/* $OpenBSD: subr_hibernate.c,v 1.50 2013/01/17 02:51:08 pirofti Exp $ */ /* * Copyright (c) 2011 Ariane van der Steldt * Copyright (c) 2011 Mike Larkin * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Temporary vaddr ranges used during hibernate */ vaddr_t hibernate_temp_page; vaddr_t hibernate_copy_page; /* Hibernate info as read from disk during resume */ union hibernate_info disk_hiber_info; paddr_t global_pig_start; vaddr_t global_piglet_va; void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t); /* * Hib alloc enforced alignment. */ #define HIB_ALIGN 8 /* bytes alignment */ /* * sizeof builtin operation, but with alignment constraint. */ #define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN) struct hiballoc_entry { size_t hibe_use; size_t hibe_space; RB_ENTRY(hiballoc_entry) hibe_entry; }; /* * Compare hiballoc entries based on the address they manage. * * Since the address is fixed, relative to struct hiballoc_entry, * we just compare the hiballoc_entry pointers. */ static __inline int hibe_cmp(struct hiballoc_entry *l, struct hiballoc_entry *r) { return l < r ? -1 : (l > r); } RB_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) /* * Given a hiballoc entry, return the address it manages. */ static __inline void * hib_entry_to_addr(struct hiballoc_entry *entry) { caddr_t addr; addr = (caddr_t)entry; addr += HIB_SIZEOF(struct hiballoc_entry); return addr; } /* * Given an address, find the hiballoc that corresponds. */ static __inline struct hiballoc_entry* hib_addr_to_entry(void *addr_param) { caddr_t addr; addr = (caddr_t)addr_param; addr -= HIB_SIZEOF(struct hiballoc_entry); return (struct hiballoc_entry*)addr; } RB_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp) /* * Allocate memory from the arena. * * Returns NULL if no memory is available. */ void * hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz) { struct hiballoc_entry *entry, *new_entry; size_t find_sz; /* * Enforce alignment of HIB_ALIGN bytes. * * Note that, because the entry is put in front of the allocation, * 0-byte allocations are guaranteed a unique address. */ alloc_sz = roundup(alloc_sz, HIB_ALIGN); /* * Find an entry with hibe_space >= find_sz. * * If the root node is not large enough, we switch to tree traversal. * Because all entries are made at the bottom of the free space, * traversal from the end has a slightly better chance of yielding * a sufficiently large space. */ find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry); entry = RB_ROOT(&arena->hib_addrs); if (entry != NULL && entry->hibe_space < find_sz) { RB_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) { if (entry->hibe_space >= find_sz) break; } } /* * Insufficient or too fragmented memory. */ if (entry == NULL) return NULL; /* * Create new entry in allocated space. */ new_entry = (struct hiballoc_entry*)( (caddr_t)hib_entry_to_addr(entry) + entry->hibe_use); new_entry->hibe_space = entry->hibe_space - find_sz; new_entry->hibe_use = alloc_sz; /* * Insert entry. */ if (RB_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL) panic("hib_alloc: insert failure"); entry->hibe_space = 0; /* Return address managed by entry. */ return hib_entry_to_addr(new_entry); } /* * Free a pointer previously allocated from this arena. * * If addr is NULL, this will be silently accepted. */ void hib_free(struct hiballoc_arena *arena, void *addr) { struct hiballoc_entry *entry, *prev; if (addr == NULL) return; /* * Derive entry from addr and check it is really in this arena. */ entry = hib_addr_to_entry(addr); if (RB_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry) panic("hib_free: freed item %p not in hib arena", addr); /* * Give the space in entry to its predecessor. * * If entry has no predecessor, change its used space into free space * instead. */ prev = RB_PREV(hiballoc_addr, &arena->hib_addrs, entry); if (prev != NULL && (void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) + prev->hibe_use + prev->hibe_space) == entry) { /* Merge entry. */ RB_REMOVE(hiballoc_addr, &arena->hib_addrs, entry); prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) + entry->hibe_use + entry->hibe_space; } else { /* Flip used memory to free space. */ entry->hibe_space += entry->hibe_use; entry->hibe_use = 0; } } /* * Initialize hiballoc. * * The allocator will manage memmory at ptr, which is len bytes. */ int hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len) { struct hiballoc_entry *entry; caddr_t ptr; size_t len; RB_INIT(&arena->hib_addrs); /* * Hib allocator enforces HIB_ALIGN alignment. * Fixup ptr and len. */ ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN); len = p_len - ((size_t)ptr - (size_t)p_ptr); len &= ~((size_t)HIB_ALIGN - 1); /* * Insufficient memory to be able to allocate and also do bookkeeping. */ if (len <= HIB_SIZEOF(struct hiballoc_entry)) return ENOMEM; /* * Create entry describing space. */ entry = (struct hiballoc_entry*)ptr; entry->hibe_use = 0; entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry); RB_INSERT(hiballoc_addr, &arena->hib_addrs, entry); return 0; } /* * Zero all free memory. */ void uvm_pmr_zero_everything(void) { struct uvm_pmemrange *pmr; struct vm_page *pg; int i; uvm_lock_fpageq(); TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { /* Zero single pages. */ while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY])) != NULL) { uvm_pmr_remove(pmr, pg); uvm_pagezero(pg); atomic_setbits_int(&pg->pg_flags, PG_ZERO); uvmexp.zeropages++; uvm_pmr_insert(pmr, pg, 0); } /* Zero multi page ranges. */ while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) { pg--; /* Size