/* $OpenBSD: subr_disk.c,v 1.72 2008/03/31 23:56:29 deraadt Exp $ */ /* $NetBSD: subr_disk.c,v 1.17 1996/03/16 23:17:08 christos Exp $ */ /* * Copyright (c) 1995 Jason R. Thorpe. All rights reserved. * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* XXX */ #include #include #include #include #include #include #include /* * A global list of all disks attached to the system. May grow or * shrink over time. */ struct disklist_head disklist; /* TAILQ_HEAD */ int disk_count; /* number of drives in global disklist */ int disk_change; /* set if a disk has been attached/detached * since last we looked at this variable. This * is reset by hw_sysctl() */ /* * Seek sort for disks. We depend on the driver which calls us using b_resid * as the current cylinder number. * * The argument ap structure holds a b_actf activity chain pointer on which we * keep two queues, sorted in ascending cylinder order. The first queue holds * those requests which are positioned after the current cylinder (in the first * request); the second holds requests which came in after their cylinder number * was passed. Thus we implement a one way scan, retracting after reaching the * end of the drive to the first request on the second queue, at which time it * becomes the first queue. * * A one-way scan is natural because of the way UNIX read-ahead blocks are * allocated. */ void disksort(struct buf *ap, struct buf *bp) { struct buf *bq; /* If the queue is empty, then it's easy. */ if (ap->b_actf == NULL) { bp->b_actf = NULL; ap->b_actf = bp; return; } /* * If we lie after the first (currently active) request, then we * must locate the second request list and add ourselves to it. */ bq = ap->b_actf; if (bp->b_cylinder < bq->b_cylinder) { while (bq->b_actf) { /* * Check for an ``inversion'' in the normally ascending * cylinder numbers, indicating the start of the second * request list. */ if (bq->b_actf->b_cylinder < bq->b_cylinder) { /* * Search the second request list for the first * request at a larger cylinder number. We go * before that; if there is no such request, we * go at end. */ do { if (bp->b_cylinder < bq->b_actf->b_cylinder) goto insert; if (bp->b_cylinder == bq->b_actf->b_cylinder && bp->b_blkno < bq->b_actf->b_blkno) goto insert; bq = bq->b_actf; } while (bq->b_actf); goto insert; /* after last */ } bq = bq->b_actf; } /* * No inversions... we will go after the last, and * be the first request in the second request list. */ goto insert; } /* * Request is at/after the current request... * sort in the first request list. */ while (bq->b_actf) { /* * We want to go after the current request if there is an * inversion after it (i.e. it is the end of the first * request list), or if the next request is a larger cylinder * than our request. */ if (bq->b_actf->b_cylinder < bq->b_cylinder || bp->b_cylinder < bq->b_actf->b_cylinder || (bp->b_cylinder == bq->b_actf->b_cylinder && bp->b_blkno < bq->b_actf->b_blkno)) goto insert; bq = bq->b_actf; } /* * Neither a second list nor a larger request... we go at the end of * the first list, which is the same as the end of the whole schebang. */ insert: bp->b_actf = bq->b_actf; bq->b_actf = bp; } /* * Compute checksum for disk label. */ u_int dkcksum(struct disklabel *lp) { u_int16_t *start, *end; u_int16_t sum = 0; start = (u_int16_t *)lp; end = (u_int16_t *)&lp->d_partitions[lp->d_npartitions]; while (start < end) sum ^= *start++; return (sum); } char * initdisklabel(struct disklabel *lp) { int i; /* minimal requirements for archetypal disk label */ if (lp->d_secsize < DEV_BSIZE) lp->d_secsize = DEV_BSIZE; if (DL_GETDSIZE(lp) == 0) DL_SETDSIZE(lp, MAXDISKSIZE); if (lp->d_secpercyl == 0) return ("invalid geometry"); lp->d_npartitions = RAW_PART + 1; for (i = 0; i < RAW_PART; i++) { DL_SETPSIZE(&lp->d_partitions[i], 0); DL_SETPOFFSET(&lp->d_partitions[i], 0); } if (DL_GETPSIZE(&lp->d_partitions[RAW_PART]) == 0) DL_SETPSIZE(&lp->d_partitions[RAW_PART], DL_GETDSIZE(lp)); DL_SETPOFFSET(&lp->d_partitions[RAW_PART], 0); lp->d_version = 1; lp->d_bbsize = 8192; lp->d_sbsize = 64*1024; /* XXX ? */ return (NULL); } /* * Check an incoming block to make sure it is a disklabel, convert it to * a newer version if needed, etc etc. */ char * checkdisklabel(void *rlp, struct disklabel *lp) { struct disklabel *dlp = rlp; struct __partitionv0 *v0pp; struct partition *pp; daddr64_t disksize; char *msg = NULL; int i; if (dlp->d_magic != DISKMAGIC || dlp->d_magic2 != DISKMAGIC) msg = "no disk label"; else if (dlp->d_npartitions > MAXPARTITIONS) msg = "unreasonable partition count"; else if (dkcksum(dlp) != 0) msg = "disk label corrupted"; if (msg) { u_int16_t *start, *end, sum = 0; /* If it is byte-swapped, attempt to convert it */ if (swap32(dlp->d_magic) != DISKMAGIC || swap32(dlp->d_magic2) != DISKMAGIC || swap16(dlp->d_npartitions) > MAXPARTITIONS) return (msg); /* * Need a byte-swap aware dkcksum varient * inlined, because dkcksum uses a sub-field */ start = (u_int16_t *)dlp; end = (u_int16_t *)&dlp->d_partitions[ swap16(dlp->d_npartitions)]; while (start < end) sum ^= *start++; if (sum != 0) return (msg); dlp->d_magic = swap32(dlp->d_magic); dlp->d_type = swap16(dlp->d_type); dlp->d_subtype = swap16(dlp->d_subtype); /* d_typename and d_packname are strings */ dlp->d_secsize = swap32(dlp->d_secsize); dlp->d_nsectors = swap32(dlp->d_nsectors); dlp->d_ntracks = swap32(dlp->d_ntracks); dlp->d_ncylinders = swap32(dlp->d_ncylinders); dlp->d_secpercyl = swap32(dlp->d_secpercyl); dlp->d_secperunit = swap32(dlp->d_secperunit); dlp->d_sparespertrack = swap16(dlp->d_sparespertrack); dlp->d_sparespercyl = swap16(dlp->d_sparespercyl); dlp->d_acylinders = swap32(dlp->d_acylinders); dlp->d_rpm = swap16(dlp->d_rpm); dlp->d_interleave = swap16(dlp->d_interleave); dlp->d_trackskew = swap16(dlp->d_trackskew); dlp->d_cylskew = swap16(dlp->d_cylskew); dlp->d_headswitch = swap32(dlp->d_headswitch); dlp->d_trkseek = swap32(dlp->d_trkseek); dlp->d_flags = swap32(dlp->d_flags); for (i = 0; i < NDDATA; i++) dlp->d_drivedata[i] = swap32(dlp->d_drivedata[i]); dlp->d_secperunith = swap16(dlp->d_secperunith); dlp->d_version = swap16(dlp->d_version); for (i = 0; i < NSPARE; i++) dlp->d_spare[i] = swap32(dlp->d_spare[i]); dlp->d_magic2 = swap32(dlp->d_magic2); dlp->d_checksum = swap16(dlp->d_checksum); dlp->d_npartitions = swap16(dlp->d_npartitions); dlp->d_bbsize = swap32(dlp->d_bbsize); dlp->d_sbsize = swap32(dlp->d_sbsize); for (i = 0; i < MAXPARTITIONS; i++) { pp = &dlp->d_partitions[i]; pp->p_size = swap32(pp->p_size); pp->p_offset = swap32(pp->p_offset); if (dlp->d_version == 0) { v0pp = (struct __partitionv0 *)pp; v0pp->p_fsize = swap32(v0pp->p_fsize); } else { pp->p_offseth = swap16(pp->p_offseth); pp->p_sizeh = swap16(pp->p_sizeh); } pp->p_cpg = swap16(pp->p_cpg); } dlp->d_checksum = 0; dlp->d_checksum = dkcksum(dlp); msg = NULL; } /* XXX should verify lots of other fields and whine a lot */ if (msg) return (msg); /* Initial