/* $OpenBSD: uipc_mbuf.c,v 1.286 2023/05/16 20:09:27 mvs Exp $ */ /* $NetBSD: uipc_mbuf.c,v 1.15.4.1 1996/06/13 17:11:44 cgd Exp $ */ /* * Copyright (c) 1982, 1986, 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 */ /* * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995 * * NRL grants permission for redistribution and use in source and binary * forms, with or without modification, of the software and documentation * created at NRL provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgements: * This product includes software developed by the University of * California, Berkeley and its contributors. * This product includes software developed at the Information * Technology Division, US Naval Research Laboratory. * 4. Neither the name of the NRL nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as representing * official policies, either expressed or implied, of the US Naval * Research Laboratory (NRL). */ #include "pf.h" #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #if NPF > 0 #include #endif /* NPF > 0 */ /* mbuf stats */ COUNTERS_BOOT_MEMORY(mbstat_boot, MBSTAT_COUNT); struct cpumem *mbstat = COUNTERS_BOOT_INITIALIZER(mbstat_boot); /* mbuf pools */ struct pool mbpool; struct pool mtagpool; /* mbuf cluster pools */ u_int mclsizes[MCLPOOLS] = { MCLBYTES, /* must be at slot 0 */ MCLBYTES + 2, /* ETHER_ALIGNED 2k mbufs */ 4 * 1024, 8 * 1024, 9 * 1024, 12 * 1024, 16 * 1024, 64 * 1024 }; static char mclnames[MCLPOOLS][8]; struct pool mclpools[MCLPOOLS]; struct pool *m_clpool(u_int); int max_linkhdr; /* largest link-level header */ int max_protohdr; /* largest protocol header */ int max_hdr; /* largest link+protocol header */ struct mutex m_extref_mtx = MUTEX_INITIALIZER(IPL_NET); void m_extfree(struct mbuf *); void m_zero(struct mbuf *); unsigned long mbuf_mem_limit; /* how much memory can be allocated */ unsigned long mbuf_mem_alloc; /* how much memory has been allocated */ void *m_pool_alloc(struct pool *, int, int *); void m_pool_free(struct pool *, void *); struct pool_allocator m_pool_allocator = { m_pool_alloc, m_pool_free, 0 /* will be copied from pool_allocator_multi */ }; static void (*mextfree_fns[4])(caddr_t, u_int, void *); static u_int num_extfree_fns; #define M_DATABUF(m) ((m)->m_flags & M_EXT ? (m)->m_ext.ext_buf : \ (m)->m_flags & M_PKTHDR ? (m)->m_pktdat : (m)->m_dat) #define M_SIZE(m) ((m)->m_flags & M_EXT ? (m)->m_ext.ext_size : \ (m)->m_flags & M_PKTHDR ? MHLEN : MLEN) /* * Initialize the mbuf allocator. */ void mbinit(void) { int i, error; unsigned int lowbits; CTASSERT(MSIZE == sizeof(struct mbuf)); m_pool_allocator.pa_pagesz = pool_allocator_multi.pa_pagesz; mbuf_mem_alloc = 0; #if DIAGNOSTIC if (mclsizes[0] != MCLBYTES) panic("mbinit: the smallest cluster size != MCLBYTES"); if (mclsizes[nitems(mclsizes) - 1] != MAXMCLBYTES) panic("mbinit: the largest cluster size != MAXMCLBYTES"); #endif m_pool_init(&mbpool, MSIZE, 64, "mbufpl"); pool_init(&mtagpool, PACKET_TAG_MAXSIZE + sizeof(struct m_tag), 0, IPL_NET, 0, "mtagpl", NULL); for (i = 0; i < nitems(mclsizes); i++) { lowbits = mclsizes[i] & ((1 << 10) - 1); if (lowbits) { snprintf(mclnames[i], sizeof(mclnames[0]), "mcl%dk%u", mclsizes[i] >> 10, lowbits); } else { snprintf(mclnames[i], sizeof(mclnames[0]), "mcl%dk", mclsizes[i] >> 10); } m_pool_init(&mclpools[i], mclsizes[i], 64, mclnames[i]); } error = nmbclust_update(nmbclust); KASSERT(error == 0); (void)mextfree_register(m_extfree_pool); KASSERT(num_extfree_fns == 1); } void mbcpuinit(void) { int i; mbstat = counters_alloc_ncpus(mbstat, MBSTAT_COUNT); pool_cache_init(&mbpool); pool_cache_init(&mtagpool); for (i = 0; i < nitems(mclsizes); i++) pool_cache_init(&mclpools[i]); } int nmbclust_update(long newval) { int i; if (newval < 0 || newval > LONG_MAX / MCLBYTES) return ERANGE; /* update the global mbuf memory limit */ nmbclust = newval; mbuf_mem_limit = nmbclust * MCLBYTES; pool_wakeup(&mbpool); for (i = 0; i < nitems(mclsizes); i++) pool_wakeup(&mclpools[i]); return 0; } /* * Space allocation routines. */ struct mbuf * m_get(int nowait, int type) { struct mbuf *m; struct counters_ref cr; uint64_t *counters; int s; KASSERT(type >= 0 && type < MT_NTYPES); m = pool_get(&mbpool, nowait == M_WAIT ? PR_WAITOK : PR_NOWAIT); if (m == NULL) return (NULL); s = splnet(); counters = counters_enter(&cr, mbstat); counters[type]++; counters_leave(&cr, mbstat); splx(s); m->m_type = type; m->m_next = NULL; m->m_nextpkt = NULL; m->m_data = m->m_dat; m->m_flags = 0; return (m); } /* * ATTN: When changing anything here check m_inithdr() and m_defrag() those * may need to change as well. */ struct mbuf * m_gethdr(int nowait, int type) { struct mbuf *m; struct counters_ref cr; uint64_t *counters; int s; KASSERT(type >= 0 && type < MT_NTYPES); m = pool_get(&mbpool, nowait == M_WAIT ? PR_WAITOK : PR_NOWAIT); if (m == NULL) return (NULL); s = splnet(); counters = counters_enter(&cr, mbstat); counters[type]++; counters_leave(&cr, mbstat); splx(s); m->m_type = type; return (m_inithdr(m)); } struct mbuf * m_inithdr(struct mbuf *m) { /* keep in sync with m_gethdr */ m->m_next = NULL; m->m_nextpkt = NULL; m->m_data = m->m_pktdat; m->m_flags = M_PKTHDR; memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr)); m->m_pkthdr.pf.prio = IFQ_DEFPRIO; return (m); } static inline void m_clearhdr(struct mbuf *m) { /* delete all mbuf tags to reset the state */ m_tag_delete_chain(m); #if NPF > 0 pf_mbuf_unlink_state_key(m); pf_mbuf_unlink_inpcb(m); #endif /* NPF > 0 */ memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr)); } void m_removehdr(struct mbuf *m) { KASSERT(m->m_flags & M_PKTHDR); m_clearhdr(m); m->m_flags &= ~M_PKTHDR; } void m_resethdr(struct mbuf *m) { int len = m->m_pkthdr.len; u_int8_t loopcnt = m->m_pkthdr.ph_loopcnt; KASSERT(m->m_flags & M_PKTHDR); m->m_flags &= (M_EXT|M_PKTHDR|M_EOR|M_EXTWR|M_ZEROIZE); m_clearhdr(m); /* like m_inithdr(), but keep any associated data and mbufs */ m->m_pkthdr.pf.prio = IFQ_DEFPRIO; m->m_pkthdr.len = len; m->m_pkthdr.ph_loopcnt = loopcnt; } void m_calchdrlen(struct mbuf *m) { struct mbuf *n; int plen = 0; KASSERT(m->m_flags & M_PKTHDR); for (n = m; n; n = n->m_next) plen += n->m_len; m->m_pkthdr.len = plen; } struct mbuf * m_getclr(int nowait, int type) { struct mbuf *m; MGET(m, nowait, type); if (m == NULL) return (NULL); memset(mtod(m, caddr_t), 0, MLEN); return (m); } struct pool * m_clpool(u_int pktlen) { struct pool *pp; int pi; for (pi = 0; pi < nitems(mclpools); pi++) { pp = &mclpools[pi]; if (pktlen <= pp->pr_size) return (pp); } return (NULL); } struct mbuf * m_clget(struct mbuf *m, int how, u_int pktlen) { struct mbuf *m0 = NULL; struct pool *pp; caddr_t buf; pp = m_clpool(pktlen); #ifdef DIAGNOSTIC if (pp == NULL) panic("m_clget: request for %u byte cluster", pktlen); #endif if (m == NULL) { m0 = m_gethdr(how, MT_DATA); if (m0 == NULL) return (NULL); m = m0; } buf = pool_get(pp, how == M_WAIT ? PR_WAITOK : PR_NOWAIT); if (buf == NULL) { m_freem(m0); return (NULL); } MEXTADD(m, buf, pp->pr_size, M_EXTWR, MEXTFREE_POOL, pp); return (m); } void m_extfree_pool(caddr_t buf, u_int size, void *pp) { pool_put(pp, buf); } struct mbuf * m_free(struct mbuf *m) { struct mbuf *n; struct counters_ref cr; uint64_t *counters; int s; if (m == NULL) return (NULL); s = splnet(); counters = counters_enter(&cr, mbstat); counters[m->m_type]--; counters_leave(&cr, mbstat); splx(s); n = m->m_next; if (m->m_flags & M_ZEROIZE) { m_zero(m); /* propagate M_ZEROIZE to the next mbuf in the chain */ if (n) n->m_flags |= M_ZEROIZE; } if (m->m_flags & M_PKTHDR) { m_tag_delete_chain(m); #if NPF > 0 pf_mbuf_unlink_state_key(m); pf_mbuf_unlink_inpcb(m); #endif /* NPF > 0 */ } if (m->m_flags & M_EXT) m_extfree(m); pool_put(&mbpool, m); return (n); } void m_extref(struct mbuf *o, struct mbuf *n) { int refs = MCLISREFERENCED(o); n->m_flags |= o->m_flags & (M_EXT|M_EXTWR); if (refs) mtx_enter(&m_extref_mtx); n->m_ext.ext_nextref = o->m_ext.ext_nextref; n->m_ext.ext_prevref = o; o->m_ext.ext_nextref = n; n->m_ext.ext_nextref->m_ext.ext_prevref = n; if (refs) mtx_leave(&m_extref_mtx); MCLREFDEBUGN((n), __FILE__, __LINE__); } static inline u_int m_extunref(struct mbuf *m) { int refs = 0; if (!MCLISREFERENCED(m)) return (0); mtx_enter(&m_extref_mtx); if (MCLISREFERENCED(m)) { m->m_ext.ext_nextref->m_ext.ext_prevref = m->m_ext.ext_prevref; m->m_ext.ext_prevref->m_ext.ext_nextref = m->m_ext.ext_nextref; refs = 1; } mtx_leave(&m_extref_mtx); return (refs); } /* * Returns a number for use with MEXTADD. * Should only be called once per function. * Drivers can be assured that the index will be non zero. */ u_int mextfree_register(void (*fn)(caddr_t, u_int, void *)) { KASSERT(num_extfree_fns < nitems(mextfree_fns)); mextfree_fns[num_extfree_fns] = fn; return num_extfree_fns++; } void m_extfree(struct mbuf *m) { if (m_extunref(m) == 0) { KASSERT(m->m_ext.ext_free_fn < num_extfree_fns); mextfree_fns[m->m_ext.ext_free_fn](m->m_ext.ext_buf, m->m_ext.ext_size, m->m_ext.ext_arg); } m->m_flags &= ~(M_EXT|M_EXTWR); } struct mbuf * m_freem(struct mbuf *m) { struct mbuf *n; if (m == NULL) return (NULL); n = m->m_nextpkt; do m = m_free(m); while (m != NULL); return (n); } void m_purge(struct mbuf *m) { while (m != NULL) m = m_freem(m); } /* * mbuf chain defragmenter. This function uses some evil tricks to defragment * an mbuf chain into a single buffer without changing the mbuf pointer. * This needs to know a lot of the mbuf internals to make this work. */ int m_defrag(struct mbuf *m, int how) { struct mbuf *m0; if (m->m_next == NULL) return (0); KASSERT(m->m_flags & M_PKTHDR); if ((m0 = m_gethdr(how, m->m_type)) == NULL) return (ENOBUFS); if (m->m_pkthdr.len > MHLEN) { MCLGETL(m0, how, m->m_pkthdr.len); if (!(m0->m_flags & M_EXT)) { m_free(m0); return (ENOBUFS); } } m_copydata(m, 0, m->m_pkthdr.len, mtod(m0, caddr_t)); m0->m_pkthdr.len = m0->m_len = m->m_pkthdr.len; /* free chain behind and possible ext buf on the first mbuf */ m_freem(m->m_next); m->m_next = NULL; if (m->m_flags & M_EXT) m_extfree(m); /* * Bounce copy mbuf over to the original mbuf and set everything up. * This needs to reset or clear all pointers that may go into the * original mbuf chain. */ if (m0->m_flags & M_EXT) { memcpy(&m->m_ext, &m0->m_ext, sizeof(struct mbuf_ext)); MCLINITREFERENCE(m); m->m_flags |= m0->m_flags & (M_EXT|M_EXTWR); m->m_data = m->m_ext.ext_buf; } else { m->m_data = m->m_pktdat; memcpy(m->m_data, m0->m_data, m0->m_len); } m->m_pkthdr.len = m->m_len = m0->m_len; m0->m_flags &= ~(M_EXT|M_EXTWR); /* cluster is gone */ m_free(m0); return (0); } /* * Mbuffer utility routines. */ /* * Ensure len bytes of contiguous space at the beginning of the mbuf chain */ struct mbuf * m_prepend(struct mbuf *m, int len, int how) { struct mbuf *mn; if (len > MHLEN) panic("mbuf prepend length too big"); if (m_leadingspace(m) >= len) { m->m_data -= len; m->m_len += len; } else { MGET(mn, how, m->m_type); if (mn == NULL) { m_freem(m); return (NULL); } if (m->m_flags & M_PKTHDR) M_MOVE_PKTHDR(mn, m); mn->m_next = m; m = mn; m_align(m, len); m->m_len = len; } if (m->m_flags & M_PKTHDR) m->m_pkthdr.len += len; return (m); } /* * Make a copy of an mbuf chain starting "off" bytes from the beginning, * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller. */ struct mbuf * m_copym(struct mbuf *m0, int off, int len, int wait) { struct mbuf *m, *n, **np; struct mbuf *top; int copyhdr = 0; if (off < 0 || len < 0) panic("m_copym0: off %d, len %d", off, len); if (off == 0 && m0->m_flags & M_PKTHDR) copyhdr = 1; if ((m = m_getptr(m0, off, &off)) == NULL) panic("m_copym0: short mbuf chain"); np = ⊤ top = NULL; while (len > 0) { if (m == NULL) { if (len != M_COPYALL) panic("m_copym0: m == NULL and not COPYALL"); break; } MGET(n, wait, m->m_type); *np = n; if (n == NULL) goto nospace; if (copyhdr) { if (m_dup_pkthdr(n, m0, wait)) goto nospace; if (len != M_COPYALL) n->m_pkthdr.len = len; copyhdr = 0; } n->m_len = min(len, m->m_len - off); if (m->m_flags & M_EXT) { n->m_data = m->m_data + off; n->m_ext = m->m_ext; MCLADDREFERENCE(m, n); } else { n->m_data += m->m_data - (m->m_flags & M_PKTHDR ? m->m_pktdat : m->m_dat); n->m_data += off; memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, n->m_len); } if (len != M_COPYALL) len -= n->m_len; off += n->m_len; #ifdef DIAGNOSTIC if (off > m->m_len) panic("m_copym0 overrun"); #endif if (off == m->m_len) { m = m->m_next; off = 0; } np = &n->m_next; } return (top); nospace: m_freem(top); return (NULL); } /* * Copy data from an mbuf