)); else return (EOPNOTSUPP); case HW_SERIALNO: if (hw_serial) return (sysctl_rdstring(oldp, oldlenp, newp, hw_serial)); else return (EOPNOTSUPP); case HW_UUID: if (hw_uuid) return (sysctl_rdstring(oldp, oldlenp, newp, hw_uuid)); else return (EOPNOTSUPP); case HW_PHYSMEM64: return (sysctl_rdquad(oldp, oldlenp, newp, ptoa((psize_t)physmem))); case HW_USERMEM64: return (sysctl_rdquad(oldp, oldlenp, newp, ptoa((psize_t)physmem - uvmexp.wired))); default: return (EOPNOTSUPP); } /* NOTREACHED */ } #ifdef DEBUG /* * Debugging related system variables. */ extern struct ctldebug debug0, debug1; struct ctldebug debug2, debug3, debug4; struct ctldebug debug5, debug6, debug7, debug8, debug9; struct ctldebug debug10, debug11, debug12, debug13, debug14; struct ctldebug debug15, debug16, debug17, debug18, debug19; static struct ctldebug *debugvars[CTL_DEBUG_MAXID] = { &debug0, &debug1, &debug2, &debug3, &debug4, &debug5, &debug6, &debug7, &debug8, &debug9, &debug10, &debug11, &debug12, &debug13, &debug14, &debug15, &debug16, &debug17, &debug18, &debug19, }; int debug_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct proc *p) { struct ctldebug *cdp; /* all sysctl names at this level are name and field */ if (namelen != 2) return (ENOTDIR); /* overloaded */ cdp = debugvars[name[0]]; if (cdp->debugname == 0) return (EOPNOTSUPP); switch (name[1]) { case CTL_DEBUG_NAME: return (sysctl_rdstring(oldp, oldlenp, newp, cdp->debugname)); case CTL_DEBUG_VALUE: return (sysctl_int(oldp, oldlenp, newp, newlen, cdp->debugvar)); default: return (EOPNOTSUPP); } /* NOTREACHED */ } #endif /* DEBUG */ /* * Reads, or writes that lower the value */ int sysctl_int_lower(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp) { unsigned int oval = *valp, val = *valp; int error; if (newp == NULL) return (sysctl_rdint(oldp, oldlenp, newp, *valp)); if ((error = sysctl_int(oldp, oldlenp, newp, newlen, &val))) return (error); if (val > oval) return (EPERM); /* do not allow raising */ *(unsigned int *)valp = val; return (0); } /* * Validate parameters and get old / set new parameters * for an integer-valued sysctl function. */ int sysctl_int(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int *valp) { int error = 0; if (oldp && *oldlenp < sizeof(int)) return (ENOMEM); if (newp && newlen != sizeof(int)) return (EINVAL); *oldlenp = sizeof(int); if (oldp) error = copyout(valp, oldp, sizeof(int)); if (error == 0 && newp) error = copyin(newp, valp, sizeof(int)); return (error); } /* * As above, but read-only. */ int sysctl_rdint(void *oldp, size_t *oldlenp, void *newp, int val) { int error = 0; if (oldp && *oldlenp < sizeof(int)) return (ENOMEM); if (newp) return (EPERM); *oldlenp = sizeof(int); if (oldp) error = copyout((caddr_t)&val, oldp, sizeof(int)); return (error); } /* * Array of integer values. */ int sysctl_int_arr(int **valpp, int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (namelen > 1) return (ENOTDIR); if (name[0] < 0 || valpp[name[0]] == NULL) return (EOPNOTSUPP); return (sysctl_int(oldp, oldlenp, newp, newlen, valpp[name[0]])); } /* * Validate parameters and get old / set new parameters * for an integer-valued sysctl function. */ int sysctl_quad(void *oldp, size_t *oldlenp, void *newp, size_t newlen, int64_t *valp) { int error = 0; if (oldp && *oldlenp < sizeof(int64_t)) return (ENOMEM); if (newp && newlen != sizeof(int64_t)) return (EINVAL); *oldlenp = sizeof(int64_t); if (oldp) error = copyout(valp, oldp, sizeof(int64_t)); if (error == 0 && newp) error = copyin(newp, valp, sizeof(int64_t)); return (error); } /* * As above, but read-only. */ int sysctl_rdquad(void *oldp, size_t *oldlenp, void *newp, int64_t val) { int error = 0; if (oldp && *oldlenp < sizeof(int64_t)) return (ENOMEM); if (newp) return (EPERM); *oldlenp = sizeof(int64_t); if (oldp) error = copyout((caddr_t)&val, oldp, sizeof(int64_t)); return (error); } /* * Validate parameters and get old / set new parameters * for a string-valued sysctl function. */ int sysctl_string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str, int maxlen) { return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 0); } int sysctl_tstring(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str, int maxlen) { return sysctl__string(oldp, oldlenp, newp, newlen, str, maxlen, 1); } int sysctl__string(void *oldp, size_t *oldlenp, void *newp, size_t newlen, char *str, int maxlen, int trunc) { int len, error = 0; char c; len = strlen(str) + 1; if (oldp && *oldlenp < len) { if (trunc == 0 || *oldlenp == 0) return (ENOMEM); } if (newp && newlen >= maxlen) return (EINVAL); if (oldp) { if (trunc && *oldlenp < len) { /* save & zap NUL terminator while copying */ c = str[*oldlenp-1]; str[*oldlenp-1] = '\0'; error = copyout(str, oldp, *oldlenp); str[*oldlenp-1] = c; } else { *oldlenp = len; error = copyout(str, oldp, len); } } if (error == 0 && newp) { error = copyin(newp, str, newlen); str[newlen] = 0; } return (error); } /* * As above, but read-only. */ int sysctl_rdstring(void *oldp, size_t *oldlenp, void *newp, const char *str) { int len, error = 0; len = strlen(str) + 1; if (oldp && *oldlenp < len) return (ENOMEM); if (newp) return (EPERM); *oldlenp = len; if (oldp) error = copyout(str, oldp, len); return (error); } /* * Validate parameters and get old / set new parameters * for a structure oriented sysctl function. */ int sysctl_struct(void *oldp, size_t *oldlenp, void *newp, size_t newlen, void *sp, int len) { int error = 0; if (oldp && *oldlenp < len) return (ENOMEM); if (newp && newlen > len) return (EINVAL); if (oldp) { *oldlenp = len; error = copyout(sp, oldp, len); } if (error == 0 && newp) error = copyin(newp, sp, len); return (error); } /* * Validate parameters and get old parameters * for a structure oriented sysctl function. */ int sysctl_rdstruct(void *oldp, size_t *oldlenp, void *newp, const void *sp, int len) { int error = 0; if (oldp && *oldlenp < len) return (ENOMEM); if (newp) return (EPERM); *oldlenp = len; if (oldp) error = copyout(sp, oldp, len); return (error); } /* * Get file structures. */ int sysctl_file(char *where, size_t *sizep, struct proc *p) { int buflen, error; struct file *fp, cfile; char *start = where; struct ucred *cred = p->p_ucred; buflen = *sizep; if (where == NULL) { /* * overestimate by KERN_FILESLOP files */ *sizep = sizeof(filehead) + (nfiles + KERN_FILESLOP) * sizeof(struct file); return (0); } /* * first copyout filehead */ if (buflen < sizeof(filehead)) { *sizep = 0; return (0); } error = copyout((caddr_t)&filehead, where, sizeof(filehead)); if (error) return (error); buflen -= sizeof(filehead); where += sizeof(filehead); /* * followed by an array of file structures */ LIST_FOREACH(fp, &filehead, f_list) { if (buflen < sizeof(struct file)) { *sizep = where - start; return (ENOMEM); } /* Only let the superuser or the owner see some information */ bcopy(fp, &cfile, sizeof (struct file)); if (suser(p, 0) != 0 && cred->cr_uid != fp->f_cred->cr_uid) { cfile.f_offset = (off_t)-1; cfile.f_rxfer = 0; cfile.f_wxfer = 0; cfile.f_rbytes = 0; cfile.f_wbytes = 0; } error = copyout(&cfile, where, sizeof (struct file)); if (error) return (error); buflen -= sizeof(struct file); where += sizeof(struct file); } *sizep = where - start; return (0); } #ifndef SMALL_KERNEL void fill_file2(struct kinfo_file2 *kf, struct file *fp, struct filedesc *fdp, int fd, struct vnode *vp, struct proc *pp, struct proc *p) { struct vattr va; memset(kf, 0, sizeof(*kf)); kf->fd_fd = fd; /* might not really be an fd */ if (fp != NULL) { kf->f_fileaddr = PTRTOINT64(fp); kf->f_flag = fp->f_flag; kf->f_iflags = fp->f_iflags; kf->f_type = fp->f_type; kf->f_count = fp->f_count; kf->f_msgcount = fp->f_msgcount; kf->f_ucred = PTRTOINT64(fp->f_cred); kf->f_uid = fp->f_cred->cr_uid; kf->f_gid = fp->f_cred->cr_gid; kf->f_ops = PTRTOINT64(fp->f_ops); kf->f_offset = fp->f_offset; kf->f_data = PTRTOINT64(fp->f_data); kf->f_usecount = fp->f_usecount; if (suser(p, 0) == 0 || p->p_ucred->cr_uid == fp->f_cred->cr_uid) { kf->f_rxfer = fp->f_rxfer; kf->f_rwfer = fp->f_wxfer; kf->f_seek = fp->f_seek; kf->f_rbytes = fp->f_rbytes; kf->f_wbytes = fp->f_rbytes; } } else if (vp != NULL) { /* fake it */ kf->f_type = DTYPE_VNODE; kf->f_flag = FREAD; if (fd == KERN_FILE_TRACE) kf->f_flag |= FWRITE; } /* information about the object associated with this file */ switch (kf->f_type) { case DTYPE_VNODE: if (fp != NULL) vp = (struct vnode *)fp->f_data; kf->v_un = PTRTOINT64(vp->v_un.vu_socket); kf->v_type = vp->v_type; kf->v_tag = vp->v_tag; kf->v_flag = vp->v_flag; kf->v_data = PTRTOINT64(vp->v_data); kf->v_mount = PTRTOINT64(vp->v_mount); if (vp->v_mount) strlcpy(kf->f_mntonname, vp->v_mount->mnt_stat.f_mntonname, sizeof(kf->f_mntonname)); if (VOP_GETATTR(vp, &va, p->p_ucred, p) == 0) { kf->va_fileid = va.va_fileid; kf->va_mode = MAKEIMODE(va.va_type, va.va_mode); kf->va_size = va.va_size; kf->va_rdev = va.va_rdev; kf->va_fsid = va.va_fsid & 0xffffffff; } break; case DTYPE_SOCKET: { struct socket *so = (struct socket *)fp->f_data; kf->so_type = so->so_type; kf->so_state = so->so_state; kf->so_pcb = PTRTOINT64(so->so_pcb); kf->so_protocol = so->so_proto->pr_protocol; kf->so_family = so->so_proto->pr_domain->dom_family; if (!so->so_pcb) break; switch (kf->so_family) { case AF_INET: { struct inpcb *inpcb = so->so_pcb; kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb); kf->inp_lport = inpcb->inp_lport; kf->inp_laddru[0] = inpcb->inp_laddr.s_addr; kf->inp_fport = inpcb->inp_fport; kf->inp_faddru[0] = inpcb->inp_faddr.s_addr; break; } case AF_INET6: { struct inpcb *inpcb = so->so_pcb; kf->inp_ppcb = PTRTOINT64(inpcb->inp_ppcb); kf->inp_lport = inpcb->inp_lport; kf->inp_laddru[0] = inpcb->inp_laddr6.s6_addr32[0]; kf->inp_laddru[1] = inpcb->inp_laddr6.s6_addr32[1]; kf->inp_laddru[2] = inpcb->inp_laddr6.s6_addr32[2]; kf->inp_laddru[3] = inpcb->inp_laddr6.s6_addr32[3]; kf->inp_fport = inpcb->inp_fport; kf->inp_faddru[0] = inpcb->inp_laddr6.s6_addr32[0]; kf->inp_faddru[1] = inpcb->inp_faddr6.s6_addr32[1]; kf->inp_faddru[2] = inpcb->inp_faddr6.s6_addr32[2]; kf->inp_faddru[3] = inpcb->inp_faddr6.s6_addr32[3]; break; } case AF_UNIX: { struct unpcb *unpcb = so->so_pcb; kf->unp_conn = PTRTOINT64(unpcb->unp_conn); break; } } break; } case DTYPE_PIPE: { struct pipe *pipe = (struct pipe *)fp->f_data; kf->pipe_peer = PTRTOINT64(pipe->pipe_peer); kf->pipe_state = pipe->pipe_state; break; } case DTYPE_KQUEUE: { struct kqueue *kqi = (struct kqueue *)fp->f_data; kf->kq_count = kqi->kq_count; kf->kq_state = kqi->kq_state; break; } case DTYPE_SYSTRACE: { struct fsystrace *f = (struct fsystrace *)fp->f_data; kf->str_npolicies = f->npolicies; break; } } /* per-process information for KERN_FILE_BY[PU]ID */ if (pp != NULL) { kf->p_pid = pp->p_pid; kf->p_uid = pp->p_ucred->cr_uid; kf->p_gid = pp->p_ucred->cr_gid; strlcpy(kf->p_comm, pp->p_comm, sizeof(kf->p_comm)); } if (fdp != NULL) kf->fd_ofileflags = fdp->fd_ofileflags[fd]; } /* * Get file structures. */ int sysctl_file2(int *name, u_int namelen, char *where, size_t *sizep, struct proc *p) { struct kinfo_file2 *kf; struct filedesc *fdp; struct file *fp; struct proc *pp; size_t buflen, elem_size, elem_count, outsize; char *dp = where; int arg, i, error = 0, needed = 0; u_int op; if (namelen > 4) return (ENOTDIR); if (namelen < 4 || name[2] > sizeof(*kf)) return (EINVAL); buflen = where != NULL ? *sizep : 0; op = name[0]; arg = name[1]; elem_size = name[2]; elem_count = name[3]; outsize = MIN(sizeof(*kf), elem_size); if (elem_size < 1 || elem_count < 0) return (EINVAL); kf = malloc(sizeof(*kf), M_TEMP, M_WAITOK); #define FILLIT(fp, fdp, i, vp, pp) do { \ if (buflen >= elem_size && elem_count > 0) { \ fill_file2(kf, fp, fdp, i, vp, pp, p); \ error = copyout(kf, dp, outsize); \ if (error) \ break; \ dp += elem_size; \ buflen -= elem_size; \ elem_count--; \ } \ needed += elem_size; \ } while (0) switch (op) { case KERN_FILE_BYFILE: if (arg != 0) { /* no arg in file mode */ error = EINVAL; break; } LIST_FOREACH(fp, &filehead, f_list) { if (fp->f_count == 0) continue; FILLIT(fp, NULL, 0, NULL, NULL); } break; case KERN_FILE_BYPID: /* A arg of -1 indicates all processes */ if (arg < -1) { error = EINVAL; break; } LIST_FOREACH(pp, &allproc, p_list) { /* skip system, exiting, embryonic and undead processes */ if ((pp->p_flag & P_SYSTEM) || (pp->p_flag & P_WEXIT) || pp->p_stat == SIDL || pp->p_stat == SZOMB) continue; if (arg > 0 && pp->p_pid != (pid_t)arg) { /* not the pid we are looking for */ continue; } fdp = pp->p_fd; if (pp->p_textvp) FILLIT(NULL, NULL, KERN_FILE_TEXT, pp->p_textvp, pp); if (fdp->fd_cdir) FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pp); if (fdp->fd_rdir) FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pp); if (pp->p_tracep) FILLIT(NULL, NULL, KERN_FILE_TRACE, pp->p_tracep, pp); for (i = 0; i < fdp->fd_nfiles; i++) { if ((fp = fdp->fd_ofiles[i]) == NULL) continue; if (!FILE_IS_USABLE(fp)) continue; FILLIT(fp, fdp, i, NULL, pp); } } break; case KERN_FILE_BYUID: LIST_FOREACH(pp, &allproc, p_list) { /* skip system, exiting, embryonic and undead processes */ if ((pp->p_flag & P_SYSTEM) || (pp->p_flag & P_WEXIT) || pp->p_stat == SIDL || pp->p_stat == SZOMB) continue; if (arg > 0 && pp->p_ucred->cr_uid != (uid_t)arg) { /* not the uid we are looking for */ continue; } fdp = pp->p_fd; if (fdp->fd_cdir) FILLIT(NULL, NULL, KERN_FILE_CDIR, fdp->fd_cdir, pp); if (fdp->fd_rdir) FILLIT(NULL, NULL, KERN_FILE_RDIR, fdp->fd_rdir, pp); if (pp->p_tracep) FILLIT(NULL, NULL, KERN_FILE_TRACE, pp->p_tracep, pp); for (i = 0; i < fdp->fd_nfiles; i++) { if ((fp = fdp->fd_ofiles[i]) == NULL) continue; if (!FILE_IS_USABLE(fp)) continue; FILLIT(fp, fdp, i, NULL, pp); } } break; default: error = EINVAL; break; } free(kf, M_TEMP); if (!error) { if (where == NULL) needed += KERN_FILESLOP * elem_size; *sizep = needed; } return (error); } /* * try over estimating by 5 procs */ #define KERN_PROCSLOP (5 * sizeof (struct kinfo_proc)) int sysctl_doproc(int *name, u_int namelen, char *where, size_t *sizep) { struct kinfo_proc2 *kproc2 = NULL; struct eproc *eproc = NULL; struct proc *p; struct process *pr; char *dp; int arg, buflen, doingzomb, elem_size, elem_count; int error, needed, type, op; dp = where; buflen = where != NULL ? *sizep : 0; needed = error = 0; type = name[0]; if (type == KERN_PROC) { if (namelen != 3 && !(namelen == 2 && (name[1] == KERN_PROC_ALL || name[1] == KERN_PROC_KTHREAD))) return (EINVAL); op = name[1]; arg = op == KERN_PROC_ALL ? 0 : name[2]; elem_size = elem_count = 0; eproc = malloc(sizeof(struct eproc), M_TEMP, M_WAITOK); } else /* if (type == KERN_PROC2) */ { if (namelen != 5 || name[3] < 0 || name[4] < 0 || name[3] > sizeof(*kproc2)) return (EINVAL); op = name[1]; arg = name[2]; elem_size = name[3]; elem_count = name[4]; kproc2 = malloc(sizeof(struct kinfo_proc2), M_TEMP, M_WAITOK); } p = LIST_FIRST(&allproc); doingzomb = 0; again: for (; p != 0; p = LIST_NEXT(p, p_list)) { /* * Skip embryonic processes. */ if (p->p_stat == SIDL) continue; /* XXX skip processes in the middle of being zapped */ pr = p->p_p; if (pr->ps_pgrp == NULL) continue; /* * TODO - make more efficient (see notes below). */ switch (op) { case KERN_PROC_PID: /* could do this with just a lookup */ if (p->p_pid != (pid_t)arg) continue; break; case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (pr->ps_pgrp->pg_id != (pid_t)arg) continue; break; case KERN_PROC_SESSION: if (pr->ps_session->s_leader == NULL || pr->ps_session->s_leader->ps_pid != (pid_t)arg) continue; break; case KERN_PROC_TTY: if ((pr->ps_flags & PS_CONTROLT) == 0 || pr->ps_session->s_ttyp == NULL || pr->ps_session->s_ttyp->t_dev != (dev_t)arg) continue; break; case KERN_PROC_UID: if (p->p_ucred->cr_uid != (uid_t)arg) continue; break; case KERN_PROC_RUID: if (p->p_cred->p_ruid != (uid_t)arg) continue; break; case KERN_PROC_ALL: if (p->p_flag & P_SYSTEM) continue; break; case KERN_PROC_KTHREAD: /* no filtering */ break; default: error = EINVAL; goto err; } if (type == KERN_PROC) { if (buflen >= sizeof(struct kinfo_proc)) { fill_eproc(p, eproc); error = copyout((caddr_t)p, &((struct kinfo_proc *)dp)->kp_proc, sizeof(struct proc)); if (error) goto err; error = copyout((caddr_t)eproc, &((struct kinfo_proc *)dp)->kp_eproc, sizeof(*eproc)); if (error) goto err; dp += sizeof(struct kinfo_proc); buflen -= sizeof(struct kinfo_proc); } needed += sizeof(struct kinfo_proc); } else /* if (type == KERN_PROC2) */ { if (buflen >= elem_size && elem_count > 0) { fill_kproc2(p, kproc2); /* * Copy out elem_size, but not larger than * the size of a struct kinfo_proc2. */ error = copyout(kproc2, dp, min(sizeof(*kproc2), elem_size)); if (error) goto err; dp += elem_size; buflen -= elem_size; elem_count--; } needed += elem_size; } } if (doingzomb == 0) { p = LIST_FIRST(&zombproc); doingzomb++; goto again; } if (where != NULL) { *sizep = dp - where; if (needed > *sizep) { error = ENOMEM; goto err; } } else { needed += KERN_PROCSLOP; *sizep = needed; } err: if (eproc) free(eproc, M_TEMP); if (kproc2) free(kproc2, M_TEMP); return (error); } /* * Fill in an eproc structure for the specified process. */ void fill_eproc(struct proc *p, struct eproc *ep) { struct tty *tp; ep->e_paddr = p; ep->e_sess = p->p_p->ps_pgrp->pg_session; ep->e_pcred = *p->p_cred; ep->e_ucred = *p->p_ucred; if (p->p_stat == SIDL || P_ZOMBIE(p)) { ep->e_vm.vm_rssize = 0; ep->e_vm.vm_tsize = 0; ep->e_vm.vm_dsize = 0; ep->e_vm.vm_ssize = 0; bzero(&ep->e_pstats, sizeof(ep->e_pstats)); ep->e_pstats_valid = 0; } else { struct vmspace *vm = p->p_vmspace; ep->e_vm.vm_rssize = vm_resident_count(vm); ep->e_vm.vm_tsize = vm->vm_tsize; ep->e_vm.vm_dsize = vm->vm_dused; ep->e_vm.vm_ssize = vm->vm_ssize; ep->e_pstats = *p->p_stats; ep->e_pstats_valid = 1; } if (p->p_p->ps_pptr) ep->e_ppid = p->p_p->ps_pptr->ps_pid; else ep->e_ppid = 0; ep->e_pgid = p->p_p->ps_pgrp->pg_id; ep->e_jobc = p->p_p->ps_pgrp->pg_jobc; if ((p->p_p->ps_flags & PS_CONTROLT) && (tp = ep->e_sess->s_ttyp)) { ep->e_tdev = tp->t_dev; ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; ep->e_tsess = tp->t_session; } else ep->e_tdev = NODEV; ep->e_flag = ep->e_sess->s_ttyvp ? EPROC_CTTY : 0; if (SESS_LEADER(p->p_p)) ep->e_flag |= EPROC_SLEADER; strncpy(ep->e_wmesg, p->p_wmesg ? p->p_wmesg : "", WMESGLEN); ep->e_wmesg[WMESGLEN] = '\0'; ep->e_xsize = ep->e_xrssize = 0; ep->e_xccount = ep->e_xswrss = 0; strncpy(ep->e_login, ep->e_sess->s_login, MAXLOGNAME-1); ep->e_login[MAXLOGNAME-1] = '\0'; strncpy(ep->e_emul, p->p_emul->e_name, EMULNAMELEN); ep->e_emul[EMULNAMELEN] = '\0'; ep->e_maxrss = p->p_rlimit ? p->p_rlimit[RLIMIT_RSS].rlim_cur : 0; ep->e_limit = p->p_p->ps_limit; } /* * Fill in a kproc2 structure for the specified process. */ void fill_kproc2(struct proc *p, struct kinfo_proc2 *ki) { struct process *pr = p->p_p; struct session *s = pr->ps_session; struct tty *tp; struct timeval ut, st; FILL_KPROC2(ki, strlcpy, p, pr, p->p_cred, p->p_ucred, pr->ps_pgrp, p, pr, s, p->p_vmspace, pr->ps_limit, p->p_stats); /* stuff