passed in lp contains the real disk size. */ disksize = DL_GETDSIZE(lp); if (lp != dlp) *lp = *dlp; if (lp->d_version == 0) { lp->d_version = 1; lp->d_secperunith = 0; v0pp = (struct __partitionv0 *)lp->d_partitions; pp = lp->d_partitions; for (i = 0; i < lp->d_npartitions; i++, pp++, v0pp++) { pp->p_fragblock = DISKLABELV1_FFS_FRAGBLOCK(v0pp-> p_fsize, v0pp->p_frag); pp->p_offseth = 0; pp->p_sizeh = 0; } } #ifdef DEBUG if (DL_GETDSIZE(lp) != disksize) printf("on-disk disklabel has incorrect disksize (%lld)\n", DL_GETDSIZE(lp)); if (DL_GETPSIZE(&lp->d_partitions[RAW_PART]) != disksize) printf("on-disk disklabel RAW_PART has incorrect size (%lld)\n", DL_GETPSIZE(&lp->d_partitions[RAW_PART])); if (DL_GETPOFFSET(&lp->d_partitions[RAW_PART]) != 0) printf("on-disk disklabel RAW_PART offset != 0 (%lld)\n", DL_GETPOFFSET(&lp->d_partitions[RAW_PART])); #endif DL_SETDSIZE(lp, disksize); DL_SETPSIZE(&lp->d_partitions[RAW_PART], disksize); DL_SETPOFFSET(&lp->d_partitions[RAW_PART], 0); lp->d_checksum = 0; lp->d_checksum = dkcksum(lp); return (msg); } /* * If dos partition table requested, attempt to load it and * find disklabel inside a DOS partition. Return buffer * for use in signalling errors if requested. * * We would like to check if each MBR has a valid BOOT_MAGIC, but * we cannot because it doesn't always exist. So.. we assume the * MBR is valid. */ char * readdoslabel(struct buf *bp, void (*strat)(struct buf *), struct disklabel *lp, int *partoffp, int spoofonly) { struct dos_partition dp[NDOSPART], *dp2; u_int32_t extoff = 0; daddr64_t part_blkno = DOSBBSECTOR; int dospartoff = 0, i, ourpart = -1; int wander = 1, n = 0, loop = 0; if (lp->d_secpercyl == 0) return ("invalid label, d_secpercyl == 0"); if (lp->d_secsize == 0) return ("invalid label, d_secsize == 0"); /* do DOS partitions in the process of getting disklabel? */ /* * Read dos partition table, follow extended partitions. * Map the partitions to disklabel entries i-p */ while (wander && n < 8 && loop < 8) { loop++; wander = 0; if (part_blkno < extoff) part_blkno = extoff; /* read boot record */ bp->b_blkno = part_blkno; bp->b_bcount = lp->d_secsize; bp->b_flags = B_BUSY | B_READ; (*strat)(bp); if (biowait(bp)) { /*wrong*/ if (partoffp) /*wrong*/ *partoffp = -1; return ("dos partition I/O error"); } bcopy(bp->b_data + DOSPARTOFF, dp, sizeof(dp)); if (ourpart == -1 && part_blkno == DOSBBSECTOR) { /* Search for our MBR partition */ for (dp2=dp, i=0; i < NDOSPART && ourpart == -1; i++, dp2++) if (letoh32(dp2->dp_size) && dp2->dp_typ == DOSPTYP_OPENBSD) ourpart = i; if (ourpart == -1) goto donot; /* * This is our MBR partition. need sector * address for SCSI/IDE, cylinder for * ESDI/ST506/RLL */ dp2 = &dp[ourpart]; dospartoff = letoh32(dp2->dp_start) + part_blkno; /* found our OpenBSD partition, finish up */ if (partoffp) goto notfat; if (lp->d_ntracks == 0) lp->d_ntracks = dp2->dp_ehd + 1; if (lp->d_nsectors == 0) lp->d_nsectors = DPSECT(dp2->dp_esect); if (lp->d_secpercyl == 0) lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; } donot: /* * In case the disklabel read below fails, we want to * provide a fake label in i-p. */ for (dp2=dp, i=0; i < NDOSPART && n < 8; i++, dp2++) { struct partition *pp = &lp->d_partitions[8+n]; if (dp2->dp_typ == DOSPTYP_OPENBSD) continue; if (letoh32(dp2->dp_size) > DL_GETDSIZE(lp)) continue; if (letoh32(dp2->dp_start) > DL_GETDSIZE(lp)) continue; if (letoh32(dp2->dp_size) == 0) continue; if (letoh32(dp2->dp_start)) DL_SETPOFFSET(pp, letoh32(dp2->dp_start) + part_blkno); DL_SETPSIZE(pp, letoh32(dp2->dp_size)); switch (dp2->dp_typ) { case DOSPTYP_UNUSED: pp->p_fstype = FS_UNUSED; n++; break; case DOSPTYP_LINUX: pp->p_fstype = FS_EXT2FS; n++; break; case DOSPTYP_NTFS: pp->p_fstype = FS_NTFS; n++; break; case DOSPTYP_FAT12: case DOSPTYP_FAT16S: case DOSPTYP_FAT16B: case DOSPTYP_FAT16L: case DOSPTYP_FAT32: case DOSPTYP_FAT32L: pp->p_fstype = FS_MSDOS; n++; break; case DOSPTYP_EXTEND: case DOSPTYP_EXTENDL: part_blkno = letoh32(dp2->dp_start) + extoff; if (!extoff) { extoff = letoh32(dp2->dp_start); part_blkno = 0; } wander = 1; break; default: pp->p_fstype = FS_OTHER; n++; break; } } } lp->d_npartitions = MAXPARTITIONS; if (n == 0 && part_blkno == DOSBBSECTOR) { u_int16_t fattest; /* Check for a short jump instruction. */ fattest = ((bp->b_data[0] << 8) & 0xff00) | (bp->b_data[2] & 0xff); if (fattest != 0xeb90 && fattest != 0xe900) goto notfat; /* Check for a valid bytes per sector value. */ fattest = ((bp->b_data[12] << 8) & 0xff00) | (bp->b_data[11] & 0xff); if (fattest < 512 || fattest > 4096 || (fattest % 512 != 0)) goto notfat; /* Check the end of sector marker. */ fattest = ((bp->b_data[510] << 8) & 0xff00) | (bp->b_data[511] & 0xff); if (fattest != 0x55aa) goto notfat; /* Looks like a FAT filesystem. Spoof 'i'. */ DL_SETPSIZE(&lp->d_partitions['i' - 'a'], DL_GETPSIZE(&lp->d_partitions[RAW_PART])); DL_SETPOFFSET(&lp->d_partitions['i' - 'a'], 0); lp->d_partitions['i' - 'a'].p_fstype = FS_MSDOS; } notfat: /* record the OpenBSD partition's placement for the caller */ if (partoffp) *partoffp = dospartoff; /* don't read the on-disk label if we are in spoofed-only mode */ if (spoofonly) return (NULL); bp->b_blkno = dospartoff + DOS_LABELSECTOR; bp->b_bcount = lp->d_secsize; bp->b_flags = B_BUSY | B_READ; (*strat)(bp); if (biowait(bp)) return ("disk label I/O error"); /* sub-MBR disklabels are always at a LABELOFFSET of 0 */ return checkdisklabel(bp->b_data, lp); } /* * Check new disk label for sensibility * before setting it. */ int setdisklabel(struct disklabel *olp, struct disklabel *nlp, u_int openmask) { int i; struct partition *opp, *npp; /* sanity clause */ if (nlp->d_secpercyl == 0 || nlp->d_secsize == 0 || (nlp->d_secsize % DEV_BSIZE) != 0) return (EINVAL); /* special case to allow disklabel to be invalidated */ if (nlp->d_magic == 0xffffffff) { *olp = *nlp; return (0); } if (nlp->d_magic != DISKMAGIC || nlp->d_magic2 != DISKMAGIC || dkcksum(nlp) != 0) return (EINVAL); /* XXX missing check if other dos partitions will be overwritten */ while (openmask != 0) { i = ffs(openmask) - 1; openmask &= ~(1 << i); if (nlp->d_npartitions <= i) return (EBUSY); opp = &olp->d_partitions[i]; npp = &nlp->d_partitions[i]; if (DL_GETPOFFSET(npp) != DL_GETPOFFSET(opp) || DL_GETPSIZE(npp) < DL_GETPSIZE(opp)) return (EBUSY); /* * Copy internally-set partition information * if new label doesn't include it. XXX */ if (npp->p_fstype == FS_UNUSED && opp->p_fstype != FS_UNUSED) { npp->p_fstype = opp->p_fstype; npp->p_fragblock = opp->p_fragblock; npp->p_cpg = opp->p_cpg; } } nlp->d_checksum = 0; nlp->d_checksum = dkcksum(nlp); *olp = *nlp; return (0); } /* * Determine the size of the transfer, and make sure it is within the * boundaries of the partition. Adjust transfer if needed, and signal errors or * early completion. */ int bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel) { #define