/* $OpenBSD: kern_tc.c,v 1.68 2020/07/20 22:40:53 deraadt Exp $ */ /* * Copyright (c) 2000 Poul-Henning Kamp * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * If we meet some day, and you think this stuff is worth it, you * can buy me a beer in return. Poul-Henning Kamp */ #include #include #include #include #include #include #include #include #include #include #include #include #include u_int dummy_get_timecount(struct timecounter *); int sysctl_tc_hardware(void *, size_t *, void *, size_t); int sysctl_tc_choice(void *, size_t *, void *, size_t); /* * Implement a dummy timecounter which we can use until we get a real one * in the air. This allows the console and other early stuff to use * time services. */ u_int dummy_get_timecount(struct timecounter *tc) { static u_int now; return atomic_inc_int_nv(&now); } static struct timecounter dummy_timecounter = { dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000, NULL, 0 }; /* * Locks used to protect struct members, global variables in this file: * I immutable after initialization * T tc_lock * W windup_mtx */ struct timehands { /* These fields must be initialized by the driver. */ struct timecounter *th_counter; /* [W] */ int64_t th_adjtimedelta; /* [T,W] */ struct bintime th_next_ntp_update; /* [T,W] */ int64_t th_adjustment; /* [W] */ u_int64_t th_scale; /* [W] */ u_int th_offset_count; /* [W] */ struct bintime th_boottime; /* [T,W] */ struct bintime th_offset; /* [W] */ struct bintime th_naptime; /* [W] */ struct timeval th_microtime; /* [W] */ struct timespec th_nanotime; /* [W] */ /* Fields not to be copied in tc_windup start with th_generation. */ volatile u_int th_generation; /* [W] */ struct timehands *th_next; /* [I] */ }; static struct timehands th0; static struct timehands th1 = { .th_next = &th0 }; static struct timehands th0 = { .th_counter = &dummy_timecounter, .th_scale = UINT64_MAX / 1000000, .th_offset = { .sec = 1, .frac = 0 }, .th_generation = 1, .th_next = &th1 }; struct rwlock tc_lock = RWLOCK_INITIALIZER("tc_lock"); /* * tc_windup() must be called before leaving this mutex. */ struct mutex windup_mtx = MUTEX_INITIALIZER(IPL_CLOCK); static struct timehands *volatile timehands = &th0; /* [W] */ struct timecounter *timecounter = &dummy_timecounter; /* [T] */ static SLIST_HEAD(, timecounter) tc_list = SLIST_HEAD_INITIALIZER(tc_list); /* * These are updated from tc_windup(). They are useful when * examining kernel core dumps. */ volatile time_t time_second = 1; volatile time_t time_uptime = 0; static int timestepwarnings; void ntp_update_second(struct timehands *); void tc_windup(struct bintime *, struct bintime *, int64_t *); /* * Return the difference between the timehands' counter value now and what * was when we copied it to the timehands' offset_count. */ static __inline u_int tc_delta(struct timehands *th) { struct timecounter *tc; tc = th->th_counter; return ((tc->tc_get_timecount(tc) - th->th_offset_count) & tc->tc_counter_mask); } /* * Functions for reading the time. We have to loop until we are sure that * the timehands that we operated on was not updated under our feet. See * the comment in for a description of these functions. */ void binboottime(struct bintime *bt) { struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); *bt = th->th_boottime; membar_consumer(); } while (gen == 0 || gen != th->th_generation); } void microboottime(struct timeval *tvp) { struct bintime bt; binboottime(&bt); BINTIME_TO_TIMEVAL(&bt, tvp); } void nanoboottime(struct timespec *tsp) { struct bintime bt; binboottime(&bt); BINTIME_TO_TIMESPEC(&bt, tsp); } void binuptime(struct bintime *bt) { struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); *bt = th->th_offset; bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt); membar_consumer(); } while (gen == 0 || gen != th->th_generation); } void nanouptime(struct timespec *tsp) { struct