/*	$OpenBSD: subr_disk.c,v 1.18 2000/04/09 19:26:35 csapuntz Exp $	*/
/*	$NetBSD: subr_disk.c,v 1.17 1996/03/16 23:17:08 christos Exp $	*/

/*
 * Copyright (c) 1995 Jason R. Thorpe.  All rights reserved.
 * Copyright (c) 1982, 1986, 1988, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)ufs_disksubr.c	8.5 (Berkeley) 1/21/94
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/fcntl.h>
#include <sys/buf.h>
#include <sys/stat.h>
#include <sys/syslog.h>
#include <sys/time.h>
#include <sys/disklabel.h>
#include <sys/conf.h>
#include <sys/lock.h>
#include <sys/disk.h>
#include <sys/dkio.h>
#include <sys/dkstat.h>		/* XXX */
#include <sys/proc.h>

#include <dev/rndvar.h>

/*
 * A global list of all disks attached to the system.  May grow or
 * shrink over time.
 */
struct	disklist_head disklist;	/* TAILQ_HEAD */
int	disk_count;		/* number of drives in global disklist */

/*
 * Seek sort for disks.  We depend on the driver which calls us using b_resid
 * as the current cylinder number.
 *
 * The argument ap structure holds a b_actf activity chain pointer on which we
 * keep two queues, sorted in ascending cylinder order.  The first queue holds
 * those requests which are positioned after the current cylinder (in the first
 * request); the second holds requests which came in after their cylinder number
 * was passed.  Thus we implement a one way scan, retracting after reaching the
 * end of the drive to the first request on the second queue, at which time it
 * becomes the first queue.
 *
 * A one-way scan is natural because of the way UNIX read-ahead blocks are
 * allocated.
 */

void
disksort(ap, bp)
	register struct buf *ap, *bp;
{
	register struct buf *bq;

	/* If the queue is empty, then it's easy. */
	if (ap->b_actf == NULL) {
		bp->b_actf = NULL;
		ap->b_actf = bp;
		return;
	}

	/*
	 * If we lie after the first (currently active) request, then we
	 * must locate the second request list and add ourselves to it.
	 */
	bq = ap->b_actf;
	if (bp->b_cylinder < bq->b_cylinder) {
		while (bq->b_actf) {
			/*
			 * Check for an ``inversion'' in the normally ascending
			 * cylinder numbers, indicating the start of the second
			 * request list.
			 */
			if (bq->b_actf->b_cylinder < bq->b_cylinder) {
				/*
				 * Search the second request list for the first
				 * request at a larger cylinder number.  We go
				 * before that; if there is no such request, we
				 * go at end.
				 */
				do {
					if (bp->b_cylinder <
					    bq->b_actf->b_cylinder)
						goto insert;
					if (bp->b_cylinder ==
					    bq->b_actf->b_cylinder &&
					    bp->b_blkno < bq->b_actf->b_blkno)
						goto insert;
					bq = bq->b_actf;
				} while (bq->b_actf);
				goto insert;		/* after last */
			}
			bq = bq->b_actf;
		}
		/*
		 * No inversions... we will go after the last, and
		 * be the first request in the second request list.
		 */
		goto insert;
	}
	/*
	 * Request is at/after the current request...
	 * sort in the first request list.
	 */
	while (bq->b_actf) {
		/*
		 * We want to go after the current request if there is an
		 * inversion after it (i.e. it is the end of the first
		 * request list), or if the next request is a larger cylinder
		 * than our request.
		 */
		if (bq->b_actf->b_cylinder < bq->b_cylinder ||
		    bp->b_cylinder < bq->b_actf->b_cylinder ||
		    (bp->b_cylinder == bq->b_actf->b_cylinder &&
		    bp->b_blkno < bq->b_actf->b_blkno))
			goto insert;
		bq = bq->b_actf;
	}
	/*
	 * Neither a second list nor a larger request... we go at the end of
	 * the first list, which is the same as the end of the whole schebang.
	 */
insert:	bp->b_actf = bq->b_actf;
	bq->b_actf = bp;
}

/*
 * Compute checksum for disk label.
 */
u_int
dkcksum(lp)
	register struct disklabel *lp;
{
	register u_int16_t *start, *end;
	register u_int16_t sum = 0;

	start = (u_int16_t *)lp;
	end = (u_int16_t *)&lp->d_partitions[lp->d_npartitions];
	while (start < end)
		sum ^= *start++;
	return (sum);
}

/*
 * Disk error is the preface to plaintive error messages
 * about failing disk transfers.  It prints messages of the form

hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d)

