/* $OpenBSD: kern_time.c,v 1.169 2024/07/26 19:16:31 guenther Exp $ */ /* $NetBSD: kern_time.c,v 1.20 1996/02/18 11:57:06 fvdl Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int itimerfix(struct itimerval *); void process_reset_itimer_flag(struct process *); /* * Time of day and interval timer support. * * These routines provide the kernel entry points to get and set * the time-of-day and per-process interval timers. Subroutines * here provide support for adding and subtracting timeval structures * and decrementing interval timers, optionally reloading the interval * timers when they expire. */ /* This function is used by clock_settime and settimeofday */ int settime(const struct timespec *ts) { struct timespec now; /* * Don't allow the time to be set forward so far it will wrap * and become negative, thus allowing an attacker to bypass * the next check below. The cutoff is 1 year before rollover * occurs, so even if the attacker uses adjtime(2) to move * the time past the cutoff, it will take a very long time * to get to the wrap point. * * XXX: we check against UINT_MAX until we can figure out * how to deal with the hardware RTCs. */ if (ts->tv_sec > UINT_MAX - 365*24*60*60) { printf("denied attempt to set clock forward to %lld\n", (long long)ts->tv_sec); return (EPERM); } /* * If the system is secure, we do not allow the time to be * set to an earlier value (it may be slowed using adjtime, * but not set back). This feature prevent interlopers from * setting arbitrary time stamps on files. */ nanotime(&now); if (securelevel > 1 && timespeccmp(ts, &now, <=)) { printf("denied attempt to set clock back %lld seconds\n", (long long)now.tv_sec - ts->tv_sec); return (EPERM); } tc_setrealtimeclock(ts); KERNEL_LOCK(); resettodr(); KERNEL_UNLOCK(); return (0); } int clock_gettime(struct proc *p, clockid_t clock_id, struct timespec *tp) { struct tusage tu; struct proc *q; int error = 0; switch (clock_id) { case CLOCK_REALTIME: nanotime(tp); break; case CLOCK_UPTIME: nanoruntime(tp); break; case CLOCK_MONOTONIC: case CLOCK_BOOTTIME: nanouptime(tp); break; case CLOCK_PROCESS_CPUTIME_ID: nanouptime(tp); tuagg_get_process(&tu, p->p_p); timespecsub(tp, &curcpu()->ci_schedstate.spc_runtime, tp); timespecadd(tp, &tu.tu_runtime, tp); break; case CLOCK_THREAD_CPUTIME_ID: nanouptime(tp); tuagg_get_proc(&tu, p); timespecsub(tp, &curcpu()->ci_schedstate.spc_runtime, tp); timespecadd(tp, &tu.tu_runtime, tp); break; default: /* check for clock from pthread_getcpuclockid() */ if (__CLOCK_TYPE(clock_id) == CLOCK_THREAD_CPUTIME_ID) { KERNEL_LOCK(); q = tfind_user(__CLOCK_PTID(clock_id), p->p_p); if (q == NULL) error = ESRCH; else *tp = q->p_tu.tu_runtime; KERNEL_UNLOCK(); } else error = EINVAL; break; } return (error); } int sys_clock_gettime(struct proc *p, void *v, register_t *retval) { struct sys_clock_gettime_args /* { syscallarg(clockid_t) clock_id; syscallarg(struct timespec *) tp; } */ *uap = v; struct timespec ats; int error; memset(&ats, 0, sizeof(ats)); if ((error = clock_gettime(p, SCARG(uap, clock_id), &ats)) != 0) return (error); error = copyout(&ats, SCARG(uap, tp), sizeof(ats)); #ifdef KTRACE if (error == 0 && KTRPOINT(p, KTR_STRUCT)) ktrabstimespec(p, &ats); #endif return (error); } int sys_clock_settime(struct proc *p, void *v, register_t *retval) { struct sys_clock_settime_args /* { syscallarg(clockid_t) clock_id; syscallarg(const struct timespec *) tp; } */ *uap = v; struct timespec ats; clockid_t clock_id; int error; if ((error = suser(p)) != 0) return (error); if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) return (error); clock_id = SCARG(uap, clock_id); switch (clock_id) { case CLOCK_REALTIME: if (!timespecisvalid(&ats)) return (EINVAL); if ((error = settime(&ats)) != 0) return (error); break; default: /* Other clocks are read-only */ return (EINVAL); } return (0); } int sys_clock_getres(struct proc *p, void *v, register_t *retval) { struct sys_clock_getres_args /* { syscallarg(clockid_t) clock_id; syscallarg(struct timespec *) tp; } */ *uap = v; clockid_t clock_id; struct bintime bt; struct timespec ts; struct proc *q; u_int64_t scale; int error = 0; memset(&ts, 0, sizeof(ts)); clock_id = SCARG(uap, clock_id); switch (clock_id) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: case CLOCK_BOOTTIME: case CLOCK_UPTIME: memset(&bt, 0, sizeof(bt)); rw_enter_read(&tc_lock); scale = ((1ULL << 63) / tc_getfrequency()) * 2; bt.frac = tc_getprecision() * scale; rw_exit_read(&tc_lock); BINTIME_TO_TIMESPEC(&bt, &ts); break; case CLOCK_PROCESS_CPUTIME_ID: case CLOCK_THREAD_CPUTIME_ID: ts.tv_nsec = 1000000000 / stathz; break; default: /* check for clock from pthread_getcpuclockid() */ if (__CLOCK_TYPE(clock_id) == CLOCK_THREAD_CPUTIME_ID) { KERNEL_LOCK(); q = tfind_user(__CLOCK_PTID(clock_id), p->p_p); if (q == NULL) error = ESRCH; else ts.tv_nsec = 1000000000 / stathz; KERNEL_UNLOCK(); } else error = EINVAL; break; } if (error == 0 && SCARG(uap, tp)) { ts.tv_nsec = MAX(ts.tv_nsec, 1); error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); #ifdef KTRACE if (error == 0 && KTRPOINT(p, KTR_STRUCT)) ktrreltimespec(p, &ts); #endif } return error; } int sys_nanosleep(struct proc *p, void *v, register_t *retval) { struct sys_nanosleep_args/* { syscallarg(const struct timespec *) rqtp; syscallarg(struct timespec *) rmtp; } */ *uap = v; struct timespec elapsed, remainder, request, start, stop; uint64_t nsecs; struct timespec *rmtp; int copyout_error, error; rmtp = SCARG(uap, rmtp); error = copyin(SCARG(uap, rqtp), &request, sizeof(request)); if (error) return (error); #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrreltimespec(p, &request); #endif if (request.tv_sec < 0 || !timespecisvalid(&request)) return (EINVAL); do { getnanouptime(&start); nsecs = MAX(1, MIN(TIMESPEC_TO_NSEC(&request), MAXTSLP)); error = tsleep_nsec(&nowake, PWAIT | PCATCH, "nanoslp", nsecs); getnanouptime(&stop); timespecsub(&stop, &start, &elapsed); timespecsub(&request, &elapsed, &request); if (request.tv_sec < 0) timespecclear(&request); if (error != EWOULDBLOCK) break; } while (timespecisset(&request)); if (error == ERESTART) error = EINTR; if (error == EWOULDBLOCK) error = 0; if (rmtp) { memset(&remainder, 0, sizeof(remainder)); remainder = request; copyout_error = copyout(&remainder, rmtp, sizeof(remainder)); if (copyout_error) error = copyout_error; #ifdef KTRACE if (copyout_error == 0 && KTRPOINT(p, KTR_STRUCT)) ktrreltimespec(p, &remainder); #endif } return error; } int sys_gettimeofday(struct proc *p, void *v, register_t *retval) { struct sys_gettimeofday_args /* { syscallarg(struct timeval *) tp; syscallarg(struct timezone *) tzp; } */ *uap = v; struct timeval atv; static const struct timezone zerotz = { 0, 0 }; struct timeval *tp; struct timezone *tzp; int error = 0; tp = SCARG(uap, tp); tzp = SCARG(uap, tzp); if (tp) { memset(&atv, 0, sizeof(atv)); microtime(&atv); if ((error = copyout(&atv, tp, sizeof (atv)))) return (error); #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrabstimeval(p, &atv); #endif } if (tzp) error = copyout(&zerotz, tzp, sizeof(zerotz)); return (error); } int sys_settimeofday(struct proc *p, void *v, register_t *retval) { struct sys_settimeofday_args /* { syscallarg(const struct timeval *) tv; syscallarg(const struct timezone *) tzp; } */ *uap = v; struct timezone atz; struct timeval atv; const struct timeval *tv; const struct timezone *tzp; int error; tv = SCARG(uap, tv); tzp = SCARG(uap, tzp); if ((error = suser(p))) return (error); /* Verify all parameters before changing time. */ if (tv && (error = copyin(tv, &atv, sizeof(atv)))) return (error); if (tzp && (error = copyin(tzp, &atz, sizeof(atz)))) return (error); if (tv) { struct timespec ts; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrabstimeval(p, &atv); #endif if (!timerisvalid(&atv)) return (EINVAL); TIMEVAL_TO_TIMESPEC(&atv, &ts); if ((error = settime(&ts)) != 0) return (error); } return (0); } #define ADJFREQ_MAX (500000000LL << 32) #define ADJFREQ_MIN (-ADJFREQ_MAX) int sys_adjfreq(struct proc *p, void *v, register_t *retval) { struct sys_adjfreq_args /* { syscallarg(const int64_t *) freq; syscallarg(int64_t *) oldfreq; } */ *uap = v; int error = 0; int64_t f, oldf; const int64_t *freq = SCARG(uap, freq); int64_t *oldfreq = SCARG(uap, oldfreq); if (freq) { if ((error = suser(p))) return (error); if ((error = copyin(freq, &f, sizeof(f)))) return (error); if (f < ADJFREQ_MIN || f > ADJFREQ_MAX) return (EINVAL); } rw_enter(&tc_lock, (freq == NULL) ? RW_READ : RW_WRITE); if (oldfreq) { tc_adjfreq(&oldf, NULL); if ((error = copyout(&oldf, oldfreq, sizeof(oldf)))) goto out; } if (freq) tc_adjfreq(NULL, &f); out: rw_exit(&tc_lock); return (error); } int sys_adjtime(struct proc *p, void *v, register_t *retval) { struct sys_adjtime_args /* { syscallarg(const struct timeval *) delta; syscallarg(struct timeval *) olddelta; } */ *uap = v; struct timeval atv; const struct timeval *delta = SCARG(uap, delta); struct timeval *olddelta = SCARG(uap, olddelta); int64_t adjustment, remaining; int error; error = pledge_adjtime(p, delta); if (error) return error; if (delta) { if ((error = suser(p))) return (error); if ((error = copyin(delta, &atv, sizeof(struct timeval)))) return (error); #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktrreltimeval(p, &atv); #endif if (!timerisvalid(&atv)) return (EINVAL); if (atv.tv_sec > INT64_MAX / 1000000) return EINVAL; if (atv.tv_sec < INT64_MIN / 1000000) return EINVAL; adjustment = atv.tv_sec * 1000000; if (adjustment > INT64_MAX - atv.tv_usec) return EINVAL; adjustment += atv.tv_usec; rw_enter_write(&tc_lock); } if (olddelta) { tc_adjtime(&remaining, NULL); memset(&atv, 0, sizeof(atv)); atv.tv_sec = remaining / 1000000; atv.tv_usec = remaining % 1000000; if (atv.tv_usec < 0) { atv.tv_usec += 1000000; atv.tv_sec--; } if ((error = copyout(&atv, olddelta, sizeof(struct timeval)))) goto out; } if (delta) tc_adjtime(NULL, &adjustment); out: if (delta) rw_exit_write(&tc_lock); return (error); } struct mutex itimer_mtx = MUTEX_INITIALIZER(IPL_CLOCK); /* * Get or set value of an interval timer. The process virtual and * profiling virtual time timers are kept internally in the * way they are specified externally: in time until they expire. * * The real time interval timer's it_value, in contrast, is kept as an * absolute time rather than as a delta, so that it is easy to keep * periodic real-time signals from drifting. * * Virtual time timers are processed in the hardclock() routine of * kern_clock.c. The real time timer is processed by a timeout * routine, called from the softclock() routine. Since a callout * may be delayed in real time due to interrupt processing in the system, * it is possible for the real time timeout routine (realitexpire, given below), * to be delayed in real time past when it is supposed to occur. It * does not suffice, therefore, to reload the real timer .it_value from the * real time timers .it_interval. Rather, we compute the next time in * absolute time the timer should go off. */ void setitimer(int which, const struct itimerval *itv, struct itimerval *olditv) { struct itimerspec