/* $OpenBSD: uipc_socket.c,v 1.29 2001/01/23 02:18:55 itojun Exp $ */ /* $NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include int filt_sorattach(struct knote *kn); void filt_sordetach(struct knote *kn); int filt_soread(struct knote *kn, long hint); int filt_sowattach(struct knote *kn); void filt_sowdetach(struct knote *kn); int filt_sowrite(struct knote *kn, long hint); int filt_solisten(struct knote *kn, long hint); struct filterops solisten_filtops = { 1, filt_sorattach, filt_sordetach, filt_solisten }; struct filterops so_rwfiltops[] = { { 1, filt_sorattach, filt_sordetach, filt_soread }, { 1, filt_sowattach, filt_sowdetach, filt_sowrite }, }; #ifndef SOMINCONN #define SOMINCONN 80 #endif /* SOMINCONN */ int somaxconn = SOMAXCONN; int sominconn = SOMINCONN; /* * Socket operation routines. * These routines are called by the routines in * sys_socket.c or from a system process, and * implement the semantics of socket operations by * switching out to the protocol specific routines. */ /*ARGSUSED*/ int socreate(dom, aso, type, proto) int dom; struct socket **aso; register int type; int proto; { struct proc *p = curproc; /* XXX */ register struct protosw *prp; register struct socket *so; register int error; if (proto) prp = pffindproto(dom, proto, type); else prp = pffindtype(dom, type); if (prp == 0 || prp->pr_usrreq == 0) return (EPROTONOSUPPORT); if (prp->pr_type != type) return (EPROTOTYPE); MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_WAIT); bzero((caddr_t)so, sizeof(*so)); so->so_type = type; if (p->p_ucred->cr_uid == 0) so->so_state = SS_PRIV; so->so_ruid = p->p_cred->p_ruid; so->so_euid = p->p_ucred->cr_uid; so->so_proto = prp; error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, (struct mbuf *)(long)proto, NULL); if (error) { so->so_state |= SS_NOFDREF; sofree(so); return (error); } #ifdef COMPAT_SUNOS { extern struct emul emul_sunos; if (p->p_emul == &emul_sunos && type == SOCK_DGRAM) so->so_options |= SO_BROADCAST; } #endif *aso = so; return (0); } int sobind(so, nam) struct socket *so; struct mbuf *nam; { int s = splsoftnet(); int error; error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL); splx(s); return (error); } int solisten(so, backlog) register struct socket *so; int backlog; { int s = splsoftnet(), error; error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, NULL, NULL); if (error) { splx(s); return (error); } if (so->so_q == 0) so->so_options |= SO_ACCEPTCONN; if (backlog < 0 || backlog > somaxconn) backlog = somaxconn; if (backlog < sominconn) backlog = sominconn; so->so_qlimit = backlog; splx(s); return (0); } void sofree(so) register struct socket *so; { if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) return; if (so->so_head) { /* * We must not decommission a socket that's on the accept(2) * queue. If we do, then accept(2) may hang after select(2) * indicated that the listening socket was ready. */ if (!soqremque(so, 0)) return; } sbrelease(&so->so_snd); sorflush(so); FREE(so, M_SOCKET); } /* * Close a socket on last file table reference removal. * Initiate disconnect if connected. * Free socket when disconnect complete. */ int soclose(so) register struct socket *so; { struct socket *so2; int s = splsoftnet(); /* conservative */ int error = 0; if (so->so_options & SO_ACCEPTCONN) { while ((so2 = so->so_q0) != NULL) { (void) soqremque(so2, 0); (void) soabort(so2); } while ((so2 = so->so_q) != NULL) { (void) soqremque(so2, 