 * if the offset of the error in the transfer and a disk label
 * are both available.  blkdone should be -1 if the position of the error
 * is unknown; the disklabel pointer may be null from drivers that have not
 * been converted to use them.  The message is printed with printf
 * if pri is LOG_PRINTF, otherwise it uses log at the specified priority.
 * The message should be completed (with at least a newline) with printf
 * or addlog, respectively.  There is no trailing space.
 */
void
diskerr(bp, dname, what, pri, blkdone, lp)
	register struct buf *bp;
	char *dname, *what;
	int pri, blkdone;
	register struct disklabel *lp;
{
	int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev);
	register int (*pr) __P((const char *, ...));
	char partname = 'a' + part;
	int sn;

	if (pri != LOG_PRINTF) {
		static const char fmt[] = "";
		log(pri, fmt);
		pr = addlog;
	} else
		pr = printf;
	(*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what,
	    bp->b_flags & B_READ ? "read" : "writ");
	sn = bp->b_blkno;
	if (bp->b_bcount <= DEV_BSIZE)
		(*pr)("%d", sn);
	else {
		if (blkdone >= 0) {
			sn += blkdone;
			(*pr)("%d of ", sn);
		}
		(*pr)("%d-%d", bp->b_blkno,
		    bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE);
	}
	if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) {
#ifdef tahoe
		sn *= DEV_BSIZE / lp->d_secsize;		/* XXX */
#endif
		sn += lp->d_partitions[part].p_offset;
		(*pr)(" (%s%d bn %d; cn %d", dname, unit, sn,
		    sn / lp->d_secpercyl);
		sn %= lp->d_secpercyl;
		(*pr)(" tn %d sn %d)", sn / lp->d_nsectors, sn % lp->d_nsectors);
	}
}

/*
 * Initialize the disklist.  Called by main() before autoconfiguration.
 */
void
disk_init()
{

	TAILQ_INIT(&disklist);
	disk_count = 0;
}

/*
 * Searches the disklist for the disk corresponding to the
 * name provided.
 */
struct disk *
disk_find(name)
	char *name;
{
	struct disk *diskp;

	if ((name == NULL) || (disk_count <= 0))
		return (NULL);

	for (diskp = disklist.tqh_first; diskp != NULL;
	    diskp = diskp->dk_link.tqe_next)
		if (strcmp(diskp->dk_name, name) == 0)
			return (diskp);

	return (NULL);
}

int
disk_construct(diskp, lockname)
	struct disk *diskp;
	char *lockname;
{
	lockinit(&diskp->dk_lock, PRIBIO | PCATCH, lockname,
		 0, LK_CANRECURSE);
	
	diskp->dk_flags |= DKF_CONSTRUCTED;
	    
	return (0);
}

/*
 * Attach a disk.
 */
void
disk_attach(diskp)
	struct disk *diskp;
{
	int s;

	if (!diskp->dk_flags & DKF_CONSTRUCTED)
		disk_construct(diskp, diskp->dk_name);

	/*
	 * Allocate and initialize the disklabel structures.  Note that
	 * it's not safe to sleep here, since we're probably going to be
	 * called during autoconfiguration.
	 */
	diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT);
	diskp->dk_cpulabel = malloc(sizeof(struct cpu_disklabel), M_DEVBUF,
	    M_NOWAIT);
	if ((diskp->dk_label == NULL) || (diskp->dk_cpulabel == NULL))
		panic("disk_attach: can't allocate storage for disklabel");

	bzero(diskp->dk_label, sizeof(struct disklabel));
	bzero(diskp->dk_cpulabel, sizeof(struct cpu_disklabel));

	/*
	 * Set the attached timestamp.
	 */
	s = splclock();
	diskp->dk_attachtime = mono_time;
	splx(s);

	/*
	 * Link into the disklist.
	 */
	TAILQ_INSERT_TAIL(&disklist, diskp, dk_link);
	++disk_count;
}

/*
 * Detach a disk.
 */
void
disk_detach(diskp)
	struct disk *diskp;
{

	/*
	 * Free the space used by the disklabel structures.
	 */
	free(diskp->dk_label, M_DEVBUF);
	free(diskp->dk_cpulabel, M_DEVBUF);

	/*
	 * Remove from the disklist.
	 */
	TAILQ_REMOVE(&disklist, diskp, dk_link);
	if (--disk_count < 0)
		panic("disk_detach: disk_count < 0");
}

/*
 * Increment a disk's busy counter.  If the counter is going from
 * 0 to 1, set the timestamp.
 */
void
disk_busy(diskp)
	struct disk *diskp;
{
	int s;