blockpersec(count, lp) ((count) * (((lp)->d_secsize) / DEV_BSIZE)) struct partition *p = &lp->d_partitions[DISKPART(bp->b_dev)]; daddr64_t sz = howmany(bp->b_bcount, DEV_BSIZE); /* avoid division by zero */ if (lp->d_secpercyl == 0) goto bad; if (bp->b_blkno < 0 || sz < 0) panic("bounds_check_with_label %lld %lld\n", bp->b_blkno, sz); /* beyond partition? */ if (bp->b_blkno + sz > blockpersec(DL_GETPSIZE(p), lp)) { sz = blockpersec(DL_GETPSIZE(p), lp) - bp->b_blkno; if (sz == 0) { /* If exactly at end of disk, return EOF. */ bp->b_resid = bp->b_bcount; return (-1); } if (sz < 0) /* If past end of disk, return EINVAL. */ goto bad; /* Otherwise, truncate request. */ bp->b_bcount = sz << DEV_BSHIFT; } /* calculate cylinder for disksort to order transfers with */ bp->b_cylinder = (bp->b_blkno + blockpersec(DL_GETPOFFSET(p), lp)) / blockpersec(lp->d_secpercyl, lp); return (1); bad: bp->b_error = EINVAL; bp->b_flags |= B_ERROR; return (-1); } /* * Disk error is the preface to plaintive error messages * about failing disk transfers. It prints messages of the form hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d) * if the offset of the error in the transfer and a disk label * are both available. blkdone should be -1 if the position of the error * is unknown; the disklabel pointer may be null from drivers that have not * been converted to use them. The message is printed with printf * if pri is LOG_PRINTF, otherwise it uses log at the specified priority. * The message should be completed (with at least a newline) with printf * or addlog, respectively. There is no trailing space. */ void diskerr(struct buf *bp, char *dname, char *what, int pri, int blkdone, struct disklabel *lp) { int unit = DISKUNIT(bp->b_dev), part = DISKPART(bp->b_dev); int (*pr)(const char *, ...); char partname = 'a' + part; daddr64_t sn; if (pri != LOG_PRINTF) { static const char fmt[] = ""; log(pri, fmt); pr = addlog; } else pr = printf; (*pr)("%s%d%c: %s %sing fsbn ", dname, unit, partname, what, bp->b_flags & B_READ ? "read" : "writ"); sn = bp->b_blkno; if (bp->b_bcount <= DEV_BSIZE) (*pr)("%lld", sn); else { if (blkdone >= 0) { sn += blkdone; (*pr)("%lld of ", sn); } (*pr)("%lld-%lld", bp->b_blkno, bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE); } if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) { sn += DL_GETPOFFSET(&lp->d_partitions[part]); (*pr)(" (%s%d bn %lld; cn %lld", dname, unit, sn, sn / lp->d_secpercyl); sn %= lp->d_secpercyl; (*pr)(" tn %lld sn %lld)", sn / lp->d_nsectors, sn % lp->d_nsectors); } } /* * Initialize the disklist. Called by main() before autoconfiguration. */ void disk_init(void) { TAILQ_INIT(&disklist); disk_count = disk_change = 0; } int disk_construct(struct disk *diskp, char *lockname) { rw_init(&diskp->dk_lock, lockname); mtx_init(&diskp->dk_mtx, IPL_BIO); diskp->dk_flags |= DKF_CONSTRUCTED; return (0); } /* * Attach a disk. */ void disk_attach(struct disk *diskp) { if (!ISSET(diskp->dk_flags, DKF_CONSTRUCTED)) disk_construct(diskp, diskp->dk_name); /* * Allocate and initialize the disklabel structures. Note that * it's not safe to sleep here, since we're probably going to be * called during autoconfiguration. */ diskp->dk_label = malloc(sizeof(struct disklabel), M_DEVBUF, M_NOWAIT|M_ZERO); if (diskp->dk_label == NULL) panic("disk_attach: can't allocate storage for disklabel"); /* * Set the attached timestamp. */ microuptime(&diskp->dk_attachtime); /* * Link into the disklist. */ TAILQ_INSERT_TAIL(&disklist, diskp, dk_link); ++disk_count; disk_change = 1; } /* * Detach a disk. */ void disk_detach(struct disk *diskp) { /* * Free the space used by the disklabel structures. */ free(diskp->dk_label, M_DEVBUF); /* * Remove from the disklist. */ TAILQ_REMOVE(&disklist, diskp, dk_link); disk_change = 1; if (--disk_count < 0) panic("disk_detach: disk_count < 0"); } /* * Increment a disk's busy counter. If the counter is going from * 0 to 1, set the timestamp. */ void disk_busy(struct disk *diskp) { /* * XXX We'd like to use something as accurate as microtime(), * but that doesn't depend on the system TOD clock. */ mtx_enter(&diskp->dk_mtx); if (diskp->dk_busy++ == 0) microuptime(&diskp->dk_timestamp); mtx_leave(&diskp->dk_mtx); } /* * Decrement a disk's busy counter, increment the byte count, total busy * time, and reset the timestamp. */ void disk_unbusy(struct disk *diskp, long bcount, int read) { struct timeval dv_time, diff_time; mtx_enter(&diskp->dk_mtx); if (diskp->dk_busy-- == 0) printf("disk_unbusy: %s: dk_busy < 0\n", diskp->dk_name); microuptime(&dv_time); timersub(&dv_time, &diskp->dk_timestamp, &diff_time); timeradd(&diskp->dk_time, &diff_time, &diskp->dk_time); diskp->dk_timestamp = dv_time; if (bcount > 0) { if (read) { diskp->dk_rbytes += bcount; diskp->dk_rxfer++; } else { diskp->dk_wbytes += bcount; diskp->dk_wxfer++; } } else diskp->dk_seek++; mtx_leave(&diskp->dk_mtx); add_disk_randomness(bcount ^ diff_time.tv_usec); } int disk_lock(struct disk *dk) { int error; error = rw_enter(&dk->dk_lock, RW_WRITE|RW_INTR); return (error); } void disk_unlock(struct disk *dk) { rw_exit(&dk->dk_lock); } int dk_mountroot(void) { dev_t rawdev, rrootdev; int part = DISKPART(rootdev); int (*mountrootfn)(void); struct disklabel dl; int error; rrootdev = blktochr(rootdev); rawdev = MAKEDISKDEV(major(rrootdev), DISKUNIT(rootdev), RAW_PART); #ifdef DEBUG printf("rootdev=0x%x rrootdev=0x%x rawdev=0x%x\n", rootdev, rrootdev, rawdev); #endif /* * open device, ioctl for the disklabel, and close it. */ error = (cdevsw[major(rrootdev)].d_open)(rawdev, FREAD, S_IFCHR, curproc); if (error) panic("cannot open disk, 0x%x/0x%x, error %d", rootdev, rrootdev, error); error = (cdevsw[major(rrootdev)].d_ioctl)(rawdev, DIOCGDINFO, (caddr_t)&dl, FREAD, curproc); if (error) panic("cannot read disk label, 0x%x/0x%x, error %d", rootdev, rrootdev, error); (void) (cdevsw[major(rrootdev)].d_close)(rawdev, FREAD, S_IFCHR, curproc); if (DL_GETPSIZE(&dl.d_partitions[part]) == 0) panic("root filesystem has size 0"); switch (dl.d_partitions[part].p_fstype) { #ifdef EXT2FS case FS_EXT2FS: { extern int ext2fs_mountroot(void); mountrootfn = ext2fs_mountroot; } break; #endif #ifdef FFS case FS_BSDFFS: { extern int ffs_mountroot(void); mountrootfn = ffs_mountroot; } break; #endif #ifdef CD9660 case FS_ISO9660: { extern int cd9660_mountroot(void); mountrootfn = cd9660_mountroot; } break; #endif default: #ifdef FFS { extern int ffs_mountroot(void); printf("filesystem type %d not known.. assuming ffs\n", dl.d_partitions[part].p_fstype); mountrootfn = ffs_mountroot; } #else panic("disk 0x%x/0x%x filesystem type %d not known", rootdev, rrootdev, dl.d_partitions[part].p_fstype); #endif } return (*mountrootfn)(); } struct bufq * bufq_default_alloc(void) { struct bufq_default *bq; bq = malloc(sizeof(*bq), M_DEVBUF, M_NOWAIT|M_ZERO); if (bq == NULL) panic("bufq_default_alloc: no memory"); bq->bufq.bufq_free = bufq_default_free; bq->bufq.bufq_add = bufq_default_add; bq->bufq.bufq_get = bufq_default_get; return ((struct bufq *)bq); } void bufq_default_free(struct bufq *bq) { free(bq, M_DEVBUF); } void bufq_default_add(struct bufq *bq, struct buf *bp) { struct bufq_default *bufq = (struct bufq_default *)bq; struct proc *p = bp->b_proc; struct buf *head; if (p == NULL || p->p_nice < NZERO) head = &bufq->bufq_head[0]; else if (p->p_nice == NZERO) head = &bufq->bufq_head[1]; else head = &bufq->bufq_head[2]; disksort(head, bp); } struct buf * bufq_default_get(struct bufq *bq) { struct bufq_default *bufq = (struct bufq_default *)bq; struct buf *bp, *head; int i; for (i = 0; i < 3; i++) { head = &bufq->bufq_head[i]; if ((bp = head->b_actf)) break; } if (bp == NULL) return (NULL); head->b_actf = bp->b_actf; return (bp); } #ifdef RAMDISK_HOOKS static struct device fakerdrootdev = { DV_DISK, {}, NULL, 0, "rd0", NULL }; #endif struct device * getdisk(char *str, int len, int defpart, dev_t *devp) { struct device *dv; if ((dv = parsedisk(str, len, defpart, devp)) == NULL) { printf("use one of: exit"); #ifdef RAMDISK_HOOKS printf(" %s[a-p]", fakerdrootdev.dv_xname); #endif TAILQ_FOREACH(dv, &alldevs, dv_list) { if (dv->dv_class == DV_DISK) printf(" %s[a-p]", dv->dv_xname); #if defined(NFSCLIENT) if (dv->dv_class == DV_IFNET) printf(" %s", dv->dv_xname); #endif } printf("\n"); } return (dv); } struct device * parsedisk(char *str, int len, int defpart, dev_t *devp) { struct device *dv; char c; int majdev, part; if (len == 0) return (NULL); c = str[len-1]; if (c >= 'a' && (c - 'a') < MAXPARTITIONS) { part = c - 'a'; len -= 1; } else part = defpart; #ifdef RAMDISK_HOOKS if (strcmp(str, fakerdrootdev.dv_xname) == 0) { dv = &fakerdrootdev; goto gotdisk; } #endif TAILQ_FOREACH(dv, &alldevs, dv_list) { if (dv->dv_class == DV_DISK && strncmp(str, dv->dv_xname, len) == 0 && dv->dv_xname[len] == '\0') { #ifdef RAMDISK_HOOKS gotdisk: #endif majdev = findblkmajor(dv); if (majdev < 0) panic("parsedisk"); *devp = MAKEDISKDEV(majdev, dv->dv_unit, part); break; } #if defined(NFSCLIENT) if (dv->dv_class == DV_IFNET && strncmp(str, dv->dv_xname, len) == 0 && dv->dv_xname[len] == '\0') { *devp = NODEV; break; } #endif } return (dv); } void setroot(struct device *bootdv, int part, int exitflags) { int majdev, unit, len, s; struct swdevt *swp; struct device *rootdv, *dv; dev_t nrootdev, nswapdev = NODEV, temp = NODEV; struct ifnet *ifp = NULL; char buf[128]; #if defined(NFSCLIENT) extern char *nfsbootdevname; #endif #ifdef RAMDISK_HOOKS bootdv = &fakerdrootdev; mountroot = NULL; part = 0; #endif /* * If `swap generic' and we couldn't determine boot device, * ask the user. */ if (mountroot == NULL && bootdv == NULL) boothowto |= RB_ASKNAME; if (boothowto & RB_ASKNAME) { while (1) { printf("root device"); if (bootdv != NULL) { printf(" (default %s", bootdv->dv_xname); if (bootdv->dv_class == DV_DISK) printf("%c", 'a' + part); printf(")"); } printf(": "); s = splhigh(); cnpollc(TRUE); len = getsn(buf, sizeof(buf)); cnpollc(FALSE); splx(s); if (strcmp(buf, "exit") == 0) boot(exitflags); if (len == 0 && bootdv != NULL) { strlcpy(buf, bootdv->dv_xname, sizeof buf); len = strlen(buf); } if (len > 0 && buf[len - 1] == '*') { buf[--len] = '\0'; dv = getdisk(buf, len, part, &nrootdev); if (dv != NULL) { rootdv = dv; nswapdev = nrootdev; goto gotswap; } } dv = getdisk(buf, len, part, &nrootdev); if (dv != NULL) { rootdv = dv; break; } } if (rootdv->dv_class == DV_IFNET) goto gotswap; /* try to build swap device