1); (void) soabort(so2); } } if (so->so_pcb == 0) goto discard; if (so->so_state & SS_ISCONNECTED) { if ((so->so_state & SS_ISDISCONNECTING) == 0) { error = sodisconnect(so); if (error) goto drop; } if (so->so_options & SO_LINGER) { if ((so->so_state & SS_ISDISCONNECTING) && (so->so_state & SS_NBIO)) goto drop; while (so->so_state & SS_ISCONNECTED) { error = tsleep((caddr_t)&so->so_timeo, PSOCK | PCATCH, netcls, so->so_linger * hz); if (error) break; } } } drop: if (so->so_pcb) { int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, NULL, NULL, NULL); if (error == 0) error = error2; } discard: if (so->so_state & SS_NOFDREF) panic("soclose: NOFDREF"); so->so_state |= SS_NOFDREF; sofree(so); splx(s); return (error); } /* * Must be called at splsoftnet... */ int soabort(so) struct socket *so; { return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, NULL, NULL); } int soaccept(so, nam) register struct socket *so; struct mbuf *nam; { int s = splsoftnet(); int error = 0; if ((so->so_state & SS_NOFDREF) == 0) panic("soaccept: !NOFDREF"); so->so_state &= ~SS_NOFDREF; if ((so->so_state & SS_ISDISCONNECTED) == 0) error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, NULL, nam, NULL); else nam->m_len = 0; splx(s); return (error); } int soconnect(so, nam) register struct socket *so; struct mbuf *nam; { int s; int error; if (so->so_options & SO_ACCEPTCONN) return (EOPNOTSUPP); s = splsoftnet(); /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. * This allows user to disconnect by connecting to, e.g., * a null address. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && ((so->so_proto->pr_flags & PR_CONNREQUIRED) || (error = sodisconnect(so)))) error = EISCONN; else error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, NULL, nam, NULL); splx(s); return (error); } int soconnect2(so1, so2) register struct socket *so1; struct socket *so2; { int s = splsoftnet(); int error; error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, NULL, (struct mbuf *)so2, NULL); splx(s); return (error); } int sodisconnect(so) register struct socket *so; { int s = splsoftnet(); int error; if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; goto bad; } if (so->so_state & SS_ISDISCONNECTING) { error = EALREADY; goto bad; } error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, NULL, NULL, NULL); bad: splx(s); return (error); } #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) /* * Send on a socket. * If send must go all at once and message is larger than * send buffering, then hard error. * Lock against other senders. * If must go all at once and not enough room now, then * inform user that this would block and do nothing. * Otherwise, if nonblocking, send as much as possible. * The data to be sent is described by "uio" if nonzero, * otherwise by the mbuf chain "top" (which must be null * if uio is not). Data provided in mbuf chain must be small * enough to send all at once. * * Returns nonzero on error, timeout or signal; callers * must check for short counts if EINTR/ERESTART are returned. * Data and control buffers are freed on return. */ int sosend(so, addr, uio, top, control, flags) register struct socket *so; struct mbuf *addr; struct uio *uio; struct mbuf *top; struct mbuf *control; int flags; { struct proc *p = curproc; /* XXX */ struct mbuf **mp; register struct mbuf *m; register long space, len; register quad_t resid; int clen = 0, error, s, dontroute, mlen; int