	/*
	 * XXX We'd like to use something as accurate as microtime(),
	 * but that doesn't depend on the system TOD clock.
	 */
	if (diskp->dk_busy++ == 0) {
		s = splclock();
		diskp->dk_timestamp = mono_time;
		splx(s);
	}
}

/*
 * Decrement a disk's busy counter, increment the byte count, total busy
 * time, and reset the timestamp.
 */
void
disk_unbusy(diskp, bcount)
	struct disk *diskp;
	long bcount;
{
	int s;
	struct timeval dv_time, diff_time;

	if (diskp->dk_busy-- == 0)
		printf("disk_unbusy: %s: dk_busy < 0\n", diskp->dk_name);

	s = splclock();
	dv_time = mono_time;
	splx(s);

	timersub(&dv_time, &diskp->dk_timestamp, &diff_time);
	timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time);

	diskp->dk_timestamp = dv_time;
	if (bcount > 0) {
		diskp->dk_bytes += bcount;
		diskp->dk_xfer++;
	}
	diskp->dk_seek++;

	add_disk_randomness(bcount ^ diff_time.tv_usec);
}


int
disk_lock(dk)
	struct disk *dk;
{
	int error;

	error = lockmgr(&dk->dk_lock, LK_EXCLUSIVE, 0, curproc);

	return (error);
}

void
disk_unlock(dk)
	struct disk *dk;
{
	lockmgr(&dk->dk_lock, LK_RELEASE, 0, curproc);
}


/*
 * Reset the metrics counters on the given disk.  Note that we cannot
 * reset the busy counter, as it may case a panic in disk_unbusy().
 * We also must avoid playing with the timestamp information, as it
 * may skew any pending transfer results.
 */
void
disk_resetstat(diskp)
	struct disk *diskp;
{
	int s = splbio(), t;

	diskp->dk_xfer = 0;
	diskp->dk_bytes = 0;
	diskp->dk_seek = 0;

	t = splclock();
	diskp->dk_attachtime = mono_time;
	splx(t);

	timerclear(&diskp->dk_time);

	splx(s);
}


int
dk_mountroot()
{
	dev_t rawdev, rrootdev;
	int part = DISKPART(rootdev);
	int (*mountrootfn) __P((void));
	extern struct proc *curproc;
	struct disklabel dl;
	int error;

	rrootdev = blktochr(rootdev);
	rawdev = MAKEDISKDEV(major(rrootdev), DISKUNIT(rootdev), RAW_PART);
	printf("rootdev=0x%x rrootdev=0x%x rawdev=0x%x\n", rootdev,
	    rrootdev, rawdev);

	/*
	 * open device, ioctl for the disklabel, and close it.
	 */
	error = (cdevsw[major(rrootdev)].d_open)(rawdev, FREAD,
	    S_IFCHR, curproc);
	if (error)
		panic("cannot open disk, 0x%x/0x%x, error %d",
		    rootdev, rrootdev, error);
	error = (cdevsw[major(rrootdev)].d_ioctl)(rawdev, DIOCGDINFO,
	    (caddr_t)&dl, FREAD, curproc);
	if (error)
		panic("cannot read disk label, 0x%x/0x%x, error %d",
		    rootdev, rrootdev, error);
	(void) (cdevsw[major(rrootdev)].d_close)(rawdev, FREAD,
	    S_IFCHR, curproc);

	if (dl.d_partitions[part].p_size == 0)
		panic("root filesystem has size 0");
	switch (dl.d_partitions[part].p_fstype) {
#ifdef EXT2FS
	case FS_EXT2FS:
		{
		extern int ext2fs_mountroot __P((void));
		mountrootfn = ext2fs_mountroot;
		}
		break;
#endif
#ifdef FFS
	case FS_BSDFFS:
		{
		extern int ffs_mountroot __P((void));
		mountrootfn = ffs_mountroot;
		}
		break;
#endif
#ifdef LFS
	case FS_BSDLFS:
		{
		extern int lfs_mountroot __P((void));
		mountrootfn = lfs_mountroot;
		}
		break;
#endif
#ifdef CD9660
	case FS_ISO9660:
		{
		extern int cd9660_mountroot __P((void));
		mountrootfn = cd9660_mountroot;
		}
		break;
#endif
	default:
#ifdef FFS
		{ 
		extern int ffs_mountroot __P((void));

		printf("filesystem type %d not known.. assuming ffs\n",
		    dl.d_partitions[part].p_fstype);
		mountrootfn = ffs_mountroot;
		}
#else
		panic("disk 0x%x/0x%x filesystem type %d not known", 
		    rootdev, rrootdev, dl.d_partitions[part].p_fstype);
#endif
	}
	return (*mountrootfn)();
}