tree always has second page. */ uvm_pmr_remove(pmr, pg); for (i = 0; i < pg->fpgsz; i++) { uvm_pagezero(&pg[i]); atomic_setbits_int(&pg[i].pg_flags, PG_ZERO); uvmexp.zeropages++; } uvm_pmr_insert(pmr, pg, 0); } } uvm_unlock_fpageq(); } /* * Mark all memory as dirty. * * Used to inform the system that the clean memory isn't clean for some * reason, for example because we just came back from hibernate. */ void uvm_pmr_dirty_everything(void) { struct uvm_pmemrange *pmr; struct vm_page *pg; int i; uvm_lock_fpageq(); TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { /* Dirty single pages. */ while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO])) != NULL) { uvm_pmr_remove(pmr, pg); atomic_clearbits_int(&pg->pg_flags, PG_ZERO); uvm_pmr_insert(pmr, pg, 0); } /* Dirty multi page ranges. */ while ((pg = RB_ROOT(&pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) { pg--; /* Size tree always has second page. */ uvm_pmr_remove(pmr, pg); for (i = 0; i < pg->fpgsz; i++) atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO); uvm_pmr_insert(pmr, pg, 0); } } uvmexp.zeropages = 0; uvm_unlock_fpageq(); } /* * Allocate the highest address that can hold sz. * * sz in bytes. */ int uvm_pmr_alloc_pig(paddr_t *addr, psize_t sz) { struct uvm_pmemrange *pmr; struct vm_page *pig_pg, *pg; /* * Convert sz to pages, since that is what pmemrange uses internally. */ sz = atop(round_page(sz)); uvm_lock_fpageq(); TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) { RB_FOREACH_REVERSE(pig_pg, uvm_pmr_addr, &pmr->addr) { if (pig_pg->fpgsz >= sz) { goto found; } } } /* * Allocation failure. */ uvm_unlock_fpageq(); return ENOMEM; found: /* Remove page from freelist. */ uvm_pmr_remove_size(pmr, pig_pg); pig_pg->fpgsz -= sz; pg = pig_pg + pig_pg->fpgsz; if (pig_pg->fpgsz == 0) uvm_pmr_remove_addr(pmr, pig_pg); else uvm_pmr_insert_size(pmr, pig_pg); uvmexp.free -= sz; *addr = VM_PAGE_TO_PHYS(pg); /* * Update pg flags. * * Note that we trash the sz argument now. */ while (sz > 0) { KASSERT(pg->pg_flags & PQ_FREE); atomic_clearbits_int(&pg->pg_flags, PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); if (pg->pg_flags & PG_ZERO) uvmexp.zeropages -= sz; atomic_clearbits_int(&pg->pg_flags, PG_ZERO|PQ_FREE); pg->uobject = NULL; pg->uanon = NULL; pg->pg_version++; /* * Next. */ pg++; sz--; } /* Return. */ uvm_unlock_fpageq(); return 0; } /* * Allocate a piglet area. * * This is as low as possible. * Piglets are aligned. * * sz and align in bytes. * * The call will sleep for the pagedaemon to attempt to free memory. * The pagedaemon may decide its not possible to free enough memory, causing * the allocation to fail. */ int uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align) { paddr_t pg_addr, piglet_addr; struct uvm_pmemrange *pmr; struct vm_page *pig_pg, *pg; struct pglist pageq; int pdaemon_woken; vaddr_t piglet_va; KASSERT((align & (align - 1)) == 0); pdaemon_woken = 0; /* Didn't wake the pagedaemon. */ /* * Fixup arguments: align must be at least PAGE_SIZE, * sz will be converted to pagecount, since that is what * pmemrange uses internally. */ if (align < PAGE_SIZE) align = PAGE_SIZE; sz = round_page(sz); uvm_lock_fpageq(); TAILQ_FOREACH_REVERSE(pmr, &uvm.pmr_control.use, uvm_pmemrange_use, pmr_use) { retry: /* * Search for a range with enough space. * Use the address tree, to ensure the range is as low as * possible. */ RB_FOREACH(pig_pg, uvm_pmr_addr, &pmr->addr) { pg_addr = VM_PAGE_TO_PHYS(pig_pg); piglet_addr = (pg_addr + (align - 1)) & ~(align - 1); if (atop(pg_addr) + pig_pg->fpgsz >= atop(piglet_addr) + atop(sz)) goto found; } } /* * Try to coerse the pagedaemon into freeing memory * for the piglet. * * pdaemon_woken is set to prevent the code from * falling into an endless loop. */ if (!pdaemon_woken) { pdaemon_woken = 1; if (uvm_wait_pla(ptoa(pmr->low), ptoa(pmr->high) - 1, sz, UVM_PLA_FAILOK) == 0) goto retry; } /* Return failure. */ uvm_unlock_fpageq(); return ENOMEM; found: /* * Extract piglet from pigpen. */ TAILQ_INIT(&pageq); uvm_pmr_extract_range(pmr, pig_pg, atop(piglet_addr), atop(piglet_addr) + atop(sz), &pageq); *pa = piglet_addr; uvmexp.free -= atop(sz); /* * Update pg flags. * * Note that we trash the sz argument now. */ TAILQ_FOREACH(pg, &pageq, pageq) { KASSERT(pg->pg_flags & PQ_FREE); atomic_clearbits_int(&pg->pg_flags, PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3); if (pg->pg_flags & PG_ZERO) uvmexp.zeropages--; atomic_clearbits_int(&pg->pg_flags, PG_ZERO|PQ_FREE); pg->uobject = NULL; pg->uanon = NULL; pg->pg_version++; } uvm_unlock_fpageq(); /* * Now allocate a va. * Use direct mappings for the pages. */ piglet_va = *va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_waitok); if (!piglet_va) { uvm_pglistfree(&pageq); return ENOMEM; } /* * Map piglet to va. */ TAILQ_FOREACH(pg, &pageq, pageq) { pmap_kenter_pa(piglet_va, VM_PAGE_TO_PHYS(pg), UVM_PROT_RW); piglet_va += PAGE_SIZE; } pmap_update(pmap_kernel()); return 0; } /* * Free a piglet area. */ void uvm_pmr_free_piglet(vaddr_t va, vsize_t sz) { paddr_t pa; struct vm_page *pg; /* * Fix parameters. */ sz = round_page(sz); /* * Find the first page in piglet. * Since piglets are contiguous, the first pg is all we need. */ if (!pmap_extract(pmap_kernel(), va, &pa)) panic("uvm_pmr_free_piglet: piglet 0x%lx has no pages", va); pg = PHYS_TO_VM_PAGE(pa); if (pg == NULL) panic("uvm_pmr_free_piglet: unmanaged page 0x%lx", pa); /* * Unmap. */ pmap_kremove(va, sz); pmap_update(pmap_kernel()); /* * Free the physical and virtual memory. */ uvm_pmr_freepages(pg, atop(sz)); km_free((void *)va, sz, &kv_any, &kp_none); } /* * Physmem RLE compression support. * * Given a physical page address, it will return the number of pages * starting at the address, that are free. Clamps to the number of pages in * HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free. */ int uvm_page_rle(paddr_t addr) { struct vm_page *pg, *pg_end; struct vm_physseg *vmp; int pseg_idx, off_idx; pseg_idx = vm_physseg_find(atop(addr), &off_idx); if (pseg_idx == -1) return 0; vmp = &vm_physmem[pseg_idx]; pg = &vmp->pgs[off_idx]; if (!