atomic = sosendallatonce(so) || top; if (uio) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* * In theory resid should be unsigned (since uio->uio_resid is). * However, space must be signed, as it might be less than 0 * if we over-committed, and we must use a signed comparison * of space and resid. On the other hand, a negative resid * causes us to loop sending 0-length segments to the protocol. * MSG_EOR on a SOCK_STREAM socket is also invalid. */ if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) { error = EINVAL; goto out; } dontroute = (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && (so->so_proto->pr_flags & PR_ATOMIC); p->p_stats->p_ru.ru_msgsnd++; if (control) clen = control->m_len; #define snderr(errno) { error = errno; splx(s); goto release; } restart: if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) goto out; do { s = splsoftnet(); if (so->so_state & SS_CANTSENDMORE) snderr(EPIPE); if (so->so_error) snderr(so->so_error); if ((so->so_state & SS_ISCONNECTED) == 0) { if (so->so_proto->pr_flags & PR_CONNREQUIRED) { if ((so->so_state & SS_ISCONFIRMING) == 0 && !(resid == 0 && clen != 0)) snderr(ENOTCONN); } else if (addr == 0) snderr(EDESTADDRREQ); } space = sbspace(&so->so_snd); if (flags & MSG_OOB) space += 1024; if ((atomic && resid > so->so_snd.sb_hiwat) || clen > so->so_snd.sb_hiwat) snderr(EMSGSIZE); if (space < resid + clen && uio && (atomic || space < so->so_snd.sb_lowat || space < clen)) { if (so->so_state & SS_NBIO) snderr(EWOULDBLOCK); sbunlock(&so->so_snd); error = sbwait(&so->so_snd); splx(s); if (error) goto out; goto restart; } splx(s); mp = ⊤ space -= clen; do { if (uio == NULL) { /* * Data is prepackaged in "top". */ resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else do { if (top == 0) { MGETHDR(m, M_WAIT, MT_DATA); mlen = MHLEN; m->m_pkthdr.len = 0; m->m_pkthdr.rcvif = (struct ifnet *)0; } else { MGET(m, M_WAIT, MT_DATA); mlen = MLEN; } if (resid >= MINCLSIZE && space >= MCLBYTES) { MCLGET(m, M_WAIT); if ((m->m_flags & M_EXT) == 0) goto nopages; mlen = MCLBYTES; #ifdef MAPPED_MBUFS len = min(MCLBYTES, resid); #else if (atomic && top == 0) { len = min(MCLBYTES - max_hdr, resid); m->m_data += max_hdr; } else len = min(MCLBYTES, resid); #endif space -= len; } else { nopages: len = min(min(mlen, resid), space); space -= len; /* * For datagram protocols, leave room * for protocol headers in first mbuf. */ if (atomic && top == 0 && len < mlen) MH_ALIGN(m, len); } error = uiomove(mtod(m, caddr_t), (int)len, uio); resid = uio->uio_resid; m->m_len = len; *mp = m; top->m_pkthdr.len += len; if (error) goto release; mp = &m->m_next; if (resid <= 0) { if (flags & MSG_EOR) top->m_flags |= M_EOR; break; } } while (space > 0 && atomic); if (dontroute) so->so_options |= SO_DONTROUTE; s = splsoftnet(); /* XXX */ error = (*so->so_proto->pr_usrreq)(so, (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, top, addr, control); splx(s); if (dontroute) so->so_options &= ~SO_DONTROUTE; clen = 0; control = 0; top = 0; mp = ⊤ if (error) goto release; } while (resid && space > 0); } while (resid); release: sbunlock(&so->so_snd); out: if (top) m_freem(top); if (control) m_freem(control); return (error); } /* * Implement receive operations on a socket. * We depend on the way that records are added to the sockbuf * by sbappend*. In particular, each record (mbufs linked through m_next) * must begin with an address if the protocol so specifies, * followed