bintime bt; binuptime(&bt); BINTIME_TO_TIMESPEC(&bt, tsp); } void microuptime(struct timeval *tvp) { struct bintime bt; binuptime(&bt); BINTIME_TO_TIMEVAL(&bt, tvp); } time_t getuptime(void) { #if defined(__LP64__) return time_uptime; /* atomic */ #else time_t now; struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); now = th->th_offset.sec; membar_consumer(); } while (gen == 0 || gen != th->th_generation); return now; #endif } void binruntime(struct bintime *bt) { struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); bintimeaddfrac(&th->th_offset, th->th_scale * tc_delta(th), bt); bintimesub(bt, &th->th_naptime, bt); membar_consumer(); } while (gen == 0 || gen != th->th_generation); } void nanoruntime(struct timespec *ts) { struct bintime bt; binruntime(&bt); BINTIME_TO_TIMESPEC(&bt, ts); } void bintime(struct bintime *bt) { struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); *bt = th->th_offset; bintimeaddfrac(bt, th->th_scale * tc_delta(th), bt); bintimeadd(bt, &th->th_boottime, bt); membar_consumer(); } while (gen == 0 || gen != th->th_generation); } void nanotime(struct timespec *tsp) { struct bintime bt; bintime(&bt); BINTIME_TO_TIMESPEC(&bt, tsp); } void microtime(struct timeval *tvp) { struct bintime bt; bintime(&bt); BINTIME_TO_TIMEVAL(&bt, tvp); } time_t gettime(void) { #if defined(__LP64__) return time_second; /* atomic */ #else time_t now; struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); now = th->th_microtime.tv_sec; membar_consumer(); } while (gen == 0 || gen != th->th_generation); return now; #endif } void getnanouptime(struct timespec *tsp) { struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); BINTIME_TO_TIMESPEC(&th->th_offset, tsp); membar_consumer(); } while (gen == 0 || gen != th->th_generation); } void getmicrouptime(struct timeval *tvp) { struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); BINTIME_TO_TIMEVAL(&th->th_offset, tvp); membar_consumer(); } while (gen == 0 || gen != th->th_generation); } void getnanotime(struct timespec *tsp) { struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); *tsp = th->th_nanotime; membar_consumer(); } while (gen == 0 || gen != th->th_generation); } void getmicrotime(struct timeval *tvp) { struct timehands *th; u_int gen; do { th = timehands; gen = th->th_generation; membar_consumer(); *tvp = th->th_microtime; membar_consumer(); } while (gen == 0 || gen != th->th_generation); } /* * Initialize a new timecounter and possibly use it. */ void tc_init(struct timecounter *tc) { u_int64_t tmp; u_int u; u = tc->tc_frequency / tc->tc_counter_mask; /* XXX: We need some margin here, 10% is a guess */ u *= 11; u /= 10; if (tc->tc_quality >= 0) { if (u > hz) { tc->tc_quality = -2000; printf("Timecounter \"%s\" frequency %lu Hz", tc->tc_name, (unsigned long)tc->tc_frequency); printf(" -- Insufficient hz, needs at least %u\n", u); } } /* Determine the counter's precision. */ for (tmp = 1; (tmp & tc->tc_counter_mask) == 0; tmp <<= 1) continue; tc->tc_precision = tmp; SLIST_INSERT_HEAD(&tc_list, tc, tc_next); /* * Never automatically use a timecounter with negative quality. * Even though we run on the dummy counter, switching here may be * worse since this timecounter may not be monotonic. */ if (tc->tc_quality < 0) return; if (tc->tc_quality < timecounter->tc_quality) return; if (tc->tc_quality == timecounter->tc_quality && tc->tc_frequency < timecounter->tc_frequency) return; (void)tc->tc_get_timecount(tc); enqueue_randomness(tc->tc_get_timecount(tc)); timecounter = tc; } /* Report the frequency of the current timecounter. */ u_int64_t tc_getfrequency(void) { return (timehands->th_counter->tc_frequency); } /* Report the precision of the current timecounter. */ u_int64_t tc_getprecision(void) { return (timehands->th_counter->tc_precision); } /* * Step our concept of UTC, aka the realtime clock. * This is