(pg->pg_flags & PQ_FREE)) return 0; /* * Search for the first non-free page after pg. * Note that the page may not be the first page in a free pmemrange, * therefore pg->fpgsz cannot be used. */ for (pg_end = pg; pg_end <= vmp->lastpg && (pg_end->pg_flags & PQ_FREE) == PQ_FREE; pg_end++) ; return min((pg_end - pg), HIBERNATE_CHUNK_SIZE/PAGE_SIZE); } /* * Fills out the hibernate_info union pointed to by hiber_info * with information about this machine (swap signature block * offsets, number of memory ranges, kernel in use, etc) */ int get_hibernate_info(union hibernate_info *hiber_info, int suspend) { int chunktable_size; struct disklabel dl; char err_string[128], *dl_ret; /* Determine I/O function to use */ hiber_info->io_func = get_hibernate_io_function(); if (hiber_info->io_func == NULL) return (1); /* Calculate hibernate device */ hiber_info->device = swdevt[0].sw_dev; /* Read disklabel (used to calculate signature and image offsets) */ dl_ret = disk_readlabel(&dl, hiber_info->device, err_string, 128); if (dl_ret) { printf("Hibernate error reading disklabel: %s\n", dl_ret); return (1); } /* Make sure we have a swap partition. */ if (dl.d_partitions[1].p_fstype != FS_SWAP || dl.d_partitions[1].p_size == 0) return (1); hiber_info->secsize = dl.d_secsize; /* Make sure the signature can fit in one block */ KASSERT(sizeof(union hibernate_info)/hiber_info->secsize == 1); /* Calculate swap offset from start of disk */ hiber_info->swap_offset = dl.d_partitions[1].p_offset; /* Calculate signature block location */ hiber_info->sig_offset = dl.d_partitions[1].p_offset + dl.d_partitions[1].p_size - sizeof(union hibernate_info)/hiber_info->secsize; chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; /* Stash kernel version information */ bzero(&hiber_info->kernel_version, 128); bcopy(version, &hiber_info->kernel_version, min(strlen(version), sizeof(hiber_info->kernel_version)-1)); if (suspend) { /* Allocate piglet region */ if (uvm_pmr_alloc_piglet(&hiber_info->piglet_va, &hiber_info->piglet_pa, HIBERNATE_CHUNK_SIZE*3, HIBERNATE_CHUNK_SIZE)) { printf("Hibernate failed to allocate the piglet\n"); return (1); } hiber_info->io_page = (void *)hiber_info->piglet_va; /* * Initialize of the hibernate IO function (for drivers which * need that) */ if (hiber_info->io_func(hiber_info->device, 0, (vaddr_t)NULL, 0, HIB_INIT, hiber_info->io_page)) goto fail; } else { /* * Resuming kernels use a regular I/O page since we won't * have access to the suspended kernel's piglet VA at this * point. No need to free this I/O page as it will vanish * as part of the resume. */ hiber_info->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT); if (!hiber_info->io_page) return (1); } if (get_hibernate_info_md(hiber_info)) goto fail; /* Calculate memory image location */ hiber_info->image_offset = dl.d_partitions[1].p_offset + dl.d_partitions[1].p_size - (hiber_info->image_size / hiber_info->secsize) - sizeof(union hibernate_info)/hiber_info->secsize - chunktable_size; return (0); fail: if (suspend) uvm_pmr_free_piglet(hiber_info->piglet_va, HIBERNATE_CHUNK_SIZE * 3); return (1); } /* * Allocate nitems*size bytes from the hiballoc area presently in use */ void * hibernate_zlib_alloc(void *unused, int nitems, int size) { struct hibernate_zlib_state *hibernate_state; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size); } /* * Free the memory pointed to by addr in the hiballoc area presently in * use */ void hibernate_zlib_free(void *unused, void *addr) { struct hibernate_zlib_state *hibernate_state; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; hib_free(&hibernate_state->hiballoc_arena, addr); } /* * Gets the next RLE value from the image stream */ int hibernate_get_next_rle(void) { int rle, i; struct hibernate_zlib_state *hibernate_state; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; /* Read RLE code */ hibernate_state->hib_stream.next_out = (char *)&rle; hibernate_state->hib_stream.avail_out = sizeof(rle); i = inflate(&hibernate_state->hib_stream, Z_FULL_FLUSH); if (i != Z_OK && i != Z_STREAM_END) { /* * XXX - this will likely reboot/hang most machines, * but there's not much else we can do here. */ panic("inflate rle error"); } /* Sanity check what RLE value we got */ if (rle > HIBERNATE_CHUNK_SIZE/PAGE_SIZE || rle < 0) panic("invalid RLE code"); if (i == Z_STREAM_END) rle = -1; return rle; } /* * Inflate next page of data from the image stream */ int hibernate_inflate_page(void) { struct hibernate_zlib_state *hibernate_state; int i; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; /* Set up the stream for inflate */ hibernate_state->hib_stream.next_out = (char *)HIBERNATE_INFLATE_PAGE; hibernate_state->hib_stream.avail_out = PAGE_SIZE; /* Process next block of data */ i = inflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH); if (i != Z_OK && i != Z_STREAM_END) { /* * XXX - this will likely reboot/hang most machines, * but there's not much else we can do here. */ panic("inflate error"); } /* We should always have extracted a full page ... */ if (hibernate_state->hib_stream.avail_out != 0) panic("incomplete