by an optional mbuf or mbufs containing ancillary data, * and then zero or more mbufs of data. * In order to avoid blocking network interrupts for the entire time here, * we splx() while doing the actual copy to user space. * Although the sockbuf is locked, new data may still be appended, * and thus we must maintain consistency of the sockbuf during that time. * * The caller may receive the data as a single mbuf chain by supplying * an mbuf **mp0 for use in returning the chain. The uio is then used * only for the count in uio_resid. */ int soreceive(so, paddr, uio, mp0, controlp, flagsp) register struct socket *so; struct mbuf **paddr; struct uio *uio; struct mbuf **mp0; struct mbuf **controlp; int *flagsp; { register struct mbuf *m, **mp; register int flags, len, error, s, offset; struct protosw *pr = so->so_proto; struct mbuf *nextrecord; int moff, type = 0; size_t orig_resid = uio->uio_resid; int uio_error = 0; int resid; mp = mp0; if (paddr) *paddr = 0; if (controlp) *controlp = 0; if (flagsp) flags = *flagsp &~ MSG_EOR; else flags = 0; if (so->so_state & SS_NBIO) flags |= MSG_DONTWAIT; if (flags & MSG_OOB) { m = m_get(M_WAIT, MT_DATA); error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, (struct mbuf *)(long)(flags & MSG_PEEK), NULL); if (error) goto bad; do { error = uiomove(mtod(m, caddr_t), (int) min(uio->uio_resid, m->m_len), uio); m = m_free(m); } while (uio->uio_resid && error == 0 && m); bad: if (m) m_freem(m); return (error); } if (mp) *mp = (struct mbuf *)0; if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL); restart: if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) return (error); s = splsoftnet(); m = so->so_rcv.sb_mb; /* * If we have less data than requested, block awaiting more * (subject to any timeout) if: * 1. the current count is less than the low water mark, * 2. MSG_WAITALL is set, and it is possible to do the entire * receive operation at once if we block (resid <= hiwat), or * 3. MSG_DONTWAIT is not set. * If MSG_WAITALL is set but resid is larger than the receive buffer, * we have to do the receive in sections, and thus risk returning * a short count if a timeout or signal occurs after we start. */ if (m == 0 || (((flags & MSG_DONTWAIT) == 0 && so->so_rcv.sb_cc < uio->uio_resid) && (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) { #ifdef DIAGNOSTIC if (m == 0 && so->so_rcv.sb_cc) panic("receive 1"); #endif if (so->so_error) { if (m) goto dontblock; error = so->so_error; if ((flags & MSG_PEEK) == 0) so->so_error = 0; goto release; } if (so->so_state & SS_CANTRCVMORE) { if (m) goto dontblock; else goto release; } for (; m; m = m->m_next) if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { m = so->so_rcv.sb_mb; goto dontblock; } if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { error = ENOTCONN; goto release; } if (uio->uio_resid == 0 && controlp == NULL) goto release; if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { error = EWOULDBLOCK; goto release; } sbunlock(&so->so_rcv); error = sbwait(&so->so_rcv); splx(s); if (error) return (error); goto restart; } dontblock: #ifdef notyet /* XXXX */ if (uio->uio_procp) uio->uio_procp->p_stats->p_ru.ru_msgrcv++; #endif nextrecord = m->m_nextpkt; if (pr->pr_flags & PR_ADDR) { #ifdef DIAGNOSTIC if (m->m_type != MT_SONAME) panic("receive 1a"); #endif orig_resid = 0; if (flags & MSG_PEEK) { if (paddr) *paddr = m_copy(m, 0, m->m_len); m = m->m_next; } else { sbfree(&so->so_rcv, m); if (paddr) { *paddr = m; so->so_rcv.sb_mb = m->m_next; m->m_next = 0; m = so->so_rcv.sb_mb; } else { MFREE(m, so->so_rcv.sb_mb); m = so->so_rcv.sb_mb; } } } while (m && m->m_type == MT_CONTROL && error == 0) { if (flags & MSG_PEEK) { if (controlp) *controlp = m_copy(m, 0, m->m_len); m = m->m_next; } else { sbfree(&so->so_rcv, m); if (controlp) { if (pr->pr_domain->dom_externalize && mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) error = (*pr->pr_domain->dom_externalize)(m); *controlp = m; so->so_rcv.sb_mb = m->m_next; m->m_next = 0; m = so->so_rcv.sb_mb; } else { MFREE(m, so->so_rcv.sb_mb); m = so->so_rcv.sb_mb; } } if (controlp) { orig_resid = 0; controlp = &(*controlp)->m_next; } } if (m) { if ((flags & MSG_PEEK) == 0) m->m_nextpkt = nextrecord; type = m->m_type; if (type == MT_OOBDATA) flags |= MSG_OOB; if (m->m_flags & M_BCAST) flags |= MSG_BCAST; if (m->m_flags & M_MCAST) flags |= MSG_MCAST; } moff = 0; offset = 0; while (m && uio->uio_resid > 0 && error == 0) { if (m->m_type == MT_OOBDATA) { if (type != MT_OOBDATA) break; } else if (type == MT_OOBDATA) break; #ifdef DIAGNOSTIC else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) panic("receive 3"); #endif so->so_state &= ~SS_RCVATMARK; len = uio->uio_resid; if (so->so_oobmark && len > so->so_oobmark - offset) len = so->so_oobmark - offset; if (len > m->m_len - moff) len = m->m_len - moff; /* * If mp is set, just pass back the mbufs. * Otherwise copy them out via the uio, then free. * Sockbuf must be consistent here (points to current mbuf, * it points to next record) when we drop priority; * we must note any additions to the sockbuf when we * block interrupts again. */ if (mp == 0 && uio_error == 0) { resid = uio->uio_resid; splx(s); uio_error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio); s = splsoftnet(); if (uio_error) uio->uio_resid = resid - len; } else uio->uio_resid -= len; if (len == m->m_len - moff) { if (m->m_flags & M_EOR) flags |= MSG_EOR; if (flags & MSG_PEEK) { m = m->m_next; moff = 0; } else { nextrecord = m->m_nextpkt; sbfree(&so->so_rcv, m); if (mp) { *mp = m; mp = &m->m_next; so->so_rcv.sb_mb = m = m->m_next; *mp = (struct mbuf *)0; } else { MFREE(m, so->so_rcv.sb_mb); m = so->so_rcv.sb_mb; } if (m) m->m_nextpkt = nextrecord; } } else { if (flags & MSG_PEEK) moff += len; else { if (mp) *mp = m_copym(m, 0, len, M_WAIT); m->m_data += len; m->m_len -= len; so->so_rcv.sb_cc -= len; } } if (so->so_oobmark) { if ((flags & MSG_PEEK) == 0) { so->so_oobmark -= len; if (so->so_oobmark == 0) { so->so_state |= SS_RCVATMARK; break; } } else { offset += len; if (offset == so->so_oobmark) break; } } if (flags & MSG_EOR) break; /* * If the MSG_WAITALL flag is set (for non-atomic socket), * we must not quit until "uio->uio_resid == 0" or an error * termination. If a signal/timeout occurs, return * with a short count but without error. * Keep sockbuf locked against other readers. */ while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 && !sosendallatonce(so) && !nextrecord) { if (so->so_error || so->so_state & SS_CANTRCVMORE) break; error = sbwait(&so->so_rcv); if (error) { sbunlock(&so->so_rcv); splx(s); return (0); } if ((m = so->so_rcv.sb_mb) != NULL) nextrecord = m->m_nextpkt; } } if (m && pr->pr_flags & PR_ATOMIC) { flags |= MSG_TRUNC; if ((flags & MSG_PEEK) == 0) (void) sbdroprecord(&so->so_rcv); } if ((flags & MSG_PEEK) == 0) { if (m == 0) so->so_rcv.sb_mb = nextrecord; if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) (*pr->pr_usrreq)(so, PRU_RCVD, NULL, (struct mbuf *)(long)flags, NULL); } if (orig_resid == uio->uio_resid && orig_resid && (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { sbunlock(&so->so_rcv); splx(s); goto restart; } if (uio_error) error = uio_error; if (flagsp) *flagsp |= flags; release: sbunlock(&so->so_rcv); splx(s); return (error); } int soshutdown(so, how) register struct socket *so; register int how; { register struct protosw *pr = so->so_proto; how++; if (how & ~(FREAD|FWRITE)) return (EINVAL); if (how & FREAD) sorflush(so); if (how & FWRITE) return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, NULL, NULL); return (0); } void sorflush(so) register struct socket *so; { register struct sockbuf *sb = &so->so_rcv; register struct protosw *pr = so->so_proto; register int s; struct sockbuf asb; sb->sb_flags |= SB_NOINTR; (void) sblock(sb, M_WAITOK); s = splimp(); socantrcvmore(so); sbunlock(sb); asb = *sb; bzero((caddr_t)sb, sizeof (*sb)); splx(s); if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) (*pr->pr_domain->dom_dispose)(asb.sb_mb); sbrelease(&asb); } int sosetopt(so, level, optname, m0) register struct socket *so; int level, optname; struct mbuf *m0; { int error = 0; register struct mbuf *m = m0; if (level != SOL_SOCKET) { if (so->so_proto && so->so_proto->pr_ctloutput) return ((*so->so_proto->pr_ctloutput) (PRCO_SETOPT, so, level, optname, &m0)); error = ENOPROTOOPT; } else { switch (optname) { case SO_LINGER: if (m == NULL || m->m_len != sizeof (struct linger)) { error = EINVAL; goto bad; } so->so_linger = mtod(m, struct linger *)->l_linger; /* fall thru... */ case SO_DEBUG: case SO_KEEPALIVE: case SO_DONTROUTE: case SO_USELOOPBACK: case SO_BROADCAST: case SO_REUSEADDR: case SO_REUSEPORT: case SO_OOBINLINE: if (m == NULL || m->m_len < sizeof (int)) { error = EINVAL; goto bad; } if (*mtod(m, int *)) so->so_options |= optname; else so->so_options &= ~optname; break; case SO_SNDBUF: case SO_RCVBUF: case SO_SNDLOWAT: case SO_RCVLOWAT: { u_long cnt; if (m == NULL || m->m_len < sizeof (int)) { error = EINVAL; goto bad; } cnt = *mtod(m, int *); if ((long)cnt <= 0) cnt = 1; switch (optname) { case SO_SNDBUF: case SO_RCVBUF: if (sbreserve(optname == SO_SNDBUF ? &so->so_snd : &so->so_rcv, cnt) == 0) { error = ENOBUFS; goto bad; } break; case SO_SNDLOWAT: so->so_snd.sb_lowat = (cnt > so->so_snd.sb_hiwat) ? so->so_snd.sb_hiwat : cnt; break; case SO_RCVLOWAT: so->so_rcv.sb_lowat = (cnt > so->so_rcv.sb_hiwat) ? so->so_rcv.sb_hiwat : cnt; break; } break; } case SO_SNDTIMEO: case SO_RCVTIMEO: { struct timeval *tv; short val; if (m == NULL || m->m_len < sizeof (*tv)) { error = EINVAL; goto bad; } tv = mtod(m, struct timeval *); if (tv->tv_sec * hz + tv->tv_usec / tick > SHRT_MAX) { error = EDOM; goto bad; } val = tv->tv_sec * hz + tv->tv_usec / tick; switch (optname) { case SO_SNDTIMEO: so->so_snd.sb_timeo = val; break; case SO_RCVTIMEO: so->so_rcv.sb_timeo = val; break; } break; } default: error = ENOPROTOOPT; break; } if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { (void) ((*so->so_proto->pr_ctloutput) (PRCO_SETOPT, so, level, optname, &m0)); m = NULL; /* freed by protocol */ } } bad: if (m) (void) m_free(m); return (error); } int sogetopt(so, level, optname, mp) register struct socket *so; int level, optname; struct mbuf **mp; { register struct mbuf *m; if (level != SOL_SOCKET) { if (so->so_proto && so->so_proto->pr_ctloutput) { return ((*so->so_proto->pr_ctloutput) (PRCO_GETOPT, so, level, optname, mp)); } else return (ENOPROTOOPT); } else { m = m_get(M_WAIT, MT_SOOPTS); m->m_len = sizeof (int); switch (optname) { case SO_LINGER: m->m_len = sizeof (struct linger); mtod(m, struct linger *)->l_onoff = so->so_options & SO_LINGER; mtod(m, struct linger *)->l_linger = so->so_linger; break; case SO_USELOOPBACK: case SO_DONTROUTE: case SO_DEBUG: case SO_KEEPALIVE: case SO_REUSEADDR: case SO_REUSEPORT: case SO_BROADCAST: case SO_OOBINLINE: *mtod(m, int *) = so->so_options & optname; break; case SO_TYPE: *mtod(m, int *) = so->so_type; break; case SO_ERROR: *mtod(m, int *) = so->so_error; so->so_error = 0; break; case SO_SNDBUF: *mtod(m, int *) = so->so_snd.sb_hiwat; break; case SO_RCVBUF: *mtod(m, int *) = so->so_rcv.sb_hiwat; break; case SO_SNDLOWAT: *mtod(m, int *) = so->so_snd.sb_lowat; break; case SO_RCVLOWAT: *mtod(m, int *) = so->so_rcv.sb_lowat; break; case SO_SNDTIMEO: case SO_RCVTIMEO: { int val = (optname == SO_SNDTIMEO ? so->so_snd.sb_timeo : so->so_rcv.sb_timeo); m->m_len = sizeof(struct timeval); mtod(m, struct timeval *)->tv_sec = val / hz; mtod(m, struct timeval *)->tv_usec = (val % hz) * tick; break; } default: (void)m_free(m); return (ENOPROTOOPT); } *mp = m; return (0); } } void sohasoutofband(so) register struct socket *so; { csignal(so->so_pgid, SIGURG, so->so_siguid, so->so_sigeuid); selwakeup(&so->so_rcv.sb_sel); } int filt_sorattach(struct knote *kn) { struct socket *so = (struct socket *)kn->kn_fp->f_data; int s = splnet(); if (so->so_options & SO_ACCEPTCONN) kn->kn_fop = &solisten_filtops; SLIST_INSERT_HEAD(&so->so_rcv.sb_sel.si_note, kn, kn_selnext); so->so_rcv.sb_flags |= SB_KNOTE; splx(s); return (0); } void filt_sordetach(struct knote *kn) { struct socket *so = (struct socket *)kn->kn_fp->f_data; int s = splnet(); SLIST_REMOVE(&so->so_rcv.sb_sel.si_note, kn, knote, kn_selnext); if (SLIST_EMPTY(&so->so_rcv.sb_sel.si_note)) so->so_rcv.sb_flags &= ~SB_KNOTE; splx(s); } /*ARGSUSED*/ int filt_soread(struct knote *kn, long hint) { struct socket *so = (struct socket *)kn->kn_fp->f_data; kn->kn_data = so->so_rcv.sb_cc; if (so->so_state & SS_CANTRCVMORE) { kn->kn_flags |= EV_EOF; return (1); } if (so->so_error) /* temporary udp error */ return (1); return (kn->kn_data >= so->so_rcv.sb_lowat); } int filt_sowattach(struct knote *kn) { struct socket *so = (struct socket *)kn->kn_fp->f_data; int s = splnet(); SLIST_INSERT_HEAD(&so->so_snd.sb_sel.si_note, kn, kn_selnext); so->so_snd.sb_flags |= SB_KNOTE; splx(s); return (0); } void filt_sowdetach(struct knote *kn) { struct socket *so = (struct socket *)kn->kn_fp->f_data; int s = splnet(); SLIST_REMOVE(&so->so_snd.sb_sel.si_note, kn, knote, kn_selnext); if (SLIST_EMPTY(&so->so_snd.sb_sel.si_note)) so->so_snd.sb_flags &= ~SB_KNOTE; splx(s); } /*ARGSUSED*/ int filt_sowrite(struct knote *kn, long hint) { struct socket *so = (struct socket *)kn->kn_fp->f_data; kn->kn_data = sbspace(&so->so_snd); if (so->so_state & SS_CANTSENDMORE) { kn->kn_flags |= EV_EOF; return (1); } if (so->so_error) /* temporary udp error */ return (1); if (((so->so_state & SS_ISCONNECTED) == 0) && (so->so_proto->pr_flags & PR_CONNREQUIRED)) return (0); return (kn->kn_data >= so->so_snd.sb_lowat); } /*ARGSUSED*/ int filt_solisten(struct knote *kn, long hint) { struct socket *so = (struct socket *)kn->kn_fp->f_data; kn->kn_data = so->so_qlen; return (so->so_qlen != 0); }