its, oldits; struct timespec now; struct itimerspec *itimer; struct process *pr; KASSERT(which >= ITIMER_REAL && which <= ITIMER_PROF); pr = curproc->p_p; itimer = &pr->ps_timer[which]; if (itv != NULL) { TIMEVAL_TO_TIMESPEC(&itv->it_value, &its.it_value); TIMEVAL_TO_TIMESPEC(&itv->it_interval, &its.it_interval); } if (which == ITIMER_REAL) { mtx_enter(&pr->ps_mtx); nanouptime(&now); } else mtx_enter(&itimer_mtx); if (olditv != NULL) oldits = *itimer; if (itv != NULL) { if (which == ITIMER_REAL) { if (timespecisset(&its.it_value)) { timespecadd(&its.it_value, &now, &its.it_value); timeout_abs_ts(&pr->ps_realit_to,&its.it_value); } else timeout_del(&pr->ps_realit_to); } *itimer = its; if (which == ITIMER_VIRTUAL || which == ITIMER_PROF) { process_reset_itimer_flag(pr); need_resched(curcpu()); } } if (which == ITIMER_REAL) mtx_leave(&pr->ps_mtx); else mtx_leave(&itimer_mtx); if (olditv != NULL) { if (which == ITIMER_REAL && timespecisset(&oldits.it_value)) { if (timespeccmp(&oldits.it_value, &now, <)) timespecclear(&oldits.it_value); else { timespecsub(&oldits.it_value, &now, &oldits.it_value); } } TIMESPEC_TO_TIMEVAL(&olditv->it_value, &oldits.it_value); TIMESPEC_TO_TIMEVAL(&olditv->it_interval, &oldits.it_interval); } } void cancel_all_itimers(void) { struct itimerval itv; int i; timerclear(&itv.it_value); timerclear(&itv.it_interval); for (i = 0; i < nitems(curproc->p_p->ps_timer); i++) setitimer(i, &itv, NULL); } int sys_getitimer(struct proc *p, void *v, register_t *retval) { struct sys_getitimer_args /* { syscallarg(int) which; syscallarg(struct itimerval *) itv; } */ *uap = v; struct itimerval aitv; int which, error; which = SCARG(uap, which); if (which < ITIMER_REAL || which > ITIMER_PROF) return EINVAL; memset(&aitv, 0, sizeof(aitv)); setitimer(which, NULL, &aitv); error = copyout(&aitv, SCARG(uap, itv), sizeof(aitv)); #ifdef KTRACE if (error == 0 && KTRPOINT(p, KTR_STRUCT)) ktritimerval(p, &aitv); #endif return (error); } int sys_setitimer(struct proc *p, void *v, register_t *retval) { struct sys_setitimer_args /* { syscallarg(int) which; syscallarg(const struct itimerval *) itv; syscallarg(struct itimerval *) oitv; } */ *uap = v; struct itimerval aitv, olditv; struct itimerval *newitvp, *olditvp; int error, which; which = SCARG(uap, which); if (which < ITIMER_REAL || which > ITIMER_PROF) return EINVAL; newitvp = olditvp = NULL; if (SCARG(uap, itv) != NULL) { error = copyin(SCARG(uap, itv), &aitv, sizeof(aitv)); if (error) return error; #ifdef KTRACE if (KTRPOINT(p, KTR_STRUCT)) ktritimerval(p, &aitv); #endif error = itimerfix(&aitv); if (error) return error; newitvp = &aitv; } if (SCARG(uap, oitv) != NULL) { memset(&olditv, 0, sizeof(olditv)); olditvp = &olditv; } if (newitvp == NULL && olditvp == NULL) return 0; setitimer(which, newitvp, olditvp); if (SCARG(uap, oitv) != NULL) { error = copyout(&olditv, SCARG(uap, oitv), sizeof(olditv)); #ifdef KTRACE if (error == 0 && KTRPOINT(p, KTR_STRUCT)) ktritimerval(p, &aitv); #endif return error; } return 0; } /* * Real interval timer expired: * send process whose timer expired an alarm signal. * If time is not set up to reload, then just return. * Else compute next time timer should go off which is > current time. * This is where delay in processing this timeout causes multiple * SIGALRM calls to be compressed into one. */ void realitexpire(void *arg) { struct timespec cts; struct process *pr = arg; struct itimerspec *tp = &pr->ps_timer[ITIMER_REAL]; int need_signal = 0; mtx_enter(&pr->ps_mtx); /* * Do nothing if the timer was cancelled or rescheduled while we * were entering the mutex. */ if (!timespecisset(&tp->it_value) || timeout_pending(&pr->ps_realit_to)) goto out; /* The timer expired. We