chain starting "off" bytes from the beginning, * continuing for "len" bytes, into the indicated buffer. */ void m_copydata(struct mbuf *m, int off, int len, void *p) { caddr_t cp = p; unsigned count; if (off < 0) panic("m_copydata: off %d < 0", off); if (len < 0) panic("m_copydata: len %d < 0", len); if ((m = m_getptr(m, off, &off)) == NULL) panic("m_copydata: short mbuf chain"); while (len > 0) { if (m == NULL) panic("m_copydata: null mbuf"); count = min(m->m_len - off, len); memmove(cp, mtod(m, caddr_t) + off, count); len -= count; cp += count; off = 0; m = m->m_next; } } /* * Copy data from a buffer back into the indicated mbuf chain, * starting "off" bytes from the beginning, extending the mbuf * chain if necessary. The mbuf needs to be properly initialized * including the setting of m_len. */ int m_copyback(struct mbuf *m0, int off, int len, const void *_cp, int wait) { int mlen, totlen = 0; struct mbuf *m = m0, *n; caddr_t cp = (caddr_t)_cp; int error = 0; if (m0 == NULL) return (0); while (off > (mlen = m->m_len)) { off -= mlen; totlen += mlen; if (m->m_next == NULL) { if ((n = m_get(wait, m->m_type)) == NULL) { error = ENOBUFS; goto out; } if (off + len > MLEN) { MCLGETL(n, wait, off + len); if (!(n->m_flags & M_EXT)) { m_free(n); error = ENOBUFS; goto out; } } memset(mtod(n, caddr_t), 0, off); n->m_len = len + off; m->m_next = n; } m = m->m_next; } while (len > 0) { /* extend last packet to be filled fully */ if (m->m_next == NULL && (len > m->m_len - off)) m->m_len += min(len - (m->m_len - off), m_trailingspace(m)); mlen = min(m->m_len - off, len); memmove(mtod(m, caddr_t) + off, cp, mlen); cp += mlen; len -= mlen; totlen += mlen + off; if (len == 0) break; off = 0; if (m->m_next == NULL) { if ((n = m_get(wait, m->m_type)) == NULL) { error = ENOBUFS; goto out; } if (len > MLEN) { MCLGETL(n, wait, len); if (!(n->m_flags & M_EXT)) { m_free(n); error = ENOBUFS; goto out; } } n->m_len = len; m->m_next = n; } m = m->m_next; } out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) m->m_pkthdr.len = totlen; return (error); } /* * Concatenate mbuf chain n to m. * n might be copied into m (when n->m_len is small), therefore data portion of * n could be copied into an mbuf of different mbuf type. * Therefore both chains should be of the same type (e.g. MT_DATA). * Any m_pkthdr is not updated. */ void m_cat(struct mbuf *m, struct mbuf *n) { while (m->m_next) m = m->m_next; while (n) { if (M_READONLY(m) || n->m_len > m_trailingspace(m)) { /* just join the two chains */ m->m_next = n; return; } /* splat the data from one into the other */ memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), n->m_len); m->m_len += n->m_len; n = m_free(n); } } void m_adj(struct mbuf *mp, int req_len) { int len = req_len; struct mbuf *m; int count; if (mp == NULL) return; if (len >= 0) { /* * Trim from head. */ m = mp; while (m != NULL && len > 0) { if (m->m_len <= len) { len -= m->m_len; m->m_data += m->m_len; m->m_len = 0; m = m->m_next; } else { m->m_data += len; m->m_len -= len; len = 0; } } if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len -= (req_len - len); } else { /* * Trim from tail. Scan the mbuf chain, * calculating its length and finding the last mbuf. * If the adjustment only affects this mbuf, then just * adjust and return. Otherwise, rescan and truncate * after the remaining size. */ len = -len; count = 0; m = mp; for (;;) { count += m->m_len; if (m->m_next == NULL) break; m = m->m_next; } if (m->m_len >= len) { m->m_len -= len; if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len -= len; return; } count -= len; if (count < 0) count = 0; /* * Correct length for chain is "count". * Find the mbuf with last data, adjust its length, * and toss data from remaining mbufs on chain. */ if (mp->m_flags & M_PKTHDR) mp->m_pkthdr.len = count; m = mp; for (;;) { if (m->m_len >= count) { m->m_len = count; break; } count -= m->m_len; m = m->m_next; } while ((m = m->m_next) != NULL) m->m_len = 0; } } /* * Rearrange an mbuf chain so that len bytes are contiguous * and in the data area of an mbuf (so that mtod will work * for a structure of size len). Returns the resulting * mbuf chain on