/* $OpenBSD: uipc_socket.c,v 1.303 2023/04/28 12:53:42 bluhm Exp $ */ /* $NetBSD: uipc_socket.c,v 1.21 1996/02/04 02:17:52 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif void sbsync(struct sockbuf *, struct mbuf *); int sosplice(struct socket *, int, off_t, struct timeval *); void sounsplice(struct socket *, struct socket *, int); void soidle(void *); void sotask(void *); void soreaper(void *); void soput(void *); int somove(struct socket *, int); void sorflush(struct socket *); void filt_sordetach(struct knote *kn); int filt_soread(struct knote *kn, long hint); void filt_sowdetach(struct knote *kn); int filt_sowrite(struct knote *kn, long hint); int filt_soexcept(struct knote *kn, long hint); int filt_solisten(struct knote *kn, long hint); int filt_somodify(struct kevent *kev, struct knote *kn); int filt_soprocess(struct knote *kn, struct kevent *kev); const struct filterops solisten_filtops = { .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_sordetach, .f_event = filt_solisten, .f_modify = filt_somodify, .f_process = filt_soprocess, }; const struct filterops soread_filtops = { .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_sordetach, .f_event = filt_soread, .f_modify = filt_somodify, .f_process = filt_soprocess, }; const struct filterops sowrite_filtops = { .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_sowdetach, .f_event = filt_sowrite, .f_modify = filt_somodify, .f_process = filt_soprocess, }; const struct filterops soexcept_filtops = { .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_sordetach, .f_event = filt_soexcept, .f_modify = filt_somodify, .f_process = filt_soprocess, }; void klist_soassertlk(void *); int klist_solock(void *); void klist_sounlock(void *, int); const struct klistops socket_klistops = { .klo_assertlk = klist_soassertlk, .klo_lock = klist_solock, .klo_unlock = klist_sounlock, }; #ifndef SOMINCONN #define SOMINCONN 80 #endif /* SOMINCONN */ int somaxconn = SOMAXCONN; int sominconn = SOMINCONN; struct pool socket_pool; #ifdef SOCKET_SPLICE struct pool sosplice_pool; struct taskq *sosplice_taskq; struct rwlock sosplice_lock = RWLOCK_INITIALIZER("sosplicelk"); #endif void soinit(void) { pool_init(&socket_pool, sizeof(struct socket), 0, IPL_SOFTNET, 0, "sockpl", NULL); #ifdef SOCKET_SPLICE pool_init(&sosplice_pool, sizeof(struct sosplice), 0, IPL_SOFTNET, 0, "sosppl", NULL); #endif } struct socket * soalloc(int wait) { struct socket *so; so = pool_get(&socket_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) | PR_ZERO); if (so == NULL) return (NULL); rw_init_flags(&so->so_lock, "solock", RWL_DUPOK); refcnt_init(&so->so_refcnt); klist_init(&so->so_rcv.sb_klist, &socket_klistops, so); klist_init(&so->so_snd.sb_klist, &socket_klistops, so); sigio_init(&so->so_sigio); TAILQ_INIT(&so->so_q0); TAILQ_INIT(&so->so_q); return (so); } /* * Socket operation routines. * These routines are called by the routines in * sys_socket.c or from a system process, and * implement the semantics of socket operations by * switching out to the protocol specific routines. */ int socreate(int dom, struct socket **aso, int type, int proto) { struct proc *p = curproc; /* XXX */ const struct protosw *prp; struct socket *so; int error; if (proto) prp = pffindproto(dom, proto, type); else prp = pffindtype(dom, type); if (prp == NULL || prp->pr_usrreqs == NULL) return (EPROTONOSUPPORT); if (prp->pr_type != type) return (EPROTOTYPE); so = soalloc(M_WAIT); so->so_type = type; if (suser(p) == 0) so->so_state = SS_PRIV; so->so_ruid = p->p_ucred->cr_ruid; so->so_euid = p->p_ucred->cr_uid; so->so_rgid = p->p_ucred->cr_rgid; so->so_egid = p->p_ucred->cr_gid; so->so_cpid = p->p_p->ps_pid; so->so_proto = prp; so->so_snd.sb_timeo_nsecs = INFSLP; so->so_rcv.sb_timeo_nsecs = INFSLP; solock(so); error = pru_attach(so, proto, M_WAIT); if (error) { so->so_state |= SS_NOFDREF; /* sofree() calls sounlock(). */ sofree(so, 0); return (error); } sounlock(so); *aso = so; return (0); } int sobind(struct socket *so, struct mbuf *nam, struct proc *p) { soassertlocked(so); return pru_bind(so, nam, p); } int solisten(struct socket *so, int backlog) { int error; soassertlocked(so); if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ISDISCONNECTING)) return (EINVAL); #ifdef SOCKET_SPLICE if (isspliced(so) || issplicedback(so)) return (EOPNOTSUPP); #endif /* SOCKET_SPLICE */ error = pru_listen(so); if (error) return (error); if (TAILQ_FIRST(&so->so_q) == NULL) so->so_options |= SO_ACCEPTCONN; if (backlog < 0 || backlog > somaxconn) backlog = somaxconn; if (backlog < sominconn) backlog = sominconn; so->so_qlimit = backlog; return (0); } #define SOSP_FREEING_READ 1 #define SOSP_FREEING_WRITE 2 void sofree(struct socket *so, int keep_lock) { int persocket = solock_persocket(so); soassertlocked(so); if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { if (!keep_lock) sounlock(so); return; } if (so->so_head) { struct socket *head = so->so_head; /* * We must not decommission a socket that's on the accept(2) * queue. If we do, then accept(2) may hang after select(2) * indicated that the listening socket was ready. */ if (so->so_onq == &head->so_q) { if (!keep_lock) sounlock(so); return; } if (persocket) { /* * Concurrent close of `head' could * abort `so' due to re-lock. */ soref(so); soref(head); sounlock(so); solock(head); solock(so); if (so->so_onq != &head->so_q0) { sounlock(head); sounlock(so); sorele(head); sorele(so); return; } sorele(head); sorele(so); } soqremque(so, 0); if (persocket) sounlock(head); } if (persocket) { sounlock(so); refcnt_finalize(&so->so_refcnt, "sofinal"); solock(so); } sigio_free(&so->so_sigio); klist_free(&so->so_rcv.sb_klist); klist_free(&so->so_snd.sb_klist); #ifdef SOCKET_SPLICE if (issplicedback(so)) { int freeing = SOSP_FREEING_WRITE; if (so->so_sp->ssp_soback == so) freeing |= SOSP_FREEING_READ; sounsplice(so->so_sp->ssp_soback, so, freeing); } if (isspliced(so)) { int freeing = SOSP_FREEING_READ; if (so == so->so_sp->ssp_socket) freeing |= SOSP_FREEING_WRITE; sounsplice(so, so->so_sp->ssp_socket, freeing); } #endif /* SOCKET_SPLICE */ sbrelease(so, &so->so_snd); sorflush(so); if (!keep_lock) sounlock(so); #ifdef SOCKET_SPLICE if (so->so_sp) { /* Reuse splice idle, sounsplice() has been called before. */ timeout_set_proc(&so->so_sp->ssp_idleto, soreaper, so); timeout_add(&so->so_sp->ssp_idleto, 0); } else #endif /* SOCKET_SPLICE */ { pool_put(&socket_pool, so); } } static inline uint64_t solinger_nsec(struct socket *so) { if (so->so_linger == 0) return INFSLP; return SEC_TO_NSEC(so->so_linger); } /* * Close a socket on last file table reference removal. * Initiate disconnect if connected. * Free socket when disconnect complete. */ int soclose(struct socket *so, int flags) { struct socket *so2; int error = 0; solock(so); /* Revoke async IO early. There is a final revocation in sofree(). */ sigio_free(&so->so_sigio); if (so->so_state & SS_ISCONNECTED) { if (so->so_pcb == NULL) goto discard; if ((so->so_state & SS_ISDISCONNECTING) == 0) { error = sodisconnect(so); if (error) goto drop; } if (so->so_options & SO_LINGER) { if ((so->so_state & SS_ISDISCONNECTING) && (flags & MSG_DONTWAIT)) goto drop; while (so->so_state & SS_ISCONNECTED) { error = sosleep_nsec(so, &so->so_timeo, PSOCK | PCATCH, "netcls", solinger_nsec(so)); if (error) break; } } } drop: if (so->so_pcb) { int error2; error2 = pru_detach(so); if (error == 0) error = error2; } if (so->so_options & SO_ACCEPTCONN) { int persocket = solock_persocket(so); if (persocket) { /* Wait concurrent sonewconn() threads. */ while (so->so_newconn > 0) { so->so_state |= SS_NEWCONN_WAIT; sosleep_nsec(so, &so->so_newconn, PSOCK, "netlck", INFSLP); } } while ((so2 = TAILQ_FIRST(&so->so_q0)) != NULL) { if (persocket) solock(so2); (void) soqremque(so2, 0); if (persocket) sounlock(so); soabort(so2); if (persocket) solock(so); } while ((so2 = TAILQ_FIRST(&so->so_q)) != NULL) { if (persocket) solock(so2); (void) soqremque(so2, 1); if (persocket) sounlock(so); soabort(so2); if (persocket) solock(so); } } discard: if (so->so_state & SS_NOFDREF) panic("soclose NOFDREF: so %p, so_type %d", so, so->so_type); so->so_state |= SS_NOFDREF; /* sofree() calls sounlock(). */ sofree(so, 0); return (error); } void soabort(struct socket *so) { soassertlocked(so); pru_abort(so); } int soaccept(struct socket *so, struct mbuf *nam) { int error = 0; soassertlocked(so); if ((so->so_state & SS_NOFDREF) == 0) panic("soaccept !NOFDREF: so %p, so_type %d", so, so->so_type); so->so_state &= ~SS_NOFDREF; if ((so->so_state & SS_ISDISCONNECTED) == 0 || (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) error = pru_accept(so, nam); else error = ECONNABORTED; return (error); } int soconnect(struct socket *so, struct mbuf *nam) { int error; soassertlocked(so); if (so->so_options & SO_ACCEPTCONN) return (EOPNOTSUPP); /* * If protocol is connection-based, can only connect once. * Otherwise, if connected, try to disconnect first. * This allows user to disconnect by connecting to, e.g., * a null address. */ if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && ((so->so_proto->pr_flags & PR_CONNREQUIRED) || (error = sodisconnect(so)))) error = EISCONN; else error = pru_connect(so, nam); return (error); } int soconnect2(struct socket *so1, struct socket *so2) { int persocket, error; if ((persocket = solock_persocket(so1))) solock_pair(so1, so2); else solock(so1); error = pru_connect2(so1, so2); if (persocket) sounlock(so2); sounlock(so1); return (error); } int sodisconnect(struct socket *so) { int error; soassertlocked(so); if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); if (so->so_state & SS_ISDISCONNECTING) return (EALREADY); error = pru_disconnect(so); return (error); } int m_getuio(struct mbuf **, int, long, struct uio *); #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) /* * Send on a socket. * If send must go all at once and message is larger than * send buffering, then hard error. * Lock against other senders. * If must go all at once and not enough room now, then * inform user that this would block and do nothing. * Otherwise, if nonblocking, send as much as possible. * The data to be sent is described by "uio" if nonzero, * otherwise by the mbuf chain "top" (which must be null * if uio is not). Data provided in mbuf chain must be small * enough to send all at once. * * Returns nonzero on error, timeout or signal; callers * must check for short counts if EINTR/ERESTART are returned. * Data and control buffers are freed on return. */ int sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags) { long space, clen = 0; size_t resid; int error; int atomic = sosendallatonce(so) || top; if (uio) resid = uio->uio_resid; else resid = top->m_pkthdr.len; /* MSG_EOR on a SOCK_STREAM socket is invalid. */ if (so->so_type == SOCK_STREAM && (flags & MSG_EOR)) { m_freem(top); m_freem(control); return (EINVAL); } if (uio && uio->uio_procp) uio->uio_procp->p_ru.ru_msgsnd++; if (control) { /* * In theory clen should be unsigned (since control->m_len is). * However, space must be signed, as it might be less than 0 * if we over-committed, and we must use a signed comparison * of space and clen. */ clen = control->m_len; /* reserve extra space for AF_UNIX's internalize */ if (so->so_proto->pr_domain->dom_family == AF_UNIX && clen >= CMSG_ALIGN(sizeof(struct cmsghdr)) && mtod(control, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) clen = CMSG_SPACE( (clen - CMSG_ALIGN(sizeof(struct cmsghdr))) * (sizeof(struct fdpass) / sizeof(int))); } #define snderr(errno) { error = errno; goto release; } solock(so); restart: if ((error = sblock(so, &so->so_snd, SBLOCKWAIT(flags))) != 0) goto out; so->so_snd.sb_state |= SS_ISSENDING; do { if (so->so_snd.sb_state & SS_CANTSENDMORE) snderr(EPIPE); if (so->so_error) { error = so->so_error; so->so_error = 0; snderr(error); } if ((so->so_state & SS_ISCONNECTED) == 0) { if (so->so_proto->pr_flags & PR_CONNREQUIRED) { if (!