out of new root device */ while (1) { printf("swap device"); if (rootdv != NULL) printf(" (default %s%s)", rootdv->dv_xname, rootdv->dv_class == DV_DISK ? "b" : ""); printf(": "); s = splhigh(); cnpollc(TRUE); len = getsn(buf, sizeof(buf)); cnpollc(FALSE); splx(s); if (strcmp(buf, "exit") == 0) boot(exitflags); if (len == 0 && rootdv != NULL) { switch (rootdv->dv_class) { case DV_IFNET: nswapdev = NODEV; break; case DV_DISK: nswapdev = MAKEDISKDEV(major(nrootdev), DISKUNIT(nrootdev), 1); if (nswapdev == nrootdev) continue; break; default: break; } break; } dv = getdisk(buf, len, 1, &nswapdev); if (dv) { if (dv->dv_class == DV_IFNET) nswapdev = NODEV; if (nswapdev == nrootdev) continue; break; } } gotswap: rootdev = nrootdev; dumpdev = nswapdev; swdevt[0].sw_dev = nswapdev; swdevt[1].sw_dev = NODEV; #if defined(NFSCLIENT) } else if (mountroot == nfs_mountroot) { rootdv = bootdv; rootdev = dumpdev = swapdev = NODEV; #endif } else if (mountroot == NULL) { /* * `swap generic' or RAMDISK_HOOKS -- use the * device we were told to */ rootdv = bootdv; majdev = findblkmajor(rootdv); if (majdev >= 0) { /* * Root and swap are on the disk. * Assume swap is on partition b. */ rootdev = MAKEDISKDEV(majdev, rootdv->dv_unit, part); nswapdev = MAKEDISKDEV(majdev, rootdv->dv_unit, 1); } else { /* * Root and swap are on a net. */ nswapdev = NODEV; } dumpdev = nswapdev; swdevt[0].sw_dev = nswapdev; /* swdevt[1].sw_dev = NODEV; */ } else { /* Completely pre-configured, but we want rootdv .. */ majdev = major(rootdev); if (findblkname(majdev) == NULL) return; unit = DISKUNIT(rootdev); part = DISKPART(rootdev); snprintf(buf, sizeof buf, "%s%d%c", findblkname(majdev), unit, 'a' + part); rootdv = parsedisk(buf, strlen(buf), 0, &nrootdev); } if (rootdv && rootdv == bootdv && rootdv->dv_class == DV_IFNET) ifp = ifunit(rootdv->dv_xname); else if (bootdv && bootdv->dv_class == DV_IFNET) ifp = ifunit(bootdv->dv_xname); if (ifp) if_addgroup(ifp, "netboot"); switch (rootdv->dv_class) { #if defined(NFSCLIENT) case DV_IFNET: mountroot = nfs_mountroot; nfsbootdevname = rootdv->dv_xname; return; #endif case DV_DISK: mountroot = dk_mountroot; part = DISKPART(rootdev); break; default: printf("can't figure root, hope your kernel is right\n"); return; } printf("root on %s%c", rootdv->dv_xname, 'a' + part); /* * Make the swap partition on the root drive the primary swap. */ for (swp = swdevt; swp->sw_dev != NODEV; swp++) { if (major(rootdev) == major(swp->sw_dev) && DISKUNIT(rootdev) == DISKUNIT(swp->sw_dev)) { temp = swdevt[0].sw_dev; swdevt[0].sw_dev = swp->sw_dev; swp->sw_dev = temp; break; } } if (swp->sw_dev != NODEV) { /* * If dumpdev was the same as the old primary swap device, * move it to the new primary swap device. */ if (temp == dumpdev) dumpdev = swdevt[0].sw_dev; } if (swdevt[0].sw_dev != NODEV) printf(" swap on %s%d%c", findblkname(major(swdevt[0].sw_dev)), DISKUNIT(swdevt[0].sw_dev), 'a' + DISKPART(swdevt[0].sw_dev)); if (dumpdev != NODEV) printf(" dump on %s%d%c", findblkname(major(dumpdev)), DISKUNIT(dumpdev), 'a' + DISKPART(dumpdev)); printf("\n"); } extern struct nam2blk nam2blk[]; int findblkmajor(struct device *dv) { char *name = dv->dv_xname; int i; for (i = 0; nam2blk[i].name; i++) if (!strncmp(name, nam2blk[i].name, strlen(nam2blk[i].name))) return (nam2blk[i].maj); return (-1); } char * findblkname(int maj) { int i; for (i = 0; nam2blk[i].name; i++) if (nam2blk[i].maj == maj) return (nam2blk[i].name); return (NULL); }