page"); return (i == Z_STREAM_END); } /* * Inflate size bytes from src into dest, skipping any pages in * [src..dest] that are special (see hibernate_inflate_skip) * * This function executes while using the resume-time stack * and pmap, and therefore cannot use ddb/printf/etc. Doing so * will likely hang or reset the machine. */ void hibernate_inflate_region(union hibernate_info *hiber_info, paddr_t dest, paddr_t src, size_t size) { int end_stream = 0 ; struct hibernate_zlib_state *hibernate_state; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; hibernate_state->hib_stream.next_in = (char *)src; hibernate_state->hib_stream.avail_in = size; do { /* Flush cache and TLB */ hibernate_flush(); /* * Is this a special page? If yes, redirect the * inflate output to a scratch page (eg, discard it) */ if (hibernate_inflate_skip(hiber_info, dest)) { hibernate_enter_resume_mapping( HIBERNATE_INFLATE_PAGE, HIBERNATE_INFLATE_PAGE, 0); } else { hibernate_enter_resume_mapping( HIBERNATE_INFLATE_PAGE, dest, 0); } hibernate_flush(); end_stream = hibernate_inflate_page(); dest += PAGE_SIZE; } while (!end_stream); } /* * deflate from src into the I/O page, up to 'remaining' bytes * * Returns number of input bytes consumed, and may reset * the 'remaining' parameter if not all the output space was consumed * (this information is needed to know how much to write to disk */ size_t hibernate_deflate(union hibernate_info *hiber_info, paddr_t src, size_t *remaining) { vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; struct hibernate_zlib_state *hibernate_state; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; /* Set up the stream for deflate */ hibernate_state->hib_stream.next_in = (caddr_t)src; hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK); hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + (PAGE_SIZE - *remaining); hibernate_state->hib_stream.avail_out = *remaining; /* Process next block of data */ if (deflate(&hibernate_state->hib_stream, Z_PARTIAL_FLUSH) != Z_OK) panic("hibernate zlib deflate error"); /* Update pointers and return number of bytes consumed */ *remaining = hibernate_state->hib_stream.avail_out; return (PAGE_SIZE - (src & PAGE_MASK)) - hibernate_state->hib_stream.avail_in; } /* * Write the hibernation information specified in hiber_info * to the location in swap previously calculated (last block of * swap), called the "signature block". * * Write the memory chunk table to the area in swap immediately * preceding the signature block. */ int hibernate_write_signature(union hibernate_info *hiber_info) { /* Write hibernate info to disk */ return (hiber_info->io_func(hiber_info->device, hiber_info->sig_offset, (vaddr_t)hiber_info, hiber_info->secsize, HIB_W, hiber_info->io_page)); } /* * Write the memory chunk table to the area in swap immediately * preceding the signature block. The chunk table is stored * in the piglet when this function is called. */ int hibernate_write_chunktable(union hibernate_info *hiber_info) { struct hibernate_disk_chunk *chunks; vaddr_t hibernate_chunk_table_start; size_t hibernate_chunk_table_size; daddr_t chunkbase; int i; hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE; chunkbase = hiber_info->sig_offset - (hibernate_chunk_table_size / hiber_info->secsize); hibernate_chunk_table_start = hiber_info->piglet_va + HIBERNATE_CHUNK_SIZE; chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + HIBERNATE_CHUNK_SIZE); /* Write chunk table */ for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) { if (hiber_info->io_func(hiber_info->device, chunkbase + (i/hiber_info->secsize), (vaddr_t)(hibernate_chunk_table_start + i), MAXPHYS, HIB_W, hiber_info->io_page)) return (1); } return (0); } /* * Write an empty hiber_info to the swap signature block, which is * guaranteed to not match any valid hiber_info. */ int hibernate_clear_signature(void) { union hibernate_info blank_hiber_info; union hibernate_info hiber_info; /* Zero out a blank hiber_info */ bzero(&blank_hiber_info, sizeof(hiber_info)); if (get_hibernate_info(&hiber_info, 0)) return (1); /* Write (zeroed) hibernate info to disk */ if (hibernate_block_io(&hiber_info, hiber_info.sig_offset - hiber_info.swap_offset, hiber_info.secsize, (vaddr_t)&blank_hiber_info, 1)) panic("error hibernate write 6"); return (0); } /* * Check chunk range overlap when calculating whether or not to copy a * compressed chunk to the piglet area before decompressing. * * returns zero if the ranges do not overlap, non-zero otherwise. */ int hibernate_check_overlap(paddr_t r1s, paddr_t r1e, paddr_t r2s, paddr_t r2e) { /* case A : end of r1 overlaps start of r2 */ if (r1s < r2s && r1e > r2s) return (1); /* case B : r1 entirely inside r2 */ if (r1s >= r2s && r1e <= r2e) return (1); /* case C : r2 entirely inside r1 */ if (r2s >= r1s && r2e <= r1e) return (1); /* case D : end of r2 overlaps start of r1 */ if (r2s < r1s && r2e > r1s) return (1); return (0); } /* * Compare two hibernate_infos to determine if they are the same (eg, * we should be performing a hibernate resume on this machine. * Not all fields are checked - just enough to verify that the machine * has the same memory configuration and kernel as the one that * wrote the signature previously. */ int hibernate_compare_signature(union hibernate_info *mine, union hibernate_info *disk) { u_int i; if (mine->nranges != disk->nranges) return (1); if (strcmp(mine->kernel_version, disk->kernel_version) != 0) return (1); for (i = 0; i < mine->nranges; i++) { if ((mine->ranges[i].base != disk->ranges[i].base) || (mine->ranges[i].end != disk->ranges[i].end) ) return (1); } return (0); } /* * Transfers xfer_size bytes between the hibernate device specified in * hib_info at offset blkctr and the vaddr specified at dest. * * Separate offsets and pages are used to handle misaligned reads (reads * that span a page boundary). * * blkctr specifies a relative offset (relative to the start of swap), * not an absolute disk offset * */ int hibernate_block_io(union hibernate_info *hib_info, daddr_t blkctr, size_t xfer_size, vaddr_t dest, int iswrite) { struct buf *bp; struct bdevsw *bdsw; int error; bp = geteblk(xfer_size); bdsw = &bdevsw[major(hib_info->device)]; error = (*bdsw->d_open)(hib_info->device, FREAD, S_IFCHR, curproc); if (error) { printf("hibernate_block_io open failed\n"); return (1); } if (iswrite) bcopy((caddr_t)dest, bp->b_data, xfer_size); bp->b_bcount = xfer_size; bp->b_blkno = blkctr; CLR(bp->b_flags, B_READ | B_WRITE | B_DONE); SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW); bp->b_dev = hib_info->device; bp->b_cylinder = 0; (*bdsw->d_strategy)(bp); error = biowait(bp); if (error) { printf("hibernate_block_io biowait failed %d\n", error); error = (*bdsw->d_close)(hib_info->device, 0, S_IFCHR, curproc); if (error) printf("hibernate_block_io error close failed\n"); return (1); } error = (*bdsw->d_close)(hib_info->device, FREAD, S_IFCHR, curproc); if (error) { printf("hibernate_block_io close failed\n"); return (1); } if (!iswrite) bcopy(bp->b_data, (caddr_t)dest, xfer_size); bp->b_flags |= B_INVAL; brelse(bp); return (0); } /* * Reads the signature block from swap, checks against the current machine's * information. If the information matches, perform a resume by reading the * saved image into the pig area, and unpacking. */ void hibernate_resume(void) { union hibernate_info hiber_info; int s; /* Get current running machine's hibernate info */ bzero(&hiber_info, sizeof(hiber_info)); if (get_hibernate_info(&hiber_info, 0)) return; /* Read hibernate info from disk */ s = splbio(); if (hibernate_block_io(&hiber_info, hiber_info.sig_offset - hiber_info.swap_offset, hiber_info.secsize, (vaddr_t)&disk_hiber_info, 0)) panic("error in hibernate read"); /* * If on-disk and in-memory hibernate signatures match, * this means we should do a resume from hibernate. */ if (hibernate_compare_signature(&hiber_info, &disk_hiber_info)) { splx(s); return; } printf("Unhibernating...\n"); /* Read the image from disk into the image (pig) area */ if (hibernate_read_image(&disk_hiber_info)) goto fail; if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_QUIESCE) != 0) goto fail; (void) splhigh(); disable_intr(); cold = 1; if (config_suspend(TAILQ_FIRST(&alldevs), DVACT_SUSPEND) != 0) { cold = 0; enable_intr(); goto fail; } /* Point of no return ... */ pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL); pmap_activate(curproc); /* Switch stacks */ hibernate_switch_stack_machdep(); /* * Image is now in high memory (pig area), copy to correct location * in memory. We'll eventually end up copying on top of ourself, but * we are assured the kernel code here is the same between the * hibernated and resuming kernel, and we are running on our own * stack, so the overwrite is ok. */ hibernate_unpack_image(&disk_hiber_info); /* * Resume the loaded kernel by jumping to the MD resume vector. * We won't be returning from this call. */ hibernate_resume_machdep(); fail: splx(s); printf("Unable to resume hibernated image\n"); } /* * Unpack image from pig area to original location by looping through the * list of output chunks in the order they should be restored (fchunks). * This ordering is used to avoid having inflate overwrite a chunk in the * middle of processing that chunk. This will, of course, happen during the * final output chunk, where we copy the chunk to the piglet area first, * before inflating. */ void hibernate_unpack_image(union hibernate_info *hiber_info) { struct hibernate_disk_chunk *chunks; union hibernate_info local_hiber_info; paddr_t image_cur = global_pig_start; short i, *fchunks; char *pva = (char *)hiber_info->piglet_va; struct hibernate_zlib_state *hibernate_state; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; /* Mask off based on arch-specific piglet page size */ pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); fchunks = (short *)(pva + (4 * PAGE_SIZE)); chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE); /* Can't use hiber_info that's passed in after this point */ bcopy(hiber_info, &local_hiber_info, sizeof(union hibernate_info)); hibernate_activate_resume_pt_machdep(); for (i = 0; i < local_hiber_info.chunk_ctr; i++) { /* Reset zlib for inflate */ if (hibernate_zlib_reset(&local_hiber_info, 0) != Z_OK) panic("hibernate failed to reset zlib for inflate"); hibernate_process_chunk(&local_hiber_info, &chunks[fchunks[i]], image_cur); image_cur += chunks[fchunks[i]].compressed_size; } } /* * Bounce a compressed image chunk to the piglet, entering mappings for the * copied pages as needed */ void hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size) { size_t ct, ofs; paddr_t src = img_cur; vaddr_t dest = piglet; /* Copy first partial page */ ct = (PAGE_SIZE) - (src & PAGE_MASK); ofs = (src & PAGE_MASK); if (ct < PAGE_SIZE) { hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, (src - ofs), 0); hibernate_flush(); bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct); src += ct; dest += ct; } /* Copy remaining pages */ while (src < size + img_cur) { hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0); hibernate_flush(); ct = PAGE_SIZE; bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct); hibernate_flush(); src += ct; dest += ct; } } /* * Process a chunk by bouncing it to the piglet, followed by unpacking */ void hibernate_process_chunk(union hibernate_info *hiber_info, struct hibernate_disk_chunk *chunk, paddr_t img_cur) { char *pva = (char *)hiber_info->piglet_va; hibernate_copy_chunk_to_piglet(img_cur, (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); hibernate_inflate_region(hiber_info, chunk->base, (vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size); } /* * Write a compressed version of this machine's memory to disk, at the * precalculated swap offset: * * end of swap - signature block size - chunk table size - memory size * * The function begins by looping through each phys mem range, cutting each * one into MD sized chunks. These chunks are then compressed individually * and written out to disk, in phys mem order. Some chunks might compress * more than others, and for this reason, each chunk's size is recorded * in the chunk table, which is written to disk after the image has * properly been compressed and written (in hibernate_write_chunktable). * * When this function is called, the machine is nearly suspended - most * devices are quiesced/suspended, interrupts are off, and cold has * been set. This means that there can be no side effects once the * write has started, and the write function itself can also have no * side effects. This also means no printfs are permitted (since it * has side effects.) */ int hibernate_write_chunks(union hibernate_info *hiber_info) { paddr_t range_base, range_end, inaddr, temp_inaddr; size_t nblocks, out_remaining, used; struct hibernate_disk_chunk *chunks; vaddr_t hibernate_io_page = hiber_info->piglet_va + PAGE_SIZE; daddr_t blkctr = hiber_info->image_offset, offset = 0; int i; struct hibernate_zlib_state *hibernate_state; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; hiber_info->chunk_ctr = 0; /* * Allocate VA for the temp and copy page. * These will become part of the suspended kernel and will * be freed in hibernate_free, upon resume. */ hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); if (!hibernate_temp_page) return (1); hibernate_copy_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); if (!hibernate_copy_page) return (1); pmap_kenter_pa(hibernate_copy_page, (hiber_info->piglet_pa + 3*PAGE_SIZE), VM_PROT_ALL); /* XXX - not needed on all archs */ pmap_activate(curproc); chunks = (struct hibernate_disk_chunk *)(hiber_info->piglet_va + HIBERNATE_CHUNK_SIZE); /* Calculate the chunk regions */ for (i = 0; i < hiber_info->nranges; i++) { range_base = hiber_info->ranges[i].base; range_end = hiber_info->ranges[i].end; inaddr = range_base; while (inaddr < range_end) { chunks[hiber_info->chunk_ctr].base = inaddr; if (inaddr + HIBERNATE_CHUNK_SIZE < range_end) chunks[hiber_info->chunk_ctr].end = inaddr + HIBERNATE_CHUNK_SIZE; else chunks[hiber_info->chunk_ctr].end = range_end; inaddr += HIBERNATE_CHUNK_SIZE; hiber_info->chunk_ctr ++; } } /* Compress and write the chunks in the chunktable */ for (i = 0; i < hiber_info->chunk_ctr; i++) { range_base = chunks[i].base; range_end = chunks[i].end; chunks[i].offset = blkctr; /* Reset zlib for deflate */ if (hibernate_zlib_reset(hiber_info, 1) != Z_OK) return (1); inaddr = range_base; /* * For each range, loop through its phys mem region * and write out the chunks (the last chunk might be * smaller than the chunk size). */ while (inaddr < range_end) { out_remaining = PAGE_SIZE; while (out_remaining > 0 && inaddr < range_end) { /* * Adjust for regions that are not evenly * divisible by PAGE_SIZE or overflowed * pages from the previous iteration. */ temp_inaddr = (inaddr & PAGE_MASK) + hibernate_copy_page; /* Deflate from temp_inaddr to IO page */ if (inaddr != range_end) { pmap_kenter_pa(hibernate_temp_page, inaddr & PMAP_PA_MASK, VM_PROT_ALL); /* XXX - not needed on all archs */ pmap_activate(curproc); bcopy((caddr_t)hibernate_temp_page, (caddr_t)hibernate_copy_page, PAGE_SIZE); inaddr += hibernate_deflate(hiber_info, temp_inaddr, &out_remaining); } if (out_remaining == 0) { /* Filled up the page */ nblocks = PAGE_SIZE / hiber_info->secsize; if (hiber_info->io_func( hiber_info->device, blkctr, (vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W, hiber_info->io_page)) return (1); blkctr += nblocks; } } } if (inaddr != range_end) return (1); /* * End of range. Round up to next secsize bytes * after finishing compress */ if (out_remaining == 0) out_remaining = PAGE_SIZE; /* Finish compress */ hibernate_state->hib_stream.next_in = (caddr_t)inaddr; hibernate_state->hib_stream.avail_in = 0; hibernate_state->hib_stream.next_out = (caddr_t)hibernate_io_page + (PAGE_SIZE - out_remaining); hibernate_state->hib_stream.avail_out = out_remaining; if (deflate(&hibernate_state->hib_stream, Z_FINISH) != Z_STREAM_END) return (1); out_remaining = hibernate_state->hib_stream.avail_out; used = PAGE_SIZE - out_remaining; nblocks = used / hiber_info->secsize; /* Round up to next block if needed */ if (used % hiber_info->secsize != 0) nblocks ++; /* Write final block(s) for this chunk */ if (hiber_info->io_func(hiber_info->device, blkctr, (vaddr_t)hibernate_io_page, nblocks*hiber_info->secsize, HIB_W, hiber_info->io_page)) return (1); blkctr += nblocks; offset = blkctr; chunks[i].compressed_size = (offset - chunks[i].offset) * hiber_info->secsize; } return (0); } /* * Reset the zlib stream state and allocate a new hiballoc area for either * inflate or deflate. This function is called once for each hibernate chunk. * Calling hiballoc_init multiple times is acceptable since the memory it is * provided is unmanaged