done by modifying our estimate of when we booted. * * Any ongoing adjustment is meaningless after a clock jump, * so we zero adjtimedelta here as well. */ void tc_setrealtimeclock(const struct timespec *ts) { struct bintime boottime, old_utc, uptime, utc; struct timespec tmp; int64_t zero = 0; TIMESPEC_TO_BINTIME(ts, &utc); rw_enter_write(&tc_lock); mtx_enter(&windup_mtx); binuptime(&uptime); bintimesub(&utc, &uptime, &boottime); bintimeadd(&timehands->th_boottime, &uptime, &old_utc); /* XXX fiddle all the little crinkly bits around the fiords... */ tc_windup(&boottime, NULL, &zero); mtx_leave(&windup_mtx); rw_exit_write(&tc_lock); enqueue_randomness(ts->tv_sec); if (timestepwarnings) { BINTIME_TO_TIMESPEC(&old_utc, &tmp); log(LOG_INFO, "Time stepped from %lld.%09ld to %lld.%09ld\n", (long long)tmp.tv_sec, tmp.tv_nsec, (long long)ts->tv_sec, ts->tv_nsec); } } /* * Step the monotonic and realtime clocks, triggering any timeouts that * should have occurred across the interval. */ void tc_setclock(const struct timespec *ts) { struct bintime naptime, old_naptime, uptime, utc; struct timespec tmp; static int first = 1; #ifndef SMALL_KERNEL struct bintime elapsed; long long adj_ticks; #endif /* * When we're called for the first time, during boot when * the root partition is mounted, we need to set boottime. */ if (first) { tc_setrealtimeclock(ts); first = 0; return; } enqueue_randomness(ts->tv_sec); TIMESPEC_TO_BINTIME(ts, &utc); mtx_enter(&windup_mtx); bintimesub(&utc, &timehands->th_boottime, &uptime); old_naptime = timehands->th_naptime; /* XXX fiddle all the little crinkly bits around the fiords... */ tc_windup(NULL, &uptime, NULL); naptime = timehands->th_naptime; mtx_leave(&windup_mtx); if (bintimecmp(&old_naptime, &naptime, ==)) { BINTIME_TO_TIMESPEC(&uptime, &tmp); printf("%s: cannot rewind uptime to %lld.%09ld\n", __func__, (long long)tmp.tv_sec, tmp.tv_nsec); } #ifndef SMALL_KERNEL /* convert the bintime to ticks */ bintimesub(&naptime, &old_naptime, &elapsed); adj_ticks = (uint64_t)hz * elapsed.sec + (((uint64_t)1000000 * (uint32_t)(elapsed.frac >> 32)) >> 32) / tick; if (adj_ticks > 0) { if (adj_ticks > INT_MAX) adj_ticks = INT_MAX; timeout_adjust_ticks(adj_ticks); } #endif } void tc_update_timekeep(void) { static struct timecounter *last_tc = NULL; struct timehands *th; MUTEX_ASSERT_LOCKED(&windup_mtx); if (timekeep == NULL) return; th = timehands; timekeep->tk_generation = 0; membar_producer(); timekeep->tk_scale = th->th_scale; timekeep->tk_offset_count = th->th_offset_count; timekeep->tk_offset = th->th_offset; timekeep->tk_naptime = th->th_naptime; timekeep->tk_boottime = th->th_boottime; if (last_tc != th->th_counter) { timekeep->tk_counter_mask = th->th_counter->tc_counter_mask; timekeep->tk_user = th->th_counter->tc_user; last_tc = th->th_counter; } membar_producer(); timekeep->tk_generation = th->th_generation; return; } /* * Initialize the next struct timehands in the ring and make * it the active timehands. Along the way we might switch to a different * timecounter and/or do seconds processing in NTP. Slightly magic. */ void tc_windup(struct bintime *new_boottime, struct bintime *new_offset, int64_t *new_adjtimedelta) { struct bintime bt; struct timecounter *active_tc; struct timehands *th, *tho; u_int64_t scale; u_int delta, ncount, ogen; if (new_boottime != NULL || new_adjtimedelta != NULL) rw_assert_wrlock(&tc_lock); MUTEX_ASSERT_LOCKED(&windup_mtx); active_tc = timecounter; /* * Make the next timehands a copy of the current one, but do not * overwrite the generation or next pointer. While we update * the contents, the generation must be zero. */ tho = timehands; ogen = tho->th_generation; th = tho->th_next; th->th_generation = 0; membar_producer(); memcpy(th, tho, offsetof(struct timehands, th_generation)); /* * Capture a timecounter delta on the current timecounter and if * changing