that's too painful to generalize into the macros */ if (pr->ps_pptr) ki->p_ppid = pr->ps_pptr->ps_pid; if (s->s_leader) ki->p_sid = s->s_leader->ps_pid; if ((pr->ps_flags & PS_CONTROLT) && (tp = s->s_ttyp)) { ki->p_tdev = tp->t_dev; ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : -1; ki->p_tsess = PTRTOINT64(tp->t_session); } else { ki->p_tdev = NODEV; ki->p_tpgid = -1; } /* fixups that can only be done in the kernel */ if (!P_ZOMBIE(p)) { if (p->p_stat != SIDL) ki->p_vm_rssize = vm_resident_count(p->p_vmspace); calcru(p, &ut, &st, NULL); ki->p_uutime_sec = ut.tv_sec; ki->p_uutime_usec = ut.tv_usec; ki->p_ustime_sec = st.tv_sec; ki->p_ustime_usec = st.tv_usec; #ifdef MULTIPROCESSOR if (p->p_cpu != NULL) ki->p_cpuid = CPU_INFO_UNIT(p->p_cpu); #endif } } int sysctl_proc_args(int *name, u_int namelen, void *oldp, size_t *oldlenp, struct proc *cp) { struct proc *vp; pid_t pid; struct ps_strings pss; struct iovec iov; struct uio uio; int error, cnt, op; size_t limit; char **rargv, **vargv; /* reader vs. victim */ char *rarg, *varg, *buf; struct vmspace *vm; if (namelen > 2) return (ENOTDIR); if (namelen < 2) return (EINVAL); pid = name[0]; op = name[1]; switch (op) { case KERN_PROC_ARGV: case KERN_PROC_NARGV: case KERN_PROC_ENV: case KERN_PROC_NENV: break; default: return (EOPNOTSUPP); } if ((vp = pfind(pid)) == NULL) return (ESRCH); if (oldp == NULL) { if (op == KERN_PROC_NARGV || op == KERN_PROC_NENV) *oldlenp = sizeof(int); else *oldlenp = ARG_MAX; /* XXX XXX XXX */ return (0); } if (P_ZOMBIE(vp) || (vp->p_flag & P_SYSTEM)) return (EINVAL); /* Exiting - don't bother, it will be gone soon anyway */ if ((vp->p_flag & P_WEXIT)) return (ESRCH); /* Execing - danger. */ if ((vp->p_flag & P_INEXEC)) return (EBUSY); vm = vp->p_vmspace; vm->vm_refcnt++; vp = NULL; buf = malloc(PAGE_SIZE, M_TEMP, M_WAITOK); iov.iov_base = &pss; iov.iov_len = sizeof(pss); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)(vaddr_t)PS_STRINGS; uio.uio_resid = sizeof(pss); uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_procp = cp; if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0) goto out; if (op == KERN_PROC_NARGV) { error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nargvstr); goto out; } if (op == KERN_PROC_NENV) { error = sysctl_rdint(oldp, oldlenp, NULL, pss.ps_nenvstr); goto out; } if (op == KERN_PROC_ARGV) { cnt = pss.ps_nargvstr; vargv = pss.ps_argvstr; } else { cnt = pss.ps_nenvstr; vargv = pss.ps_envstr; } /* -1 to have space for a terminating NUL */ limit = *oldlenp - 1; *oldlenp = 0; rargv = oldp; /* * *oldlenp - number of bytes copied out into readers buffer. * limit - maximal number of bytes allowed into readers buffer. * rarg - pointer into readers buffer where next arg will be stored. * rargv - pointer into readers buffer where the next rarg pointer * will be stored. * vargv - pointer into victim address space where the next argument * will be read. */ /* space for cnt pointers and a NULL */ rarg = (char *)(rargv + cnt + 1); *oldlenp += (cnt + 1) * sizeof(char **); while (cnt > 0 && *oldlenp < limit) { size_t len, vstrlen; /* Write to readers argv */ if ((error = copyout(&rarg, rargv, sizeof(rarg))) != 0) goto out; /* read the victim argv */ iov.iov_base = &varg; iov.iov_len = sizeof(varg); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)(vaddr_t)vargv; uio.uio_resid = sizeof(varg); uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_procp = cp; if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0) goto out; if (varg == NULL) break; /* * read the victim arg. We must jump through hoops to avoid * crossing a page boundary too much and returning an error. */ more: len = PAGE_SIZE - (((vaddr_t)varg) & PAGE_MASK); /* leave space for the terminating NUL */ iov.iov_base = buf; iov.iov_len = len; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)(vaddr_t)varg; uio.uio_resid = len; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_procp = cp; if ((error = uvm_io(&vm->vm_map, &uio, 0)) != 0) goto out; for (vstrlen = 0; vstrlen < len; vstrlen++) { if (buf[vstrlen] == '\0') break; } /* Don't overflow readers buffer. */ if (*oldlenp + vstrlen + 1 >= limit) { error = ENOMEM; goto out; } if ((error = copyout(buf, rarg, vstrlen)) != 0) goto out; *oldlenp += vstrlen; rarg += vstrlen; /* The string didn't end in this page? */ if (vstrlen == len) { varg += vstrlen; goto more; } /* End of string. Terminate it with a NUL */ buf[0] = '\0'; if ((error = copyout(buf, rarg, 1)) != 0) goto out; *oldlenp += 1; rarg += 1; vargv++; rargv++; cnt--; } if (*oldlenp >= limit) { error = ENOMEM; goto out; } /* Write the terminating null */ rarg = NULL; error = copyout(&rarg, rargv, sizeof(rarg)); out: uvmspace_free(vm); free(buf, M_TEMP); return (error); } #endif /* * Initialize disknames/diskstats for export by sysctl. If update is set, * then we simply update the disk statistics information. */ int sysctl_diskinit(int update, struct proc *p) { struct diskstats *sdk; struct disk *dk; int i, tlen, l; if ((i = rw_enter(&sysctl_disklock, RW_WRITE|RW_INTR)) != 0) return i; if (disk_change) { for (dk = TAILQ_FIRST(&disklist), tlen = 0; dk; dk = TAILQ_NEXT(dk, dk_link)) tlen += strlen(dk->dk_name) + 1; tlen++; if (disknames) free(disknames, M_SYSCTL); if (diskstats) free(diskstats, M_SYSCTL); diskstats = NULL; disknames = NULL; diskstats = malloc(disk_count * sizeof(struct diskstats), M_SYSCTL, M_WAITOK); disknames = malloc(tlen, M_SYSCTL, M_WAITOK); disknames[0] = '\0'; for (dk = TAILQ_FIRST(&disklist), i = 0, l = 0; dk; dk = TAILQ_NEXT(dk, dk_link), i++) { snprintf(disknames + l, tlen - l, "%s,", dk->dk_name ? dk->dk_name : ""); l += strlen(disknames + l); sdk = diskstats + i; strlcpy(sdk->ds_name, dk->dk_name, sizeof(sdk->ds_name)); mtx_enter(&dk->dk_mtx); sdk->ds_busy = dk->dk_busy; sdk->ds_rxfer = dk->dk_rxfer; sdk->ds_wxfer = dk->dk_wxfer; sdk->ds_seek = dk->dk_seek; sdk->ds_rbytes = dk->dk_rbytes; sdk->ds_wbytes = dk->dk_wbytes; sdk->ds_attachtime = dk->dk_attachtime; sdk->ds_timestamp = dk->dk_timestamp; sdk->ds_time = dk->dk_time; mtx_leave(&dk->dk_mtx); } /* Eliminate trailing comma */ if (l != 0) disknames[l - 1] = '\0'; disk_change = 0; } else if (update) { /* Just update, number of drives hasn't changed */ for (dk = TAILQ_FIRST(&disklist), i = 0; dk; dk = TAILQ_NEXT(dk, dk_link), i++) { sdk = diskstats + i; strlcpy(sdk->ds_name, dk->dk_name, sizeof(sdk->ds_name)); mtx_enter(&dk->dk_mtx); sdk->ds_busy = dk->dk_busy; sdk->ds_rxfer = dk->dk_rxfer; sdk->ds_wxfer = dk->dk_wxfer; sdk->ds_seek = dk->dk_seek; sdk->ds_rbytes = dk->dk_rbytes; sdk->ds_wbytes = dk->dk_wbytes; sdk->ds_attachtime = dk->dk_attachtime; sdk->ds_timestamp = dk->dk_timestamp; sdk->ds_time = dk->dk_time; mtx_leave(&dk->dk_mtx); } } rw_exit_write(&sysctl_disklock); return 0; } #if defined(SYSVMSG) || defined(SYSVSEM) || defined(SYSVSHM) int sysctl_sysvipc(int *name, u_int namelen, void *where, size_t *sizep) { #ifdef SYSVSEM struct sem_sysctl_info *semsi; #endif #ifdef SYSVSHM struct shm_sysctl_info *shmsi; #endif size_t infosize, dssize, tsize, buflen; int i, nds, error, ret; void *buf; if (namelen != 1) return (EINVAL); buflen = *sizep; switch (*name) { case KERN_SYSVIPC_MSG_INFO: #ifdef SYSVMSG return (sysctl_sysvmsg(name, namelen, where, sizep)); #else return (EOPNOTSUPP); #endif case KERN_SYSVIPC_SEM_INFO: #ifdef SYSVSEM infosize = sizeof(semsi->seminfo); nds = seminfo.semmni; dssize = sizeof(semsi->semids[0]); break; #else return (EOPNOTSUPP); #endif case KERN_SYSVIPC_SHM_INFO: #ifdef SYSVSHM infosize = sizeof(shmsi->shminfo); nds = shminfo.shmmni; dssize = sizeof(shmsi->shmids[0]); break; #else return (EOPNOTSUPP); #endif default: return (EINVAL); } tsize = infosize + (nds * dssize); /* Return just the total size required. */ if (where == NULL) { *sizep = tsize; return (0); } /* Not enough room for even the info struct. */ if (buflen < infosize) { *sizep = 0; return (ENOMEM); } buf = malloc(min(tsize, buflen), M_TEMP, M_WAITOK|M_ZERO); switch (*name) { #ifdef SYSVSEM case KERN_SYSVIPC_SEM_INFO: semsi = (struct sem_sysctl_info *)buf; semsi->seminfo = seminfo; break; #endif #ifdef SYSVSHM case KERN_SYSVIPC_SHM_INFO: shmsi = (struct shm_sysctl_info *)buf; shmsi->shminfo = shminfo; break; #endif } buflen -= infosize; ret = 0; if (buflen > 0) { /* Fill in the IPC data structures. */ for (i = 0; i < nds; i++) { if (buflen < dssize) { ret = ENOMEM; break; } switch (*name) { #ifdef SYSVSEM case KERN_SYSVIPC_SEM_INFO: if (sema[i] != NULL) bcopy(sema[i], &semsi->semids[i], dssize); else bzero(&semsi->semids[i], dssize); break; #endif #ifdef SYSVSHM case KERN_SYSVIPC_SHM_INFO: if (shmsegs[i] != NULL) bcopy(shmsegs[i], &shmsi->shmids[i], dssize); else bzero(&shmsi->shmids[i], dssize); break; #endif } buflen -= dssize; } } *sizep -= buflen; error = copyout(buf, where, *sizep); free(buf, M_TEMP); /* If copyout succeeded, use return code set earlier. */ return (error ? error : ret); } #endif /* SYSVMSG || SYSVSEM || SYSVSHM */ #ifndef SMALL_KERNEL int sysctl_intrcnt(int *name, u_int namelen, void *oldp, size_t *oldlenp) { return (evcount_sysctl(name, namelen, oldp, oldlenp, NULL, 0)); } int sysctl_sensors(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { struct ksensor *ks; struct sensor *us; struct ksensordev *ksd; struct sensordev *usd; int dev, numt, ret; enum sensor_type type; if (namelen != 1 && namelen != 3) return (ENOTDIR); dev = name[0]; if (namelen == 1) { ret = sensordev_get(dev, &ksd); if (ret) return (ret); /* Grab a copy, to clear the kernel pointers */ usd = malloc(sizeof(*usd), M_TEMP, M_WAITOK|M_ZERO); usd->num = ksd->num; strlcpy(usd->xname, ksd->xname, sizeof(usd->xname)); memcpy(usd->maxnumt, ksd->maxnumt, sizeof(usd->maxnumt)); usd->sensors_count = ksd->sensors_count; ret = sysctl_rdstruct(oldp, oldlenp, newp, usd, sizeof(struct sensordev)); free(usd, M_TEMP); return (ret); } type = name[1]; numt = name[2]; ret = sensor_find(dev, type, numt, &ks); if (ret) return (ret); /* Grab a copy, to clear the kernel pointers */ us = malloc(sizeof(*us), M_TEMP, M_WAITOK|M_ZERO); memcpy(us->desc, ks->desc, sizeof(us->desc)); us->tv = ks->tv; us->value = ks->value; us->type = ks->type; us->status = ks->status; us->numt = ks->numt; us->flags = ks->flags; ret = sysctl_rdstruct(oldp, oldlenp, newp, us, sizeof(struct sensor)); free(us, M_TEMP); return (ret); } int sysctl_emul(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int enabled, error; struct emul *e; if (name[0] == KERN_EMUL_NUM) { if (namelen != 1) return (ENOTDIR); return (sysctl_rdint(oldp, oldlenp, newp, nexecs)); } if (namelen != 2) return (ENOTDIR); if (name[0] > nexecs || name[0] < 0) return (EINVAL); e = execsw[name[0] - 1].es_emul; if (e == NULL) return (EINVAL); switch (name[1]) { case KERN_EMUL_NAME: return (sysctl_rdstring(oldp, oldlenp, newp, e->e_name)); case KERN_EMUL_ENABLED: enabled = (e->e_flags & EMUL_ENABLED); error = sysctl_int(oldp, oldlenp, newp, newlen, &enabled); e->e_flags = (enabled & EMUL_ENABLED); return (error); default: return (EINVAL); } } #endif /* SMALL_KERNEL */ int sysctl_cptime2(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; int i; if (namelen != 1) return (ENOTDIR); i = name[0]; CPU_INFO_FOREACH(cii, ci) { if (i-- == 0) break; } if (i > 0) return (ENOENT); return (sysctl_rdstruct(oldp, oldlenp, newp, &ci->ci_schedstate.spc_cp_time, sizeof(ci->ci_schedstate.spc_cp_time))); }