success, frees it and returns null on failure. */ struct mbuf * m_pullup(struct mbuf *m0, int len) { struct mbuf *m; unsigned int adj; caddr_t head, tail; unsigned int space; /* if len is already contig in m0, then don't do any work */ if (len <= m0->m_len) return (m0); /* look for some data */ m = m0->m_next; if (m == NULL) goto freem0; head = M_DATABUF(m0); if (m0->m_len == 0) { while (m->m_len == 0) { m = m_free(m); if (m == NULL) goto freem0; } adj = mtod(m, unsigned long) & (sizeof(long) - 1); } else adj = mtod(m0, unsigned long) & (sizeof(long) - 1); tail = head + M_SIZE(m0); head += adj; if (!M_READONLY(m0) && len <= tail - head) { /* we can copy everything into the first mbuf */ if (m0->m_len == 0) { m0->m_data = head; } else if (len > tail - mtod(m0, caddr_t)) { /* need to memmove to make space at the end */ memmove(head, mtod(m0, caddr_t), m0->m_len); m0->m_data = head; } len -= m0->m_len; } else { /* the first mbuf is too small or read-only, make a new one */ space = adj + len; if (space > MAXMCLBYTES) goto bad; m0->m_next = m; m = m0; MGET(m0, M_DONTWAIT, m->m_type); if (m0 == NULL) goto bad; if (space > MHLEN) { MCLGETL(m0, M_DONTWAIT, space); if ((m0->m_flags & M_EXT) == 0) goto bad; } if (m->m_flags & M_PKTHDR) M_MOVE_PKTHDR(m0, m); m0->m_len = 0; m0->m_data += adj; } KDASSERT(m_trailingspace(m0) >= len); for (;;) { space = min(len, m->m_len); memcpy(mtod(m0, caddr_t) + m0->m_len, mtod(m, caddr_t), space); len -= space; m0->m_len += space; m->m_len -= space; if (m->m_len > 0) m->m_data += space; else m = m_free(m); if (len == 0) break; if (m == NULL) goto bad; } m0->m_next = m; /* link the chain back up */ return (m0); bad: m_freem(m); freem0: m_free(m0); return (NULL); } /* * Return a pointer to mbuf/offset of location in mbuf chain. */ struct mbuf * m_getptr(struct mbuf *m, int loc, int *off) { while (loc >= 0) { /* Normal end of search */ if (m->m_len > loc) { *off = loc; return (m); } else { loc -= m->m_len; if (m->m_next == NULL) { if (loc == 0) { /* Point at the end of valid data */ *off = m->m_len; return (m); } else { return (NULL); } } else { m = m->m_next; } } } return (NULL); } /* * Partition an mbuf chain in two pieces, returning the tail -- * all but the first len0 bytes. In case of failure, it returns NULL and * attempts to restore the chain to its original state. */ struct mbuf * m_split(struct mbuf *m0, int len0, int wait) { struct mbuf *m, *n; unsigned len = len0, remain, olen; for (m = m0; m && len > m->m_len; m = m->m_next) len -= m->m_len; if (m == NULL) return (NULL); remain = m->m_len - len; if (m0->m_flags & M_PKTHDR) { MGETHDR(n, wait, m0->m_type); if (n == NULL) return (NULL); if (m_dup_pkthdr(n, m0, wait)) { m_freem(n); return (NULL); } n->m_pkthdr.len -= len0; olen = m0->m_pkthdr.len; m0->m_pkthdr.len = len0; if (remain == 0) { n->m_next = m->m_next; m->m_next = NULL; n->m_len = 0; return (n); } if (m->m_flags & M_EXT) goto extpacket; if (remain > MHLEN) { /* m can't be the lead packet */ m_align(n, 0); n->m_next = m_split(m, len, wait); if (n->m_next == NULL) { (void) m_free(n); m0->m_pkthdr.len = olen; return (NULL); } else { n->m_len = 0; return (n); } } else m_align(n, remain); } else if (remain == 0) { n = m->m_next; m->m_next = NULL; return (n); } else { MGET(n, wait, m->m_type); if (n == NULL) return (NULL); m_align(n, remain); } extpacket: if (m->m_flags & M_EXT) { n->m_ext = m->m_ext; MCLADDREFERENCE(m, n); n->m_data = m->m_data + len; } else { memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + len, remain); } n->m_len = remain; m->m_len = len; n->m_next = m->m_next; m->m_next = NULL; return (n); } /* * Make space for a new header of length hlen at skip bytes * into the packet. When doing this we allocate new mbufs only * when absolutely necessary. The mbuf where the new header * is to go is returned together with an offset into the mbuf. * If NULL is returned then the mbuf chain may have been modified; * the caller is assumed to always free the chain. */ struct mbuf * m_makespace(struct mbuf *m0, int skip, int hlen, int *off) { struct mbuf *m; unsigned remain; KASSERT(m0->m_flags & M_PKTHDR); /* * Limit the size of the new header