memory (stolen). We use the memory provided to us * by the piglet allocated via the supplied hiber_info. */ int hibernate_zlib_reset(union hibernate_info *hiber_info, int deflate) { vaddr_t hibernate_zlib_start; size_t hibernate_zlib_size; char *pva = (char *)hiber_info->piglet_va; struct hibernate_zlib_state *hibernate_state; hibernate_state = (struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE; if(!deflate) pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK)); hibernate_zlib_start = (vaddr_t)(pva + (28 * PAGE_SIZE)); hibernate_zlib_size = 80 * PAGE_SIZE; bzero((caddr_t)hibernate_zlib_start, hibernate_zlib_size); bzero((caddr_t)hibernate_state, PAGE_SIZE); /* Set up stream structure */ hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc; hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free; /* Initialize the hiballoc arena for zlib allocs/frees */ hiballoc_init(&hibernate_state->hiballoc_arena, (caddr_t)hibernate_zlib_start, hibernate_zlib_size); if (deflate) { return deflateInit(&hibernate_state->hib_stream, Z_BEST_SPEED); } else return inflateInit(&hibernate_state->hib_stream); } /* * Reads the hibernated memory image from disk, whose location and * size are recorded in hiber_info. Begin by reading the persisted * chunk table, which records the original chunk placement location * and compressed size for each. Next, allocate a pig region of * sufficient size to hold the compressed image. Next, read the * chunks into the pig area (calling hibernate_read_chunks to do this), * and finally, if all of the above succeeds, clear the hibernate signature. * The function will then return to hibernate_resume, which will proceed * to unpack the pig image to the correct place in memory. */ int hibernate_read_image(union hibernate_info *hiber_info) { size_t compressed_size, disk_size, chunktable_size, pig_sz; paddr_t image_start, image_end, pig_start, pig_end; struct hibernate_disk_chunk *chunks; daddr_t blkctr; vaddr_t chunktable = (vaddr_t)NULL; paddr_t piglet_chunktable = hiber_info->piglet_pa + HIBERNATE_CHUNK_SIZE; int i; pmap_activate(curproc); /* Calculate total chunk table size in disk blocks */ chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / hiber_info->secsize; blkctr = hiber_info->sig_offset - chunktable_size - hiber_info->swap_offset; chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any, &kp_none, &kd_nowait); if (!chunktable) return (1); /* Read the chunktable from disk into the piglet chunktable */ for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE, blkctr += PAGE_SIZE/hiber_info->secsize) { pmap_kenter_pa(chunktable + i, piglet_chunktable + i, VM_PROT_ALL); pmap_update(pmap_kernel()); hibernate_block_io(hiber_info, blkctr, PAGE_SIZE, chunktable + i, 0); } blkctr = hiber_info->image_offset; compressed_size = 0; chunks = (struct hibernate_disk_chunk *)chunktable; for (i = 0; i < hiber_info->chunk_ctr; i++) compressed_size += chunks[i].compressed_size; disk_size = compressed_size; /* Allocate the pig area */ pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE; if (uvm_pmr_alloc_pig(&pig_start, pig_sz) == ENOMEM) return (1); pig_end = pig_start + pig_sz; /* Calculate image extents. Pig image must end on a chunk boundary. */ image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1); image_start = pig_start; image_start = image_end - disk_size; hibernate_read_chunks(hiber_info, image_start, image_end, disk_size, chunks); pmap_kremove(chunktable, PAGE_SIZE); pmap_update(pmap_kernel()); /* Prepare the resume time pmap/page table */ hibernate_populate_resume_pt(hiber_info, image_start, image_end); /* Read complete, clear the signature and return */ return hibernate_clear_signature(); } /* * Read the hibernated memory chunks from disk (chunk information at this * point is stored in the piglet) into the pig area specified by * [pig_start .. pig_end]. Order the chunks so that the final chunk is the * only chunk with overlap possibilities. */ int hibernate_read_chunks(union hibernate_info *hib_info, paddr_t pig_start, paddr_t pig_end, size_t image_compr_size, struct hibernate_disk_chunk *chunks) { paddr_t img_index, img_cur, r1s, r1e, r2s, r2e; paddr_t copy_start, copy_end, piglet_cur; paddr_t piglet_base = hib_info->piglet_pa; paddr_t piglet_end = piglet_base + HIBERNATE_CHUNK_SIZE; daddr_t blkctr; size_t processed, compressed_size, read_size; int overlap, found, nchunks, nochunks = 0, nfchunks = 0, npchunks = 0; short *ochunks, *pchunks, *fchunks, i, j; vaddr_t tempva = (vaddr_t)NULL, hibernate_fchunk_area = (vaddr_t)NULL; global_pig_start = pig_start; /* XXX - dont need this on all archs */ pmap_activate(curproc); /* * These mappings go into the resuming kernel's page table, and are * used only during image read. They dissappear from existence * when the suspended kernel is unpacked on top of us. */ tempva = (vaddr_t)km_alloc(2*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); if (!tempva) return (1); hibernate_fchunk_area = (vaddr_t)km_alloc(24*PAGE_SIZE, &kv_any, &kp_none, &kd_nowait); if (!hibernate_fchunk_area) return (1); /* Final output chunk ordering VA */ fchunks = (short *)hibernate_fchunk_area; /* Piglet chunk ordering VA */ pchunks = (short *)(hibernate_fchunk_area + (8*PAGE_SIZE)); /* Final chunk ordering VA */ ochunks = (short *)(hibernate_fchunk_area + (16*PAGE_SIZE)); /* Map the chunk ordering region */ for(i=0; i<24 ; i++) { pmap_kenter_pa(hibernate_fchunk_area + (i*PAGE_SIZE), piglet_base + ((4+i)*PAGE_SIZE), VM_PROT_ALL); pmap_update(pmap_kernel()); } nchunks = hib_info->chunk_ctr; /* Initially start all chunks as unplaced */ for (i = 0; i < nchunks; i++) chunks[i].flags = 0; /* * Search the list for chunks that are outside the pig area. These * can be placed first in the final output list. */ for (i = 0; i < nchunks; i++) { if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) { ochunks[nochunks] = i; fchunks[nfchunks] = i; nochunks++; nfchunks++; chunks[i].flags |= HIBERNATE_CHUNK_USED; } } /* * Walk the ordering, place the chunks in ascending memory order. * Conflicts might arise, these are handled next. */ do { img_index = -1; found = 0; j = -1; for (i = 0; i < nchunks; i++) if (chunks[i].base < img_index && chunks[i].flags == 0 ) { j = i; img_index = chunks[i].base; } if (j != -1) { found = 1; ochunks[nochunks] = j; nochunks++; chunks[j].flags |= HIBERNATE_CHUNK_PLACED; } } while (found); img_index = pig_start; /* * Identify chunk output conflicts (chunks whose pig load area * corresponds to their original memory placement location) */ for (i = 0; i < nochunks ; i++) { overlap = 0; r1s = img_index; r1e = img_index + chunks[ochunks[i]].compressed_size; r2s = chunks[ochunks[i]].base; r2e = chunks[ochunks[i]].end; overlap = hibernate_check_overlap(r1s, r1e, r2s, r2e); if (overlap) chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_CONFLICT; img_index += chunks[ochunks[i]].compressed_size; } /* * Prepare the final output chunk list. Calculate an output * inflate strategy for overlapping chunks if needed. */ img_index = pig_start; for (i = 0; i < nochunks ; i++) { /* * If a conflict is detected, consume enough compressed * output chunks to fill the piglet */ if (chunks[ochunks[i]].flags & HIBERNATE_CHUNK_CONFLICT) { copy_start = piglet_base; copy_end = piglet_end; piglet_cur = piglet_base; npchunks = 0; j = i; while (copy_start < copy_end && j < nochunks) { piglet_cur += chunks[ochunks[j]].compressed_size; pchunks[npchunks] = ochunks[j]; npchunks++; copy_start += chunks[ochunks[j]].compressed_size; img_index += chunks[ochunks[j]].compressed_size; i++; j++; } piglet_cur = piglet_base; for (j = 0; j < npchunks; j++) { piglet_cur += chunks[pchunks[j]].compressed_size; fchunks[nfchunks] = pchunks[j]; chunks[pchunks[j]].flags |= HIBERNATE_CHUNK_USED; nfchunks++; } } else { /* * No conflict, chunk can be added without copying */ if ((chunks[ochunks[i]].flags & HIBERNATE_CHUNK_USED) == 0) { fchunks[nfchunks] = ochunks[i]; chunks[ochunks[i]].flags |= HIBERNATE_CHUNK_USED; nfchunks++; } img_index += chunks[ochunks[i]].compressed_size; } } img_index = pig_start; for (i = 0; i < nfchunks; i++) { piglet_cur = piglet_base; img_index += chunks[fchunks[i]].compressed_size; } img_cur = pig_start; for (i = 0; i < nfchunks; i++) { blkctr = chunks[fchunks[i]].offset - hib_info->swap_offset; processed = 0; compressed_size = chunks[fchunks[i]].compressed_size; while (processed < compressed_size) { pmap_kenter_pa(tempva, img_cur, VM_PROT_ALL); pmap_kenter_pa(tempva + PAGE_SIZE, img_cur+PAGE_SIZE, VM_PROT_ALL); pmap_update(pmap_kernel()); if (compressed_size - processed >= PAGE_SIZE) read_size = PAGE_SIZE; else read_size = compressed_size - processed; hibernate_block_io(hib_info, blkctr, read_size, tempva + (img_cur & PAGE_MASK), 0); blkctr += (read_size / hib_info->secsize); hibernate_flush(); pmap_kremove(tempva, PAGE_SIZE); pmap_kremove(tempva + PAGE_SIZE, PAGE_SIZE); processed += read_size; img_cur += read_size; } } pmap_kremove(hibernate_fchunk_area, PAGE_SIZE); pmap_kremove((vaddr_t)pchunks, PAGE_SIZE); pmap_kremove((vaddr_t)fchunks, PAGE_SIZE); pmap_update(pmap_kernel()); return (0); } /* * Hibernating a machine comprises the following operations: * 1. Calculating this machine's hibernate_info information * 2. Allocating a piglet and saving the piglet's physaddr * 3. Calculating the memory chunks * 4. Writing the compressed chunks to disk * 5. Writing the chunk table * 6. Writing the signature block (hibernate_info) * * On most architectures, the function calling hibernate_suspend would * then power off the machine using some MD-specific implementation. */ int hibernate_suspend(void) { union hibernate_info hib_info; size_t swap_size; /* * Calculate memory ranges, swap offsets, etc. * This also allocates a piglet whose physaddr is stored in * hib_info->piglet_pa and vaddr stored in hib_info->piglet_va */ if (get_hibernate_info(&hib_info, 1)) return (1); swap_size = hib_info.image_size + hib_info.secsize + HIBERNATE_CHUNK_TABLE_SIZE; if (uvm_swap_check_range(hib_info.device, swap_size)) { printf("insufficient swap space for hibernate\n"); return (1); } pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE, VM_PROT_ALL); pmap_activate(curproc); /* Stash the piglet VA so we can free it in the resuming kernel */ global_piglet_va = hib_info.piglet_va; if (hibernate_write_chunks(&hib_info)) return (1); if (hibernate_write_chunktable(&hib_info)) return (1); if (hibernate_write_signature(&hib_info)) return (1); /* Allow the disk to settle */ delay(500000); hib_info.io_func(hib_info.device, 0, (vaddr_t)NULL, 0, HIB_DONE, hib_info.io_page); return (0); } /* * Free items allocated by hibernate_suspend() */ void hibernate_free(void) { if (global_piglet_va) uvm_pmr_free_piglet(global_piglet_va, 3*HIBERNATE_CHUNK_SIZE); if (hibernate_copy_page) pmap_kremove(hibernate_copy_page, PAGE_SIZE); if (hibernate_temp_page) pmap_kremove(hibernate_temp_page, PAGE_SIZE); pmap_update(pmap_kernel()); if (hibernate_copy_page) km_free((void *)hibernate_copy_page, PAGE_SIZE, &kv_any, &kp_none); if (hibernate_temp_page) km_free((void *)hibernate_temp_page, PAGE_SIZE, &kv_any, &kp_none); global_piglet_va = 0; hibernate_copy_page = 0; hibernate_temp_page = 0; }