need to send the signal. */ need_signal = 1; /* One-shot timers are not reloaded. */ if (!timespecisset(&tp->it_interval)) { timespecclear(&tp->it_value); goto out; } /* * Find the nearest future expiration point and restart * the timeout. */ nanouptime(&cts); while (timespeccmp(&tp->it_value, &cts, <=)) timespecadd(&tp->it_value, &tp->it_interval, &tp->it_value); if ((pr->ps_flags & PS_EXITING) == 0) timeout_abs_ts(&pr->ps_realit_to, &tp->it_value); out: mtx_leave(&pr->ps_mtx); if (need_signal) prsignal(pr, SIGALRM); } /* * Check if the given setitimer(2) input is valid. Clear it_interval * if it_value is unset. Round it_interval up to the minimum interval * if necessary. */ int itimerfix(struct itimerval *itv) { static const struct timeval max = { .tv_sec = UINT_MAX, .tv_usec = 0 }; struct timeval min_interval = { .tv_sec = 0, .tv_usec = tick }; if (itv->it_value.tv_sec < 0 || !timerisvalid(&itv->it_value)) return EINVAL; if (timercmp(&itv->it_value, &max, >)) return EINVAL; if (itv->it_interval.tv_sec < 0 || !timerisvalid(&itv->it_interval)) return EINVAL; if (timercmp(&itv->it_interval, &max, >)) return EINVAL; if (!timerisset(&itv->it_value)) timerclear(&itv->it_interval); if (timerisset(&itv->it_interval)) { if (timercmp(&itv->it_interval, &min_interval, <)) itv->it_interval = min_interval; } return 0; } /* * Decrement an interval timer by the given duration. * If the timer expires and it is periodic then reload it. When reloading * the timer we subtract any overrun from the next period so that the timer * does not drift. */ int itimerdecr(struct itimerspec *itp, const struct timespec *decrement) { timespecsub(&itp->it_value, decrement, &itp->it_value); if (itp->it_value.tv_sec >= 0 && timespecisset(&itp->it_value)) return (1); if (!timespecisset(&itp->it_interval)) { timespecclear(&itp->it_value); return (0); } while (itp->it_value.tv_sec < 0 || !timespecisset(&itp->it_value)) timespecadd(&itp->it_value, &itp->it_interval, &itp->it_value); return (0); } void itimer_update(struct clockrequest *cr, void *cf, void *arg) { struct timespec elapsed; uint64_t nsecs; struct clockframe *frame = cf; struct proc *p = curproc; struct process *pr; if (p == NULL || ISSET(p->p_flag, P_SYSTEM | P_WEXIT)) return; pr = p->p_p; if (!ISSET(pr->ps_flags, PS_ITIMER)) return; nsecs = clockrequest_advance(cr, hardclock_period) * hardclock_period; NSEC_TO_TIMESPEC(nsecs, &elapsed); mtx_enter(&itimer_mtx); if (CLKF_USERMODE(frame) && timespecisset(&pr->ps_timer[ITIMER_VIRTUAL].it_value) && itimerdecr(&pr->ps_timer[ITIMER_VIRTUAL], &elapsed) == 0) { process_reset_itimer_flag(pr); atomic_setbits_int(&p->p_flag, P_ALRMPEND); need_proftick(p); } if (timespecisset(&pr->ps_timer[ITIMER_PROF].it_value) && itimerdecr(&pr->ps_timer[ITIMER_PROF], &elapsed) == 0) { process_reset_itimer_flag(pr); atomic_setbits_int(&p->p_flag, P_PROFPEND); need_proftick(p); } mtx_leave(&itimer_mtx); } void process_reset_itimer_flag(struct process *ps) { if (timespecisset(&ps->ps_timer[ITIMER_VIRTUAL].it_value) || timespecisset(&ps->ps_timer[ITIMER_PROF].it_value)) atomic_setbits_int(&ps->ps_flags, PS_ITIMER); else atomic_clearbits_int(&ps->ps_flags, PS_ITIMER); } struct mutex ratecheck_mtx = MUTEX_INITIALIZER(IPL_HIGH); /* * ratecheck(): simple time-based rate-limit checking. see ratecheck(9) * for usage and rationale. */ int ratecheck(struct timeval *lasttime, const struct timeval *mininterval) { struct timeval tv, delta; int rv = 0; getmicrouptime(&tv); mtx_enter(&ratecheck_mtx); timersub(&tv, lasttime, &delta); /* * check for 0,0 is so that the message will be seen at least once, * even if interval is huge. */ if (timercmp(&delta, mininterval, >=) || (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { *lasttime = tv; rv = 1; } mtx_leave(&ratecheck_mtx); return (rv); } struct mutex ppsratecheck_mtx = MUTEX_INITIALIZER(IPL_HIGH); /* * ppsratecheck(): packets (or events) per second limitation. */ int ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) { struct timeval tv, delta; int rv; microuptime(&tv); mtx_enter(&ppsratecheck_mtx); timersub(&tv, lasttime, &delta); /* * check for 0,0 is so that the message will be seen at least once. * if more than one second have passed since the last update of * lasttime, reset the counter. * * we do increment *curpps even in *curpps < maxpps case, as some may * try to use *curpps for stat purposes as well. */ if (maxpps == 0) rv = 0; else if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || delta.tv_sec >= 1) { *lasttime = tv; *curpps = 0; rv = 1; } else if (maxpps < 0) rv = 1; else if (*curpps < maxpps) rv = 1; else rv = 0; /* be careful about wrap-around */ if (*curpps + 1 > *curpps) *curpps = *curpps + 1; mtx_leave(&ppsratecheck_mtx); return (rv); } todr_chip_handle_t todr_handle; int inittodr_done; #define MINYEAR ((OpenBSD / 100) - 1) /* minimum plausible year */ /* * inittodr: * * Initialize time from the time-of-day register. */ void inittodr(time_t base) { time_t deltat; struct timeval rtctime; struct timespec ts; int badbase; inittodr_done = 1; if (base < (MINYEAR - 1970) * SECYR) { printf("WARNING: preposterous time in file system\n"); /* read the system clock anyway */ base = (MINYEAR - 1970) * SECYR; badbase = 1; } else badbase = 0; rtctime.tv_sec = base; rtctime.tv_usec = 0; if (todr_handle == NULL || todr_gettime(todr_handle, &rtctime) != 0 || rtctime.tv_sec < (MINYEAR - 1970) * SECYR) { /* * Believe the time in the file system for lack of * anything better, resetting the TODR. */ rtctime.tv_sec = base; rtctime.tv_usec = 0; if (todr_handle != NULL && !badbase) printf("WARNING: bad clock chip time\n"); ts.tv_sec = rtctime.tv_sec; ts.tv_nsec = rtctime.tv_usec * 1000; tc_setclock(&ts); goto bad; } else { ts.tv_sec = rtctime.tv_sec; ts.tv_nsec = rtctime.tv_usec * 1000; tc_setclock(&ts); } if (!badbase) { /* * See if we gained/lost two or more days; if * so, assume something is amiss. */ deltat = rtctime.tv_sec - base; if (deltat < 0) deltat = -deltat; if (deltat < 2 * SECDAY) return; /* all is well */ #ifndef SMALL_KERNEL printf("WARNING: clock %s %lld days\n", rtctime.tv_sec < base ? "lost" : "gained", (long long)(deltat / SECDAY)); #endif } bad: printf("WARNING: CHECK AND RESET THE DATE!\n"); } /* * resettodr: * * Reset the time-of-day register with the current time. */ void resettodr(void) { struct timeval rtctime; /* * Skip writing the RTC if inittodr(9) never ran. We don't * want to overwrite a reasonable value with a nonsense value. */ if (!inittodr_done) return; microtime(&rtctime); if (todr_handle != NULL && todr_settime(todr_handle, &rtctime) != 0) printf("WARNING: can't update clock chip time\n"); } void todr_attach(struct todr_chip_handle *todr) { if (todr_handle == NULL || todr->todr_quality > todr_handle->todr_quality) todr_handle = todr; } #define RESETTODR_PERIOD 1800 void periodic_resettodr(void *); void perform_resettodr(void *); struct timeout resettodr_to = TIMEOUT_INITIALIZER(periodic_resettodr, NULL); struct task resettodr_task = TASK_INITIALIZER(perform_resettodr, NULL); void periodic_resettodr(void *arg __unused) { task_add(systq, &resettodr_task); } void perform_resettodr(void *arg __unused) { resettodr(); timeout_add_sec(&resettodr_to, RESETTODR_PERIOD); } void start_periodic_resettodr(void) { timeout_add_sec(&resettodr_to, RESETTODR_PERIOD); } void stop_periodic_resettodr(void) { timeout_del(&resettodr_to); task_del(systq, &resettodr_task); }