to MHLEN. In case * skip = 0 and the first buffer is not a cluster this * is the maximum space available in that mbuf. * In other words this code never prepends a mbuf. */ KASSERT(hlen < MHLEN); for (m = m0; m && skip > m->m_len; m = m->m_next) skip -= m->m_len; if (m == NULL) return (NULL); /* * At this point skip is the offset into the mbuf m * where the new header should be placed. Figure out * if there's space to insert the new header. If so, * and copying the remainder makes sense then do so. * Otherwise insert a new mbuf in the chain, splitting * the contents of m as needed. */ remain = m->m_len - skip; /* data to move */ if (skip < remain && hlen <= m_leadingspace(m)) { if (skip) memmove(m->m_data-hlen, m->m_data, skip); m->m_data -= hlen; m->m_len += hlen; *off = skip; } else if (hlen > m_trailingspace(m)) { struct mbuf *n; if (remain > 0) { MGET(n, M_DONTWAIT, m->m_type); if (n && remain > MLEN) { MCLGETL(n, M_DONTWAIT, remain); if ((n->m_flags & M_EXT) == 0) { m_free(n); n = NULL; } } if (n == NULL) return (NULL); memcpy(n->m_data, mtod(m, char *) + skip, remain); n->m_len = remain; m->m_len -= remain; n->m_next = m->m_next; m->m_next = n; } if (hlen <= m_trailingspace(m)) { m->m_len += hlen; *off = skip; } else { n = m_get(M_DONTWAIT, m->m_type); if (n == NULL) return NULL; n->m_len = hlen; n->m_next = m->m_next; m->m_next = n; *off = 0; /* header is at front ... */ m = n; /* ... of new mbuf */ } } else { /* * Copy the remainder to the back of the mbuf * so there's space to write the new header. */ if (remain > 0) memmove(mtod(m, caddr_t) + skip + hlen, mtod(m, caddr_t) + skip, remain); m->m_len += hlen; *off = skip; } m0->m_pkthdr.len += hlen; /* adjust packet length */ return m; } /* * Routine to copy from device local memory into mbufs. */ struct mbuf * m_devget(char *buf, int totlen, int off) { struct mbuf *m; struct mbuf *top, **mp; int len; top = NULL; mp = ⊤ if (off < 0 || off > MHLEN) return (NULL); MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (NULL); m->m_pkthdr.len = totlen; len = MHLEN; while (totlen > 0) { if (top != NULL) { MGET(m, M_DONTWAIT, MT_DATA); if (m == NULL) { /* * As we might get called by pfkey, make sure * we do not leak sensitive data. */ top->m_flags |= M_ZEROIZE; m_freem(top); return (NULL); } len = MLEN; } if (totlen + off >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if (m->m_flags & M_EXT) len = MCLBYTES; } else { /* Place initial small packet/header at end of mbuf. */ if (top == NULL && totlen + off + max_linkhdr <= len) { m->m_data += max_linkhdr; len -= max_linkhdr; } } if (off) { m->m_data += off; len -= off; off = 0; } m->m_len = len = min(totlen, len); memcpy(mtod(m, void *), buf, (size_t)len); buf += len; *mp = m; mp = &m->m_next; totlen -= len; } return (top); } void m_zero(struct mbuf *m) { if (M_READONLY(m)) { mtx_enter(&m_extref_mtx); if ((m->m_flags & M_EXT) && MCLISREFERENCED(m)) { m->m_ext.ext_nextref->m_flags |= M_ZEROIZE; m->m_ext.ext_prevref->m_flags |= M_ZEROIZE; } mtx_leave(&m_extref_mtx); return; } explicit_bzero(M_DATABUF(m), M_SIZE(m)); } /* * Apply function f to the data in an mbuf chain starting "off" bytes from the * beginning, continuing for "len" bytes. */ int m_apply(struct mbuf *m, int off, int len, int (*f)(caddr_t, caddr_t, unsigned int), caddr_t fstate) { int rval; unsigned int count; if (len < 0) panic("m_apply: len %d < 0", len); if (off < 0) panic("m_apply: off %d < 0", off); while (off > 0) { if (m == NULL) panic("m_apply: null mbuf in skip"); if (off < m->m_len) break; off -= m->m_len; m = m->m_next; } while (len > 0) { if (m == NULL) panic("m_apply: null mbuf"); count = min(m->m_len - off, len); rval = f(fstate, mtod(m, caddr_t) + off, count); if (rval) return (rval); len -= count; off = 0; m = m->m_next; } return (0); } /* * Compute the amount of space available before the current start of data * in an mbuf. Read-only clusters never have space available. */ int m_leadingspace(struct mbuf *m) { if (M_READONLY(m)) return 0; KASSERT(m->m_data >= M_DATABUF(m)); return m->m_data - M_DATABUF(m); } /* * Compute the amount of space available after the end of data in an mbuf. * Read-only clusters