(resid == 0 && clen != 0)) snderr(ENOTCONN); } else if (addr == NULL) snderr(EDESTADDRREQ); } space = sbspace(so, &so->so_snd); if (flags & MSG_OOB) space += 1024; if (so->so_proto->pr_domain->dom_family == AF_UNIX) { if (atomic && resid > so->so_snd.sb_hiwat) snderr(EMSGSIZE); } else { if (clen > so->so_snd.sb_hiwat || (atomic && resid > so->so_snd.sb_hiwat - clen)) snderr(EMSGSIZE); } if (space < clen || (space - clen < resid && (atomic || space < so->so_snd.sb_lowat))) { if (flags & MSG_DONTWAIT) snderr(EWOULDBLOCK); sbunlock(so, &so->so_snd); error = sbwait(so, &so->so_snd); so->so_snd.sb_state &= ~SS_ISSENDING; if (error) goto out; goto restart; } space -= clen; do { if (uio == NULL) { /* * Data is prepackaged in "top". */ resid = 0; if (flags & MSG_EOR) top->m_flags |= M_EOR; } else { sounlock(so); error = m_getuio(&top, atomic, space, uio); solock(so); if (error) goto release; space -= top->m_pkthdr.len; resid = uio->uio_resid; if (flags & MSG_EOR) top->m_flags |= M_EOR; } if (resid == 0) so->so_snd.sb_state &= ~SS_ISSENDING; if (top && so->so_options & SO_ZEROIZE) top->m_flags |= M_ZEROIZE; if (flags & MSG_OOB) error = pru_sendoob(so, top, addr, control); else error = pru_send(so, top, addr, control); clen = 0; control = NULL; top = NULL; if (error) goto release; } while (resid && space > 0); } while (resid); release: so->so_snd.sb_state &= ~SS_ISSENDING; sbunlock(so, &so->so_snd); out: sounlock(so); m_freem(top); m_freem(control); return (error); } int m_getuio(struct mbuf **mp, int atomic, long space, struct uio *uio) { struct mbuf *m, *top = NULL; struct mbuf **nextp = ⊤ u_long len, mlen; size_t resid = uio->uio_resid; int error; do { if (top == NULL) { MGETHDR(m, M_WAIT, MT_DATA); mlen = MHLEN; m->m_pkthdr.len = 0; m->m_pkthdr.ph_ifidx = 0; } else { MGET(m, M_WAIT, MT_DATA); mlen = MLEN; } /* chain mbuf together */ *nextp = m; nextp = &m->m_next; resid = ulmin(resid, space); if (resid >= MINCLSIZE) { MCLGETL(m, M_NOWAIT, ulmin(resid, MAXMCLBYTES)); if ((m->m_flags & M_EXT) == 0) MCLGETL(m, M_NOWAIT, MCLBYTES); if ((m->m_flags & M_EXT) == 0) goto nopages; mlen = m->m_ext.ext_size; len = ulmin(mlen, resid); /* * For datagram protocols, leave room * for protocol headers in first mbuf. */ if (atomic && m == top && len < mlen - max_hdr) m->m_data += max_hdr; } else { nopages: len = ulmin(mlen, resid); /* * For datagram protocols, leave room * for protocol headers in first mbuf. */ if (atomic && m == top && len < mlen - max_hdr) m_align(m, len); } error = uiomove(mtod(m, caddr_t), len, uio); if (error) { m_freem(top); return (error); } /* adjust counters */ resid = uio->uio_resid; space -= len; m->m_len = len; top->m_pkthdr.len += len; /* Is there more space and more data? */ } while (space > 0 && resid > 0); *mp = top; return 0; } /* * Following replacement or removal of the first mbuf on the first * mbuf chain of a socket buffer, push necessary state changes back * into the socket buffer so that other consumers see the values * consistently. 'nextrecord' is the callers locally stored value of * the original value of sb->sb_mb->m_nextpkt which must be restored * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. */ void sbsync(struct sockbuf *sb, struct mbuf *nextrecord) { /* * First, update for the new value of nextrecord. If necessary, * make it the first record. */ if (sb->sb_mb != NULL) sb->sb_mb->m_nextpkt = nextrecord; else sb->sb_mb = nextrecord; /* * Now update any dependent socket buffer fields to reflect * the new state. This is an inline of SB_EMPTY_FIXUP, with * the addition of a second clause that takes care of the * case where sb_mb has been updated, but remains the last * record. */ if (sb->sb_mb == NULL) { sb->sb_mbtail = NULL; sb->sb_lastrecord = NULL; } else if (sb->sb_mb->m_nextpkt == NULL) sb->sb_lastrecord = sb->sb_mb; } /* * Implement receive operations on a socket. * We depend on the way that records are added to the sockbuf * by sbappend*. In particular, each record (mbufs linked through m_next) * must begin with an address if the protocol so specifies, * followed by an optional mbuf or mbufs containing ancillary data, * and then zero or more mbufs of data. * In order to avoid blocking network for the entire time here, we release * the solock() while doing the actual copy to user space. * Although the sockbuf is locked, new data may still be appended, * and thus we must maintain consistency of the sockbuf during that time. * * The caller may receive the data as a single mbuf chain by supplying * an mbuf **mp0 for use in returning the chain. The uio is then used * only for the count in uio_resid. */ int soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp, socklen_t controllen) { struct mbuf *m, **mp; struct mbuf *cm; u_long len, offset, moff; int flags, error, type, uio_error = 0; const struct protosw *pr = so->so_proto; struct mbuf *nextrecord; size_t resid, orig_resid = uio->uio_resid; mp = mp0; if (paddr) *paddr = NULL; if (controlp) *controlp = NULL; if (flagsp) flags = *flagsp &~ MSG_EOR; else flags = 0; if (flags & MSG_OOB) { m = m_get(M_WAIT, MT_DATA); solock(so); error = pru_rcvoob(so, m, flags & MSG_PEEK); sounlock(so); if (error) goto bad; do { error = uiomove(mtod(m, caddr_t), ulmin(uio->uio_resid, m->m_len), uio); m = m_free(m); } while (uio->uio_resid && error == 0 && m); bad: m_freem(m); return (error); } if (mp) *mp = NULL; solock_shared(so); restart: if ((error = sblock(so, &so->so_rcv, SBLOCKWAIT(flags))) != 0) { sounlock_shared(so); return (error); } m = so->so_rcv.sb_mb; #ifdef SOCKET_SPLICE if (isspliced(so)) m = NULL; #endif /* SOCKET_SPLICE */ /* * If we have less data than requested, block awaiting more * (subject to any timeout) if: * 1. the current count is less than the low water mark, * 2. MSG_WAITALL is set, and it is possible to do the entire * receive operation at once if we block (resid <= hiwat), or * 3. MSG_DONTWAIT is not set. * If MSG_WAITALL is set but resid is larger than the receive buffer, * we have to do the receive in sections, and thus risk returning * a short count if a timeout or signal occurs after we start. */ if (m == NULL || (((flags & MSG_DONTWAIT) == 0 && so->so_rcv.sb_cc < uio->uio_resid) && (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) { #ifdef DIAGNOSTIC if (m == NULL && so->so_rcv.sb_cc) #ifdef SOCKET_SPLICE if (!isspliced(so)) #endif /* SOCKET_SPLICE */ panic("receive 1: so %p, so_type %d, sb_cc %lu", so, so->so_type, so->so_rcv.sb_cc); #endif if (so->so_error) { if (m) goto dontblock; error = so->so_error; if ((flags & MSG_PEEK) == 0) so->so_error = 0; goto release; } if (so->so_rcv.sb_state & SS_CANTRCVMORE) { if (m) goto dontblock; else if (so->so_rcv.sb_cc == 0) goto release; } for (; m; m = m->m_next) if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { m = so->so_rcv.sb_mb; goto dontblock; } if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { error = ENOTCONN; goto release; } if (uio->uio_resid == 0 && controlp == NULL) goto release; if (flags & MSG_DONTWAIT) { error = EWOULDBLOCK; goto release; } SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); sbunlock(so, &so->so_rcv); error = sbwait(so, &so->so_rcv); if (error) { sounlock_shared(so); return (error); } goto restart; } dontblock: /* * On entry here, m points to the first