timecounters, a counter value from the new timecounter. * Update the offset fields accordingly. */ delta = tc_delta(th); if (th->th_counter != active_tc) ncount = active_tc->tc_get_timecount(active_tc); else ncount = 0; th->th_offset_count += delta; th->th_offset_count &= th->th_counter->tc_counter_mask; bintimeaddfrac(&th->th_offset, th->th_scale * delta, &th->th_offset); /* * Ignore new offsets that predate the current offset. * If changing the offset, first increase the naptime * accordingly. */ if (new_offset != NULL && bintimecmp(&th->th_offset, new_offset, <)) { bintimesub(new_offset, &th->th_offset, &bt); bintimeadd(&th->th_naptime, &bt, &th->th_naptime); th->th_offset = *new_offset; } #ifdef notyet /* * Hardware latching timecounters may not generate interrupts on * PPS events, so instead we poll them. There is a finite risk that * the hardware might capture a count which is later than the one we * got above, and therefore possibly in the next NTP second which might * have a different rate than the current NTP second. It doesn't * matter in practice. */ if (tho->th_counter->tc_poll_pps) tho->th_counter->tc_poll_pps(tho->th_counter); #endif /* * If changing the boot time or clock adjustment, do so before * NTP processing. */ if (new_boottime != NULL) th->th_boottime = *new_boottime; if (new_adjtimedelta != NULL) { th->th_adjtimedelta = *new_adjtimedelta; /* Reset the NTP update period. */ bintimesub(&th->th_offset, &th->th_naptime, &th->th_next_ntp_update); } /* * Deal with NTP second processing. The while-loop normally * iterates at most once, but in extreme situations it might * keep NTP sane if tc_windup() is not run for several seconds. */ bintimesub(&th->th_offset, &th->th_naptime, &bt); while (bintimecmp(&th->th_next_ntp_update, &bt, <=)) { ntp_update_second(th); th->th_next_ntp_update.sec++; } /* Update the UTC timestamps used by the get*() functions. */ bintimeadd(&th->th_boottime, &th->th_offset, &bt); BINTIME_TO_TIMEVAL(&bt, &th->th_microtime); BINTIME_TO_TIMESPEC(&bt, &th->th_nanotime); /* Now is a good time to change timecounters. */ if (th->th_counter != active_tc) { th->th_counter = active_tc; th->th_offset_count = ncount; } /*- * Recalculate the scaling factor. We want the number of 1/2^64 * fractions of a second per period of the hardware counter, taking * into account the th_adjustment factor which the NTP PLL/adjtime(2) * processing provides us with. * * The th_adjustment is nanoseconds per second with 32 bit binary * fraction and we want 64 bit binary fraction of second: * * x = a * 2^32 / 10^9 = a * 4.294967296 * * The range of th_adjustment is +/- 5000PPM so inside a 64bit int * we can only multiply by about 850 without overflowing, but that * leaves suitably precise fractions for multiply before divide. * * Divide before multiply with a fraction of 2199/512 results in a * systematic undercompensation of 10PPM of th_adjustment. On a * 5000PPM adjustment this is a 0.05PPM error. This is acceptable. * * We happily sacrifice the lowest of the 64 bits of our result * to the goddess of code clarity. * */ scale = (u_int64_t)1 << 63; scale += \ ((th->th_adjustment + th->th_counter->tc_freq_adj) / 1024) * 2199; scale /= th->th_counter->tc_frequency; th->th_scale = scale * 2; /* * Now that the struct timehands is again consistent, set the new * generation number, making sure to not make it zero. */ if (++ogen == 0) ogen = 1; membar_producer(); th->th_generation = ogen; /* Go live with the new struct timehands. */ time_second = th->th_microtime.tv_sec; time_uptime = th->th_offset.sec; membar_producer(); timehands = th; tc_update_timekeep(); } /* Report or change the active timecounter hardware. */ int sysctl_tc_hardware(void *oldp, size_t *oldlenp, void *newp, size_t newlen) { char newname[32]; struct timecounter *newtc, *tc; int error; tc = timecounter; strlcpy(newname, tc->tc_name, sizeof(newname)); error = sysctl_string(oldp, oldlenp, newp, newlen, newname, sizeof(newname)); if (error != 0 || strcmp(newname, tc->tc_name) == 0) return (error); SLIST_FOREACH(newtc, &tc_list, tc_next) { if (strcmp(newname, newtc->tc_name) != 0) continue; /* Warm up new timecounter. */ (void)newtc->tc_get_timecount(newtc); (void)newtc->tc_get_timecount(newtc); rw_enter_write(&tc_lock); timecounter = newtc; rw_exit_write(&tc_lock); return (0); } return (EINVAL); } /* Report or change the active timecounter hardware. */ int sysctl_tc_choice(void *oldp, size_t *oldlenp, void *newp, size_t newlen) { char buf[32], *spc, *choices; struct timecounter *tc; int error, maxlen; if (SLIST_EMPTY(&tc_list)) return (sysctl_rdstring(oldp, oldlenp, newp, "")); spc = ""; maxlen = 0; SLIST_FOREACH(tc, &tc_list, tc_next) maxlen += sizeof(buf); choices = malloc(maxlen, M_TEMP, M_WAITOK); *choices = '\0'; SLIST_FOREACH(tc, &tc_list, tc_next) { snprintf(buf, sizeof(buf), "%s%s(%d)", spc, tc->tc_name, tc->tc_quality); spc = " "; strlcat(choices, buf, maxlen); } error = sysctl_rdstring(oldp, oldlenp, newp, choices); free(choices, M_TEMP, maxlen); return (error); } /* * Timecounters need to be updated every so often to prevent the hardware * counter from overflowing. Updating also recalculates the cached values * used by the get*() family of functions, so their precision depends on * the update frequency. */ static int tc_tick; void tc_ticktock(void) { static int count; if (++count < tc_tick) return; if (!mtx_enter_try(&windup_mtx)) return; count = 0; tc_windup(NULL, NULL, NULL); mtx_leave(&windup_mtx); } void inittimecounter(void) { #ifdef DEBUG u_int p; #endif /* * Set the initial timeout to * max(1, ). * People should probably not use the sysctl to set the timeout * to smaller than its initial value, since that value is the * smallest reasonable one. If they want better timestamps they * should use the non-"get"* functions. */ if (hz > 1000) tc_tick = (hz + 500) / 1000; else tc_tick = 1; #ifdef DEBUG p = (tc_tick * 1000000) / hz; printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000); #endif /* warm up new timecounter (again) and get rolling. */ (void)timecounter->tc_get_timecount(timecounter); (void)timecounter->tc_get_timecount(timecounter); } /* * Return timecounter-related information. */ int sysctl_tc(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (namelen != 1) return (ENOTDIR); switch (name[0]) { case KERN_TIMECOUNTER_TICK: return (sysctl_rdint(oldp, oldlenp, newp, tc_tick)); case KERN_TIMECOUNTER_TIMESTEPWARNINGS: return (sysctl_int(oldp, oldlenp, newp, newlen, ×tepwarnings)); case KERN_TIMECOUNTER_HARDWARE: return (sysctl_tc_hardware(oldp, oldlenp, newp, newlen)); case KERN_TIMECOUNTER_CHOICE: return (sysctl_tc_choice(oldp, oldlenp, newp, newlen)); default: return (EOPNOTSUPP); } /* NOTREACHED */ } /* * Skew the timehands according to any adjtime(2) adjustment. */ void ntp_update_second(struct timehands *th) { int64_t adj; MUTEX_ASSERT_LOCKED(&windup_mtx); if (th->th_adjtimedelta > 0) adj = MIN(5000, th->th_adjtimedelta); else adj = MAX(-5000, th->th_adjtimedelta); th->th_adjtimedelta -= adj; th->th_adjustment = (adj * 1000) << 32; } void tc_adjfreq(int64_t *old, int64_t *new) { if (old != NULL) { rw_assert_anylock(&tc_lock); *old = timecounter->tc_freq_adj; } if (new != NULL) { rw_assert_wrlock(&tc_lock); mtx_enter(&windup_mtx); timecounter->tc_freq_adj = *new; tc_windup(NULL, NULL, NULL); mtx_leave(&windup_mtx); } } void tc_adjtime(int64_t *old, int64_t *new) { struct timehands *th; u_int gen; if (old != NULL) { do { th = timehands; gen = th->th_generation; membar_consumer(); *old = th->th_adjtimedelta; membar_consumer(); } while (gen == 0 || gen != th->th_generation); } if (new != NULL) { rw_assert_wrlock(&tc_lock); mtx_enter(&windup_mtx); tc_windup(NULL, NULL, new); mtx_leave(&windup_mtx); } }