never have space available. */ int m_trailingspace(struct mbuf *m) { if (M_READONLY(m)) return 0; KASSERT(M_DATABUF(m) + M_SIZE(m) >= (m->m_data + m->m_len)); return M_DATABUF(m) + M_SIZE(m) - (m->m_data + m->m_len); } /* * Set the m_data pointer of a newly-allocated mbuf to place an object of * the specified size at the end of the mbuf, longword aligned. */ void m_align(struct mbuf *m, int len) { KASSERT(len >= 0 && !M_READONLY(m)); KASSERT(m->m_data == M_DATABUF(m)); /* newly-allocated check */ KASSERT(((len + sizeof(long) - 1) &~ (sizeof(long) - 1)) <= M_SIZE(m)); m->m_data = M_DATABUF(m) + ((M_SIZE(m) - (len)) &~ (sizeof(long) - 1)); } /* * Duplicate mbuf pkthdr from from to to. * from must have M_PKTHDR set, and to must be empty. */ int m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int wait) { int error; KASSERT(from->m_flags & M_PKTHDR); to->m_flags = (to->m_flags & (M_EXT | M_EXTWR)); to->m_flags |= (from->m_flags & M_COPYFLAGS); to->m_pkthdr = from->m_pkthdr; #if NPF > 0 to->m_pkthdr.pf.statekey = NULL; pf_mbuf_link_state_key(to, from->m_pkthdr.pf.statekey); to->m_pkthdr.pf.inp = NULL; pf_mbuf_link_inpcb(to, from->m_pkthdr.pf.inp); #endif /* NPF > 0 */ SLIST_INIT(&to->m_pkthdr.ph_tags); if ((error = m_tag_copy_chain(to, from, wait)) != 0) return (error); if ((to->m_flags & M_EXT) == 0) to->m_data = to->m_pktdat; return (0); } struct mbuf * m_dup_pkt(struct mbuf *m0, unsigned int adj, int wait) { struct mbuf *m; int len; KASSERT(m0->m_flags & M_PKTHDR); len = m0->m_pkthdr.len + adj; if (len > MAXMCLBYTES) /* XXX */ return (NULL); m = m_get(wait, m0->m_type); if (m == NULL) return (NULL); if (m_dup_pkthdr(m, m0, wait) != 0) goto fail; if (len > MHLEN) { MCLGETL(m, wait, len); if (!ISSET(m->m_flags, M_EXT)) goto fail; } m->m_len = m->m_pkthdr.len = len; m_adj(m, adj); m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); return (m); fail: m_freem(m); return (NULL); } void m_microtime(const struct mbuf *m, struct timeval *tv) { if (ISSET(m->m_pkthdr.csum_flags, M_TIMESTAMP)) { struct timeval btv, utv; NSEC_TO_TIMEVAL(m->m_pkthdr.ph_timestamp, &utv); microboottime(&btv); timeradd(&btv, &utv, tv); } else microtime(tv); } void * m_pool_alloc(struct pool *pp, int flags, int *slowdown) { void *v; if (atomic_add_long_nv(&mbuf_mem_alloc, pp->pr_pgsize) > mbuf_mem_limit) goto fail; v = (*pool_allocator_multi.pa_alloc)(pp, flags, slowdown); if (v != NULL) return (v); fail: atomic_sub_long(&mbuf_mem_alloc, pp->pr_pgsize); return (NULL); } void m_pool_free(struct pool *pp, void *v) { (*pool_allocator_multi.pa_free)(pp, v); atomic_sub_long(&mbuf_mem_alloc, pp->pr_pgsize); } void m_pool_init(struct pool *pp, u_int size, u_int align, const char *wmesg) { pool_init(pp, size, align, IPL_NET, 0, wmesg, &m_pool_allocator); pool_set_constraints(pp, &kp_dma_contig); } u_int m_pool_used(void) { return ((mbuf_mem_alloc * 100) / mbuf_mem_limit); } #ifdef DDB void m_print(void *v, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) { struct mbuf *m = v; (*pr)("mbuf %p\n", m); (*pr)("m_type: %i\tm_flags: %b\n", m->m_type, m->m_flags, M_BITS); (*pr)("m_next: %p\tm_nextpkt: %p\n", m->m_next, m->m_nextpkt); (*pr)("m_data: %p\tm_len: %u\n", m->m_data, m->m_len); (*pr)("m_dat: %p\tm_pktdat: %p\n", m->m_dat, m->m_pktdat); if (m->m_flags & M_PKTHDR) { (*pr)("m_ptkhdr.ph_ifidx: %u\tm_pkthdr.len: %i\n", m->m_pkthdr.ph_ifidx, m->m_pkthdr.len); (*pr)("m_ptkhdr.ph_tags: %p\tm_pkthdr.ph_tagsset: %b\n", SLIST_FIRST(&m->m_pkthdr.ph_tags), m->m_pkthdr.ph_tagsset, MTAG_BITS); (*pr)("m_pkthdr.ph_flowid: %u\tm_pkthdr.ph_loopcnt: %u\n", m->m_pkthdr.ph_flowid, m->m_pkthdr.ph_loopcnt); (*pr)("m_pkthdr.csum_flags: %b\n", m->m_pkthdr.csum_flags, MCS_BITS); (*pr)("m_pkthdr.ether_vtag: %u\tm_ptkhdr.ph_rtableid: %u\n", m->m_pkthdr.ether_vtag, m->m_pkthdr.ph_rtableid); (*pr)("m_pkthdr.pf.statekey: %p\tm_pkthdr.pf.inp %p\n", m->m_pkthdr.pf.statekey, m->m_pkthdr.pf.inp); (*pr)("m_pkthdr.pf.qid: %u\tm_pkthdr.pf.tag: %u\n", m->m_pkthdr.pf.qid, m->m_pkthdr.pf.tag); (*pr)("m_pkthdr.pf.flags: %b\n", m->m_pkthdr.pf.flags, MPF_BITS); (*pr)("m_pkthdr.pf.routed: %u\tm_pkthdr.pf.prio: %u\n", m->m_pkthdr.pf.routed, m->m_pkthdr.pf.prio); } if (m->m_flags & M_EXT) { (*pr)("m_ext.ext_buf: %p\tm_ext.ext_size: %u\n", m->m_ext.ext_buf, m->m_ext.ext_size); (*pr)("m_ext.ext_free_fn: %u\tm_ext.ext_arg: %p\n", m->m_ext.ext_free_fn, m->m_ext.ext_arg); (*pr)("m_ext.ext_nextref: %p\tm_ext.ext_prevref: %p\n", m->m_ext.ext_nextref, m->m_ext.ext_prevref); } } #endif /* * mbuf lists */ void ml_init(struct mbuf_list *ml) { ml->ml_head = ml->ml_tail = NULL; ml->ml_len = 0; } void ml_enqueue(struct mbuf_list *ml, struct mbuf *m) { if (ml->ml_tail == NULL) ml->ml_head = ml->ml_tail = m; else { ml->ml_tail->m_nextpkt = m; ml->ml_tail = m; } m->m_nextpkt = NULL; ml->ml_len++; } void ml_enlist(struct mbuf_list *mla, struct mbuf_list *mlb) { if (!ml_empty(mlb)) { if (ml_empty(mla)) mla->ml_head = mlb->ml_head; else mla->ml_tail->m_nextpkt = mlb->ml_head; mla->ml_tail = mlb->ml_tail; mla->ml_len += mlb->ml_len; ml_init(mlb); } } struct mbuf * ml_dequeue(struct mbuf_list *ml) { struct mbuf *m; m = ml->ml_head; if (m != NULL) { ml->ml_head = m->m_nextpkt; if (ml->ml_head == NULL) ml->ml_tail = NULL; m->m_nextpkt = NULL; ml->ml_len--; } return (m); } struct mbuf * ml_dechain(struct mbuf_list *ml) { struct mbuf *m0; m0 = ml->ml_head; ml_init(ml); return (m0); } unsigned int ml_purge(struct mbuf_list *ml) { struct mbuf *m, *n; unsigned int len; for (m = ml->ml_head; m != NULL; m = n) { n = m->m_nextpkt; m_freem(m); } len = ml->ml_len; ml_init(ml); return (len); } unsigned int ml_hdatalen(struct mbuf_list *ml) { struct mbuf *m; m = ml->ml_head; if (m == NULL) return (0); KASSERT(ISSET(m->m_flags, M_PKTHDR)); return (m->m_pkthdr.len); } /* * mbuf queues */ void mq_init(struct mbuf_queue *mq, u_int maxlen, int ipl) { mtx_init(&mq->mq_mtx, ipl); ml_init(&mq->mq_list); mq->mq_maxlen = maxlen; } int mq_push(struct mbuf_queue *mq, struct mbuf *m) { struct mbuf *dropped = NULL; mtx_enter(&mq->mq_mtx); if (mq_len(mq) >= mq->mq_maxlen) { mq->mq_drops++; dropped = ml_dequeue(&mq->mq_list); } ml_enqueue(&mq->mq_list, m); mtx_leave(&mq->mq_mtx); if (dropped) m_freem(dropped); return (dropped != NULL); } int mq_enqueue(struct mbuf_queue *mq, struct mbuf *m) { int dropped = 0; mtx_enter(&mq->mq_mtx); if (mq_len(mq) < mq->mq_maxlen) ml_enqueue(&mq->mq_list, m); else { mq->mq_drops++; dropped = 1; } mtx_leave(&mq->mq_mtx); if (dropped) m_freem(m); return (dropped); } struct mbuf * mq_dequeue(struct mbuf_queue *mq) { struct mbuf *m; mtx_enter(&mq->mq_mtx); m = ml_dequeue(&mq->mq_list); mtx_leave(&mq->mq_mtx); return (m); } int mq_enlist(struct mbuf_queue *mq, struct mbuf_list *ml) { struct mbuf *m; int dropped = 0; mtx_enter(&mq->mq_mtx); if (mq_len(mq) < mq->mq_maxlen) ml_enlist(&mq->mq_list, ml); else { dropped = ml_len(ml); mq->mq_drops += dropped; } mtx_leave(&mq->mq_mtx); if (dropped) { while ((m = ml_dequeue(ml)) != NULL) m_freem(m); } return (dropped); } void mq_delist(struct mbuf_queue *mq, struct mbuf_list *ml) { mtx_enter(&mq->mq_mtx); *ml = mq->mq_list; ml_init(&mq->mq_list); mtx_leave(&mq->mq_mtx); } struct mbuf * mq_dechain(struct mbuf_queue *mq) { struct mbuf *m0; mtx_enter(&mq->mq_mtx); m0 = ml_dechain(&mq->mq_list); mtx_leave(&mq->mq_mtx); return (m0); } unsigned int mq_purge(struct mbuf_queue *mq) { struct mbuf_list ml; mq_delist(mq, &ml); return (ml_purge(&ml)); } unsigned int mq_hdatalen(struct mbuf_queue *mq) { unsigned int hdatalen; mtx_enter(&mq->mq_mtx); hdatalen = ml_hdatalen(&mq->mq_list); mtx_leave(&mq->mq_mtx); return (hdatalen); } void mq_set_maxlen(struct mbuf_queue *mq, u_int maxlen) { mtx_enter(&mq->mq_mtx); mq->mq_maxlen = maxlen; mtx_leave(&mq->mq_mtx); } int sysctl_mq(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct mbuf_queue *mq) { unsigned int maxlen; int error; /* All sysctl names at this level are terminal. */ if (namelen != 1) return (ENOTDIR); switch (name[0]) { case IFQCTL_LEN: return (sysctl_rdint(oldp, oldlenp, newp, mq_len(mq))); case IFQCTL_MAXLEN: maxlen = mq->mq_maxlen; error = sysctl_int(oldp, oldlenp, newp, newlen, &maxlen); if (error == 0) mq_set_maxlen(mq, maxlen); return (error); case IFQCTL_DROPS: return (sysctl_rdint(oldp, oldlenp, newp, mq_drops(mq))); default: return (EOPNOTSUPP); } /* NOTREACHED */ }