record of the socket buffer. * From this point onward, we maintain 'nextrecord' as a cache of the * pointer to the next record in the socket buffer. We must keep the * various socket buffer pointers and local stack versions of the * pointers in sync, pushing out modifications before operations that * may sleep, and re-reading them afterwards. * * Otherwise, we will race with the network stack appending new data * or records onto the socket buffer by using inconsistent/stale * versions of the field, possibly resulting in socket buffer * corruption. */ if (uio->uio_procp) uio->uio_procp->p_ru.ru_msgrcv++; KASSERT(m == so->so_rcv.sb_mb); SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); nextrecord = m->m_nextpkt; if (pr->pr_flags & PR_ADDR) { #ifdef DIAGNOSTIC if (m->m_type != MT_SONAME) panic("receive 1a: so %p, so_type %d, m %p, m_type %d", so, so->so_type, m, m->m_type); #endif orig_resid = 0; if (flags & MSG_PEEK) { if (paddr) *paddr = m_copym(m, 0, m->m_len, M_NOWAIT); m = m->m_next; } else { sbfree(so, &so->so_rcv, m); if (paddr) { *paddr = m; so->so_rcv.sb_mb = m->m_next; m->m_next = NULL; m = so->so_rcv.sb_mb; } else { so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; } sbsync(&so->so_rcv, nextrecord); } } while (m && m->m_type == MT_CONTROL && error == 0) { int skip = 0; if (flags & MSG_PEEK) { if (mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) { /* don't leak internalized SCM_RIGHTS msgs */ skip = 1; } else if (controlp) *controlp = m_copym(m, 0, m->m_len, M_NOWAIT); m = m->m_next; } else { sbfree(so, &so->so_rcv, m); so->so_rcv.sb_mb = m->m_next; m->m_nextpkt = m->m_next = NULL; cm = m; m = so->so_rcv.sb_mb; sbsync(&so->so_rcv, nextrecord); if (controlp) { if (pr->pr_domain->dom_externalize) { sounlock_shared(so); error = (*pr->pr_domain->dom_externalize) (cm, controllen, flags); solock_shared(so); } *controlp = cm; } else { /* * Dispose of any SCM_RIGHTS message that went * through the read path rather than recv. */ if (pr->pr_domain->dom_dispose) pr->pr_domain->dom_dispose(cm); m_free(cm); } } if (m != NULL) nextrecord = so->so_rcv.sb_mb->m_nextpkt; else nextrecord = so->so_rcv.sb_mb; if (controlp && !skip) controlp = &(*controlp)->m_next; orig_resid = 0; } /* If m is non-NULL, we have some data to read. */ if (m) { type = m->m_type; if (type == MT_OOBDATA) flags |= MSG_OOB; if (m->m_flags & M_BCAST) flags |= MSG_BCAST; if (m->m_flags & M_MCAST) flags |= MSG_MCAST; } SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); moff = 0; offset = 0; while (m && uio->uio_resid > 0 && error == 0) { if (m->m_type == MT_OOBDATA) { if (type != MT_OOBDATA) break; } else if (type == MT_OOBDATA) { break; } else if (m->m_type == MT_CONTROL) { /* * If there is more than one control message in the * stream, we do a short read. Next can be received * or disposed by another system call. */ break; #ifdef DIAGNOSTIC } else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) { panic("receive 3: so %p, so_type %d, m %p, m_type %d", so, so->so_type, m, m->m_type); #endif } so->so_rcv.sb_state &= ~SS_RCVATMARK; len = uio->uio_resid; if (so->so_oobmark && len > so->so_oobmark - offset) len = so->so_oobmark - offset; if (len > m->m_len - moff) len = m->m_len - moff; /* * If mp is set, just pass back the mbufs. * Otherwise copy them out via the uio, then free. * Sockbuf must be consistent here (points to current mbuf, * it points to next record) when we drop priority; * we must note any additions to the sockbuf when we * block interrupts again. */ if (mp == NULL && uio_error == 0) { SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); resid = uio->uio_resid; sounlock_shared(so); uio_error = uiomove(mtod(m, caddr_t) + moff, len, uio); solock_shared(so); if (uio_error) uio->uio_resid = resid - len; } else uio->uio_resid -= len; if (len == m->m_len - moff) { if (m->m_flags & M_EOR) flags |= MSG_EOR; if (flags & MSG_PEEK) { m = m->m_next; moff = 0; orig_resid = 0; } else { nextrecord = m->m_nextpkt; sbfree(so, &so->so_rcv, m); if (mp) { *mp = m; mp = &m->m_next; so->so_rcv.sb_mb = m = m->m_next; *mp = NULL; } else { so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; } /* * If m != NULL, we also know that * so->so_rcv.sb_mb != NULL. */ KASSERT(so->so_rcv.sb_mb == m); if (m) { m->m_nextpkt = nextrecord; if (nextrecord == NULL) so->so_rcv.sb_lastrecord = m; } else { so->so_rcv.sb_mb = nextrecord; SB_EMPTY_FIXUP(&so->so_rcv); } SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); } } else { if (flags & MSG_PEEK) { moff += len; orig_resid = 0; } else { if (mp) *mp = m_copym(m, 0, len, M_WAIT); m->m_data += len; m->m_len -= len; so->so_rcv.sb_cc -= len; so->so_rcv.sb_datacc -= len; } } if (so->so_oobmark) { if ((flags & MSG_PEEK) == 0) { so->so_oobmark -= len; if (so->so_oobmark == 0) { so->so_rcv.sb_state |= SS_RCVATMARK; break; } } else { offset += len; if (offset == so->so_oobmark) break; } } if (flags & MSG_EOR) break; /* * If the MSG_WAITALL flag is set (for non-atomic socket), * we must not quit until "uio->uio_resid == 0" or an error * termination. If a signal/timeout occurs, return * with a short count but without error. * Keep sockbuf locked against other readers. */ while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && !sosendallatonce(so) && !nextrecord) { if (so->so_rcv.sb_state & SS_CANTRCVMORE || so->so_error) break; SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); error = sbwait(so, &so->so_rcv); if (error) { sbunlock(so, &so->so_rcv); sounlock_shared(so); return (0); } if ((m = so->so_rcv.sb_mb) != NULL) nextrecord = m->m_nextpkt; } } if (m && pr->pr_flags & PR_ATOMIC) { flags |= MSG_TRUNC; if ((flags & MSG_PEEK) == 0) (void) sbdroprecord(so, &so->so_rcv); } if ((flags & MSG_PEEK) == 0) { if (m == NULL) { /* * First part is an inline SB_EMPTY_FIXUP(). Second * part makes sure sb_lastrecord is up-to-date if * there is still data in the socket buffer. */ so->so_rcv.sb_mb = nextrecord; if (so->so_rcv.sb_mb == NULL) { so->so_rcv.sb_mbtail = NULL; so->so_rcv.sb_lastrecord = NULL; } else if (nextrecord->m_nextpkt == NULL) so->so_rcv.sb_lastrecord = nextrecord; } SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); if (pr->pr_flags & PR_WANTRCVD) pru_rcvd(so); } if (orig_resid == uio->uio_resid && orig_resid && (flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SS_CANTRCVMORE) == 0) { sbunlock(so, &so->so_rcv); goto restart; } if (uio_error) error = uio_error; if (flagsp) *flagsp |= flags; release: sbunlock(so, &so->so_rcv); sounlock_shared(so); return (error); } int soshutdown(struct socket *so, int how) { int error = 0; solock(so); switch (how) { case SHUT_RD: sorflush(so); break; case SHUT_RDWR: sorflush(so); /* FALLTHROUGH */ case SHUT_WR: error = pru_shutdown(so); break; default: error = EINVAL; break; } sounlock(so); return (error); } void sorflush(struct socket *so) { struct sockbuf *sb = &so->so_rcv; struct mbuf *m; const struct protosw *pr = so->so_proto; int error; sb->sb_flags |= SB_NOINTR; error = sblock(so, sb, M_WAITOK); /* with SB_NOINTR and M_WAITOK sblock() must not fail */ KASSERT(error == 0); socantrcvmore(so); m = sb->sb_mb; memset(&sb->sb_startzero, 0, (caddr_t)&sb->sb_endzero - (caddr_t)&sb->sb_startzero); sb->sb_timeo_nsecs = INFSLP; sbunlock(so, sb); if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) (*pr->pr_domain->dom_dispose)(m); m_purge(m); } #ifdef SOCKET_SPLICE #define so_splicelen so_sp->ssp_len #define so_splicemax so_sp->ssp_max #define so_idletv so_sp->ssp_idletv #define so_idleto so_sp->ssp_idleto #define so_splicetask so_sp->ssp_task int sosplice(struct socket *so, int fd, off_t max, struct timeval *tv) { struct file *fp; struct socket *sosp; struct sosplice *sp; struct taskq *tq; int error = 0; soassertlocked(so); if (sosplice_taskq == NULL) { rw_enter_write(&sosplice_lock); if (sosplice_taskq == NULL) { tq = taskq_create("sosplice", 1, IPL_SOFTNET, TASKQ_MPSAFE); if (tq == NULL) { rw_exit_write(&sosplice_lock); return (ENOMEM); } /* Ensure the taskq is fully visible to other CPUs. */ membar_producer(); sosplice_taskq = tq; } rw_exit_write(&sosplice_lock); } else { /* Ensure the taskq is fully visible on this CPU. */ membar_consumer(); } if ((so->so_proto->pr_flags & PR_SPLICE) == 0) return (EPROTONOSUPPORT); if (so->so_options & SO_ACCEPTCONN) return (EOPNOTSUPP); if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && (so->so_proto->pr_flags & PR_CONNREQUIRED)) return (ENOTCONN); if (so->so_sp == NULL) { sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO); if (so->so_sp == NULL) so->so_sp = sp; else pool_put(&sosplice_pool, sp); } /* If no fd is given, unsplice by removing existing link. */ if (fd < 0) { /* Lock receive buffer. */ if ((error = sblock(so, &so->so_rcv, M_WAITOK)) != 0) { return (error); } if (so->so_sp->ssp_socket) sounsplice(so, so->so_sp->ssp_socket, 0); sbunlock(so, &so->so_rcv); return (0); } if (max && max < 0) return (EINVAL); if (tv && (tv->tv_sec < 0 || !timerisvalid(tv))) return (EINVAL); /* Find sosp, the drain socket where data will be spliced into. */ if ((error = getsock(curproc, fd, &fp)) != 0) return (error); sosp = fp->f_data; if (sosp->so_proto->pr_usrreqs->pru_send != so->so_proto->pr_usrreqs->pru_send) { error = EPROTONOSUPPORT; goto frele; } if (sosp->so_sp == NULL) { sp = pool_get(&sosplice_pool, PR_WAITOK | PR_ZERO); if (sosp->so_sp == NULL) sosp->so_sp = sp; else pool_put(&sosplice_pool, sp); } /* Lock both receive and send buffer. */ if ((error = sblock(so, &so->so_rcv, M_WAITOK)) != 0) { goto frele; } if ((error = sblock(so, &sosp->so_snd, M_WAITOK)) != 0) { sbunlock(so, &so->so_rcv); goto frele; } if (so->so_sp->ssp_socket || sosp->so_sp->ssp_soback) { error = EBUSY; goto release; } if (sosp->so_options & SO_ACCEPTCONN) { error = EOPNOTSUPP; goto release; } if ((sosp->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0) { error = ENOTCONN; goto release; } /* Splice so and sosp together. */ so->so_sp->ssp_socket = sosp; sosp->so_sp->ssp_soback = so; so->so_splicelen = 0; so->so_splicemax = max; if (tv) so->so_idletv = *tv; else timerclear(&so->so_idletv); timeout_set_proc(&so->so_idleto, soidle, so); task_set(&so->so_splicetask, sotask, so); /* * To prevent softnet interrupt from calling somove() while * we sleep, the socket buffers are not marked as spliced yet. */ if (somove(so, M_WAIT)) { so->so_rcv.sb_flags |= SB_SPLICE; sosp->so_snd.sb_flags |= SB_SPLICE; } release: sbunlock(sosp, &sosp->so_snd); sbunlock(so, &so->so_rcv); frele: /* * FRELE() must not be called with the socket lock held. It is safe to * release the lock here as long as no other operation happen on the * socket when sosplice() returns. The dance could be avoided by * grabbing the socket lock inside this function. */ sounlock(so); FRELE(fp, curproc); solock(so); return (error); } void sounsplice(struct socket *so, struct socket *sosp, int freeing) { soassertlocked(so); task_del(sosplice_taskq, &so->so_splicetask); timeout_del(&so->so_idleto); sosp->so_snd.sb_flags &= ~SB_SPLICE; so->so_rcv.sb_flags &= ~SB_SPLICE; so->so_sp->ssp_socket = sosp->so_sp->ssp_soback = NULL; /* Do not wakeup a socket that is about to be freed. */ if ((freeing & SOSP_FREEING_READ) == 0 && soreadable(so)) sorwakeup(so); if ((freeing & SOSP_FREEING_WRITE) == 0 && sowriteable(sosp)) sowwakeup(sosp); } void soidle(void *arg) { struct socket *so = arg; solock(so); if (so->so_rcv.sb_flags & SB_SPLICE) { so->so_error = ETIMEDOUT; sounsplice(so, so->so_sp->ssp_socket, 0); } sounlock(so); } void sotask(void *arg) { struct socket *so = arg; solock(so); if (so->so_rcv.sb_flags & SB_SPLICE) { /* * We may not sleep here as sofree() and unsplice() may be * called from softnet interrupt context. This would remove * the socket during somove(). */ somove(so, M_DONTWAIT); } sounlock(so); /* Avoid user land starvation. */ yield(); } /* * The socket splicing task or idle timeout may sleep while grabbing the net * lock. As sofree() can be called anytime, sotask() or soidle() could access * the socket memory of a freed socket after wakeup. So delay the pool_put() * after all pending socket splicing tasks or timeouts have finished. Do this * by scheduling it on the same threads. */ void soreaper(void *arg) { struct socket *so = arg; /* Reuse splice task, sounsplice() has been called before. */ task_set(&so->so_sp->ssp_task, soput, so); task_add(sosplice_taskq, &so->so_sp->ssp_task); } void soput(void *arg) { struct socket *so = arg; pool_put(&sosplice_pool, so->so_sp); pool_put(&socket_pool, so); } /* * Move data from receive buffer of spliced source socket to send * buffer of drain socket. Try to move as much as possible in one * big chunk. It is a TCP only implementation. * Return value 0 means splicing has been finished, 1 continue. */ int somove(struct socket *so, int wait) { struct socket *sosp = so->so_sp->ssp_socket; struct mbuf *m, **mp, *nextrecord; u_long len, off, oobmark; long space; int error = 0, maxreached = 0; unsigned int rcvstate; soassertlocked(so); nextpkt: if (so->so_error) { error = so->so_error; goto release; } if (sosp->so_snd.sb_state & SS_CANTSENDMORE) { error = EPIPE; goto release; } if (sosp->so_error && sosp->so_error != ETIMEDOUT && sosp->so_error != EFBIG && sosp->so_error != ELOOP) { error = sosp->so_error; goto release; } if ((sosp->so_state & SS_ISCONNECTED) == 0) goto release; /* Calculate how many bytes can be copied now. */ len = so->so_rcv.sb_datacc; if (so->so_splicemax) { KASSERT(so->so_splicelen < so->so_splicemax); if (so->so_splicemax <= so->so_splicelen + len) { len = so->so_splicemax - so->so_splicelen; maxreached = 1; } } space = sbspace(sosp, &sosp->so_snd); if (so->so_oobmark && so->so_oobmark < len && so->so_oobmark < space + 1024) space += 1024; if (space <= 0) { maxreached = 0; goto release; } if (space < len) { maxreached = 0; if (space < sosp->so_snd.sb_lowat) goto release; len = space; } sosp->so_snd.sb_state |= SS_ISSENDING; SBLASTRECORDCHK(&so->so_rcv, "somove 1"); SBLASTMBUFCHK(&so->so_rcv, "somove 1"); m = so->so_rcv.sb_mb; if (m == NULL) goto release; nextrecord = m->m_nextpkt; /* Drop address and control information not used with splicing. */ if (so->so_proto->pr_flags & PR_ADDR) { #ifdef DIAGNOSTIC if (m->m_type != MT_SONAME) panic("somove soname: so %p, so_type %d, m %p, " "m_type %d", so, so->so_type, m, m->m_type); #endif m = m->m_next; } while (m && m->m_type == MT_CONTROL) m = m->m_next; if (m == NULL) { sbdroprecord(so, &so->so_rcv); if (so->so_proto->pr_flags & PR_WANTRCVD) pru_rcvd(so); goto nextpkt; } /* * By splicing sockets connected to localhost, userland might create a * loop. Dissolve splicing with error if loop is detected by counter. * * If we deal with looped broadcast/multicast packet we bail out with * no error to suppress splice termination. */ if ((m->m_flags & M_PKTHDR) && ((m->m_pkthdr.ph_loopcnt++ >= M_MAXLOOP) || ((m->m_flags & M_LOOP) && (m->m_flags & (M_BCAST|M_MCAST))))) { error = ELOOP; goto release; } if (so->so_proto->pr_flags & PR_ATOMIC) { if ((m->m_flags & M_PKTHDR) == 0) panic("somove !PKTHDR: so %p, so_type %d, m %p, " "m_type %d", so, so->so_type, m, m->m_type); if (sosp->so_snd.sb_hiwat < m->m_pkthdr.len) { error = EMSGSIZE; goto release; } if (len < m->m_pkthdr.len) goto release; if (m->m_pkthdr.len < len) { maxreached = 0; len = m->m_pkthdr.len; } /* * Throw away the name mbuf after it has been assured * that the whole first record can be processed. */ m = so->so_rcv.sb_mb; sbfree(so, &so->so_rcv, m); so->so_rcv.sb_mb = m_free(m); sbsync(&so->so_rcv, nextrecord); } /* * Throw away the control mbufs after it has been assured * that the whole first record can be processed. */ m = so->so_rcv.sb_mb; while (m && m->m_type == MT_CONTROL) { sbfree(so, &so->so_rcv, m); so->so_rcv.sb_mb = m_free(m); m = so->so_rcv.sb_mb; sbsync(&so->so_rcv, nextrecord); } SBLASTRECORDCHK(&so->so_rcv, "somove 2"); SBLASTMBUFCHK(&so->so_rcv, "somove 2"); /* Take at most len mbufs out of receive buffer. */ for (off = 0, mp = &m; off <= len && *mp; off += (*mp)->m_len, mp = &(*mp)->m_next) { u_long size = len - off; #ifdef DIAGNOSTIC if ((*mp)->m_type != MT_DATA && (*mp)->m_type != MT_HEADER) panic("somove type: so %p, so_type %d, m %p, " "m_type %d", so, so->so_type, *mp, (*mp)->m_type); #endif if ((*mp)->m_len > size) { /* * Move only a partial mbuf at maximum splice length or * if the drain buffer is too small for this large mbuf. */ if (!maxreached && so->so_snd.sb_datacc > 0) { len -= size; break; } *mp = m_copym(so->so_rcv.sb_mb, 0, size, wait); if (*mp == NULL) { len -= size; break; } so->so_rcv.sb_mb->m_data += size; so->so_rcv.sb_mb->m_len -= size; so->so_rcv.sb_cc -= size; so->so_rcv.sb_datacc -= size; } else { *mp = so->so_rcv.sb_mb; sbfree(so, &so->so_rcv, *mp); so->so_rcv.sb_mb = (*mp)->m_next; sbsync(&so->so_rcv, nextrecord); } } *mp = NULL; SBLASTRECORDCHK(&so->so_rcv, "somove 3"); SBLASTMBUFCHK(&so->so_rcv, "somove 3"); SBCHECK(so, &so->so_rcv); if (m == NULL) goto release; m->m_nextpkt = NULL; if (m->m_flags & M_PKTHDR) { m_resethdr(m); m->m_pkthdr.len = len; } /* Send window update to source peer as receive buffer has changed. */ if (so->so_proto->pr_flags & PR_WANTRCVD) pru_rcvd(so); /* Receive buffer did shrink by len bytes, adjust oob. */ rcvstate = so->so_rcv.sb_state; so->so_rcv.sb_state &= ~SS_RCVATMARK; oobmark = so->so_oobmark; so->so_oobmark = oobmark > len ? oobmark - len : 0; if (oobmark) { if (oobmark == len) so->so_rcv.sb_state |= SS_RCVATMARK; if (oobmark >= len) oobmark = 0; } /* * Handle oob data. If any malloc fails, ignore error. * TCP urgent data is not very reliable anyway. */ while (((rcvstate & SS_RCVATMARK) || oobmark) && (so->so_options & SO_OOBINLINE)) { struct mbuf *o = NULL; if (rcvstate & SS_RCVATMARK) { o = m_get(wait, MT_DATA); rcvstate &= ~SS_RCVATMARK; } else if (oobmark) { o = m_split(m, oobmark, wait); if (o) { error = pru_send(sosp, m, NULL, NULL); if (error) { if (sosp->so_snd.sb_state & SS_CANTSENDMORE) error = EPIPE; m_freem(o); goto release; } len -= oobmark; so->so_splicelen += oobmark; m = o; o = m_get(wait, MT_DATA); } oobmark = 0; } if (o) { o->m_len = 1; *mtod(o, caddr_t) = *mtod(m, caddr_t); error = pru_sendoob(sosp, o, NULL, NULL); if (error) { if (sosp->so_snd.sb_state & SS_CANTSENDMORE) error = EPIPE; m_freem(m); goto release; } len -= 1; so->so_splicelen += 1; if (oobmark) { oobmark -= 1; if (oobmark == 0) rcvstate |= SS_RCVATMARK; } m_adj(m, 1); } } /* Append all remaining data to drain socket. */ if (so->so_rcv.sb_cc == 0 || maxreached) sosp->so_snd.sb_state &= ~SS_ISSENDING; error = pru_send(sosp, m, NULL, NULL); if (error) { if (sosp->so_snd.sb_state & SS_CANTSENDMORE) error = EPIPE; goto release; } so->so_splicelen += len; /* Move several packets if possible. */ if (!maxreached && nextrecord) goto nextpkt; release: sosp->so_snd.sb_state &= ~SS_ISSENDING; if (!error && maxreached && so->so_splicemax == so->so_splicelen) error = EFBIG; if (error) so->so_error = error; if (((so->so_rcv.sb_state & SS_CANTRCVMORE) && so->so_rcv.sb_cc == 0) || (sosp->so_snd.sb_state & SS_CANTSENDMORE) || maxreached || error) { sounsplice(so, sosp, 0); return (0); } if (timerisset(&so->so_idletv)) timeout_add_tv(&so->so_idleto, &so->so_idletv); return (1); } #endif /* SOCKET_SPLICE */ void sorwakeup(struct socket *so) { soassertlocked(so); #ifdef SOCKET_SPLICE if (so->so_rcv.sb_flags & SB_SPLICE) { /* * TCP has a sendbuffer that can handle multiple packets * at once. So queue the stream a bit to accumulate data. * The sosplice thread will call somove() later and send * the packets calling tcp_output() only once. * In the UDP case, send out the packets immediately. * Using a thread would make things slower. */ if (so->so_proto->pr_flags & PR_WANTRCVD) task_add(sosplice_taskq, &so->so_splicetask); else somove(so, M_DONTWAIT); } if (isspliced(so)) return; #endif sowakeup(so, &so->so_rcv); if (so->so_upcall) (*(so->so_upcall))(so, so->so_upcallarg, M_DONTWAIT); } void sowwakeup(struct socket *so) { soassertlocked(so); #ifdef SOCKET_SPLICE if (so->so_snd.sb_flags & SB_SPLICE) task_add(sosplice_taskq, &so->so_sp->ssp_soback->so_splicetask); if (issplicedback(so)) return; #endif sowakeup(so, &so->so_snd); } int sosetopt(struct socket *so, int level, int optname, struct mbuf *m) { int error = 0; soassertlocked(so); if (level != SOL_SOCKET) { if (so->so_proto->pr_ctloutput) { error = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level, optname, m); return (error); } error = ENOPROTOOPT; } else { switch (optname) { case SO_BINDANY: if ((error = suser(curproc)) != 0) /* XXX */ return (error); break; } switch (optname) { case SO_LINGER: if (m == NULL || m->m_len != sizeof (struct linger) || mtod(m, struct linger *)->l_linger < 0 || mtod(m, struct linger *)->l_linger > SHRT_MAX) return (EINVAL); so->so_linger = mtod(m, struct linger *)->l_linger; /* FALLTHROUGH */ case SO_BINDANY: case SO_DEBUG: case SO_KEEPALIVE: case SO_USELOOPBACK: case SO_BROADCAST: case SO_REUSEADDR: case SO_REUSEPORT: case SO_OOBINLINE: case SO_TIMESTAMP: case SO_ZEROIZE: if (m == NULL || m->m_len < sizeof (int)) return (EINVAL); if (*mtod(m, int *)) so->so_options |= optname; else so->so_options &= ~optname; break; case SO_DONTROUTE: if (m == NULL || m->m_len < sizeof (int)) return (EINVAL); if (*mtod(m, int *)) error = EOPNOTSUPP; break; case SO_SNDBUF: case SO_RCVBUF: case SO_SNDLOWAT: case SO_RCVLOWAT: { u_long cnt; if (m == NULL || m->m_len < sizeof (int)) return (EINVAL); cnt = *mtod(m, int *); if ((long)cnt <= 0) cnt = 1; switch (optname) { case SO_SNDBUF: if (so->so_snd.sb_state & SS_CANTSENDMORE) return (EINVAL); if (sbcheckreserve(cnt, so->so_snd.sb_wat) || sbreserve(so, &so->so_snd, cnt)) return (ENOBUFS); so->so_snd.sb_wat = cnt; break; case SO_RCVBUF: if (so->so_rcv.sb_state & SS_CANTRCVMORE) return (EINVAL); if (sbcheckreserve(cnt, so->so_rcv.sb_wat) || sbreserve(so, &so->so_rcv, cnt)) return (ENOBUFS); so->so_rcv.sb_wat = cnt; break; case SO_SNDLOWAT: so->so_snd.sb_lowat = (cnt > so->so_snd.sb_hiwat) ? so->so_snd.sb_hiwat : cnt; break; case SO_RCVLOWAT: so->so_rcv.sb_lowat = (cnt > so->so_rcv.sb_hiwat) ? so->so_rcv.sb_hiwat : cnt; break; } break; } case SO_SNDTIMEO: case SO_RCVTIMEO: { struct timeval tv; uint64_t nsecs; if (m == NULL || m->m_len < sizeof (tv)) return (EINVAL); memcpy(&tv, mtod(m, struct timeval *), sizeof tv); if (!timerisvalid(&tv)) return (EINVAL); nsecs = TIMEVAL_TO_NSEC(&tv); if (nsecs == UINT64_MAX) return (EDOM); if (nsecs == 0) nsecs = INFSLP; switch (optname) { case SO_SNDTIMEO: so->so_snd.sb_timeo_nsecs = nsecs; break; case SO_RCVTIMEO: so->so_rcv.sb_timeo_nsecs = nsecs; break; } break; } case SO_RTABLE: if (so->so_proto->pr_domain && so->so_proto->pr_domain->dom_protosw && so->so_proto->pr_ctloutput) { const struct domain *dom = so->so_proto->pr_domain; level = dom->dom_protosw->pr_protocol; error = (*so->so_proto->pr_ctloutput) (PRCO_SETOPT, so, level, optname, m); return (error); } error = ENOPROTOOPT; break; #ifdef SOCKET_SPLICE case SO_SPLICE: if (m == NULL) { error = sosplice(so, -1, 0, NULL); } else if (m->m_len < sizeof(int)) { return (EINVAL); } else if (m->m_len < sizeof(struct splice)) { error = sosplice(so, *mtod(m, int *), 0, NULL); } else { error = sosplice(so, mtod(m, struct splice *)->sp_fd, mtod(m, struct splice *)->sp_max, &mtod(m, struct splice *)->sp_idle); } break; #endif /* SOCKET_SPLICE */ default: error = ENOPROTOOPT; break; } if (error == 0 && so->so_proto->pr_ctloutput) { (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level, optname, m); } } return (error); } int sogetopt(struct socket *so, int level, int optname, struct mbuf *m) { int error = 0; if (level != SOL_SOCKET) { if (so->so_proto->pr_ctloutput) { m->m_len = 0; solock(so); error = (*so->so_proto->pr_ctloutput)(PRCO_GETOPT, so, level, optname, m); sounlock(so); return (error); } else return (ENOPROTOOPT); } else { m->m_len = sizeof (int); switch (optname) { case SO_LINGER: m->m_len = sizeof (struct linger); solock_shared(so); mtod(m, struct linger *)->l_onoff = so->so_options & SO_LINGER; mtod(m, struct linger *)->l_linger = so->so_linger; sounlock_shared(so); break; case SO_BINDANY: case SO_USELOOPBACK: case SO_DEBUG: case SO_KEEPALIVE: case SO_REUSEADDR: case SO_REUSEPORT: case SO_BROADCAST: case SO_OOBINLINE: case SO_TIMESTAMP: case SO_ZEROIZE: *mtod(m, int *) = so->so_options & optname; break; case SO_DONTROUTE: *mtod(m, int *) = 0; break; case SO_TYPE: *mtod(m, int *) = so->so_type; break; case SO_ERROR: solock(so); *mtod(m, int *) = so->so_error; so->so_error = 0; sounlock(so); break; case SO_DOMAIN: *mtod(m, int *) = so->so_proto->pr_domain->dom_family; break; case SO_PROTOCOL: *mtod(m, int *) = so->so_proto->pr_protocol; break; case SO_SNDBUF: *mtod(m, int *) = so->so_snd.sb_hiwat; break; case SO_RCVBUF: *mtod(m, int *) = so->so_rcv.sb_hiwat; break; case SO_SNDLOWAT: *mtod(m, int *) = so->so_snd.sb_lowat; break; case SO_RCVLOWAT: *mtod(m, int *) = so->so_rcv.sb_lowat; break; case SO_SNDTIMEO: case SO_RCVTIMEO: { struct sockbuf *sb = (optname == SO_SNDTIMEO ? &so->so_snd : &so->so_rcv); struct timeval tv; uint64_t nsecs; solock_shared(so); nsecs = sb->sb_timeo_nsecs; sounlock_shared(so); m->m_len = sizeof(struct timeval); memset(&tv, 0, sizeof(tv)); if (nsecs != INFSLP) NSEC_TO_TIMEVAL(nsecs, &tv); memcpy(mtod(m, struct timeval *), &tv, sizeof tv); break; } case SO_RTABLE: if (so->so_proto->pr_domain && so->so_proto->pr_domain->dom_protosw && so->so_proto->pr_ctloutput) { const struct domain *dom = so->so_proto->pr_domain; level = dom->dom_protosw->pr_protocol; solock(so); error = (*so->so_proto->pr_ctloutput) (PRCO_GETOPT, so, level, optname, m); sounlock(so); if (error) return (error); break; } return (ENOPROTOOPT); #ifdef SOCKET_SPLICE case SO_SPLICE: { off_t len; m->m_len = sizeof(off_t); solock_shared(so); len = so->so_sp ? so->so_sp->ssp_len : 0; sounlock_shared(so); memcpy(mtod(m, off_t *), &len, sizeof(off_t)); break; } #endif /* SOCKET_SPLICE */ case SO_PEERCRED: if (so->so_proto->pr_protocol == AF_UNIX) { struct unpcb *unp = sotounpcb(so); solock(so); if (unp->unp_flags & UNP_FEIDS) { m->m_len = sizeof(unp->unp_connid); memcpy(mtod(m, caddr_t), &(unp->unp_connid), m->m_len); sounlock(so); break; } sounlock(so); return (ENOTCONN); } return (EOPNOTSUPP); default: return (ENOPROTOOPT); } return (0); } } void sohasoutofband(struct socket *so) { pgsigio(&so->so_sigio, SIGURG, 0); knote_locked(&so->so_rcv.sb_klist, 0); } int soo_kqfilter(struct file *fp, struct knote *kn) { struct socket *so = kn->kn_fp->f_data; struct sockbuf *sb; solock(so); switch (kn->kn_filter) { case EVFILT_READ: if (so->so_options & SO_ACCEPTCONN) kn->kn_fop = &solisten_filtops; else kn->kn_fop = &soread_filtops; sb = &so->so_rcv; break; case EVFILT_WRITE: kn->kn_fop = &sowrite_filtops; sb = &so->so_snd; break; case EVFILT_EXCEPT: kn->kn_fop = &soexcept_filtops; sb = &so->so_rcv; break; default: sounlock(so); return (EINVAL); } klist_insert_locked(&sb->sb_klist, kn); sounlock(so); return (0); } void filt_sordetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; klist_remove(&so->so_rcv.sb_klist, kn); } int filt_soread(struct knote *kn, long hint) { struct socket *so = kn->kn_fp->f_data; int rv = 0; soassertlocked(so); kn->kn_data = so->so_rcv.sb_cc; #ifdef SOCKET_SPLICE if (isspliced(so)) { rv = 0; } else #endif /* SOCKET_SPLICE */ if (so->so_rcv.sb_state & SS_CANTRCVMORE) { kn->kn_flags |= EV_EOF; if (kn->kn_flags & __EV_POLL) { if (so->so_state & SS_ISDISCONNECTED) kn->kn_flags |= __EV_HUP; } kn->kn_fflags = so->so_error; rv = 1; } else if (so->so_error) { /* temporary udp error */ rv = 1; } else if (kn->kn_sfflags & NOTE_LOWAT) { rv = (kn->kn_data >= kn->kn_sdata); } else { rv = (kn->kn_data >= so->so_rcv.sb_lowat); } return rv; } void filt_sowdetach(struct knote *kn) { struct socket *so = kn->kn_fp->f_data; klist_remove(&so->so_snd.sb_klist, kn); } int filt_sowrite(struct knote *kn, long hint) { struct socket *so = kn->kn_fp->f_data; int rv; soassertlocked(so); kn->kn_data = sbspace(so, &so->so_snd); if (so->so_snd.sb_state & SS_CANTSENDMORE) { kn->kn_flags |= EV_EOF; if (kn->kn_flags & __EV_POLL) { if (so->so_state & SS_ISDISCONNECTED) kn->kn_flags |= __EV_HUP; } kn->kn_fflags = so->so_error; rv = 1; } else if (so->so_error) { /* temporary udp error */ rv = 1; } else if (((so->so_state & SS_ISCONNECTED) == 0) && (so->so_proto->pr_flags & PR_CONNREQUIRED)) { rv = 0; } else if (kn->kn_sfflags & NOTE_LOWAT) { rv = (kn->kn_data >= kn->kn_sdata); } else { rv = (kn->kn_data >= so->so_snd.sb_lowat); } return (rv); } int filt_soexcept(struct knote *kn, long hint) { struct socket *so = kn->kn_fp->f_data; int rv = 0; soassertlocked(so); #ifdef SOCKET_SPLICE if (isspliced(so)) { rv = 0; } else #endif /* SOCKET_SPLICE */ if (kn->kn_sfflags & NOTE_OOB) { if (so->so_oobmark || (so->so_rcv.sb_state & SS_RCVATMARK)) { kn->kn_fflags |= NOTE_OOB; kn->kn_data -= so->so_oobmark; rv = 1; } } if (kn->kn_flags & __EV_POLL) { if (so->so_state & SS_ISDISCONNECTED) { kn->kn_flags |= __EV_HUP; rv = 1; } } return rv; } int filt_solisten(struct knote *kn, long hint) { struct socket *so = kn->kn_fp->f_data; int active; soassertlocked(so); kn->kn_data = so->so_qlen; active = (kn->kn_data != 0); if (kn->kn_flags & (__EV_POLL | __EV_SELECT)) { if (so->so_state & SS_ISDISCONNECTED) { kn->kn_flags |= __EV_HUP; active = 1; } else { active = soreadable(so); } } return (active); } int filt_somodify(struct kevent *kev, struct knote *kn) { struct socket *so = kn->kn_fp->f_data; int rv; solock(so); rv = knote_modify(kev, kn); sounlock(so); return (rv); } int filt_soprocess(struct knote *kn, struct kevent *kev) { struct socket *so = kn->kn_fp->f_data; int rv; solock(so); rv = knote_process(kn, kev); sounlock(so); return (rv); } void klist_soassertlk(void *arg) { struct socket *so = arg; soassertlocked(so); } int klist_solock(void *arg) { struct socket *so = arg; solock(so); return (1); } void klist_sounlock(void *arg, int ls) { struct socket *so = arg; sounlock(so); } #ifdef DDB void sobuf_print(struct sockbuf *, int (*)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))); void sobuf_print(struct sockbuf *sb, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) { (*pr)("\tsb_cc: %lu\n", sb->sb_cc); (*pr)("\tsb_datacc: %lu\n", sb->sb_datacc); (*pr)("\tsb_hiwat: %lu\n", sb->sb_hiwat); (*pr)("\tsb_wat: %lu\n", sb->sb_wat); (*pr)("\tsb_mbcnt: %lu\n", sb->sb_mbcnt); (*pr)("\tsb_mbmax: %lu\n", sb->sb_mbmax); (*pr)("\tsb_lowat: %ld\n", sb->sb_lowat); (*pr)("\tsb_mb: %p\n", sb->sb_mb); (*pr)("\tsb_mbtail: %p\n", sb->sb_mbtail); (*pr)("\tsb_lastrecord: %p\n", sb->sb_lastrecord); (*pr)("\tsb_sel: ...\n"); (*pr)("\tsb_flags: %i\n", sb->sb_flags); (*pr)("\tsb_timeo_nsecs: %llu\n", sb->sb_timeo_nsecs); } void so_print(void *v, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) { struct socket *so = v; (*pr)("socket %p\n", so); (*pr)("so_type: %i\n", so->so_type); (*pr)("so_options: 0x%04x\n", so->so_options); /* %b */ (*pr)("so_linger: %i\n", so->so_linger); (*pr)("so_state: 0x%04x\n", so->so_state); (*pr)("so_pcb: %p\n", so->so_pcb); (*pr)("so_proto: %p\n", so->so_proto); (*pr)("so_sigio: %p\n", so->so_sigio.sir_sigio); (*pr)("so_head: %p\n", so->so_head); (*pr)("so_onq: %p\n", so->so_onq); (*pr)("so_q0: @%p first: %p\n", &so->so_q0, TAILQ_FIRST(&so->so_q0)); (*pr)("so_q: @%p first: %p\n", &so->so_q, TAILQ_FIRST(&so->so_q)); (*pr)("so_eq: next: %p\n", TAILQ_NEXT(so, so_qe)); (*pr)("so_q0len: %i\n", so->so_q0len); (*pr)("so_qlen: %i\n", so->so_qlen); (*pr)("so_qlimit: %i\n", so->so_qlimit); (*pr)("so_timeo: %i\n", so->so_timeo); (*pr)("so_obmark: %lu\n", so->so_oobmark); (*pr)("so_sp: %p\n", so->so_sp); if (so->so_sp != NULL) { (*pr)("\tssp_socket: %p\n", so->so_sp->ssp_socket); (*pr)("\tssp_soback: %p\n", so->so_sp->ssp_soback); (*pr)("\tssp_len: %lld\n", (unsigned long long)so->so_sp->ssp_len); (*pr)("\tssp_max: %lld\n", (unsigned long long)so->so_sp->ssp_max); (*pr)("\tssp_idletv: %lld %ld\n", so->so_sp->ssp_idletv.tv_sec, so->so_sp->ssp_idletv.tv_usec); (*pr)("\tssp_idleto: %spending (@%i)\n", timeout_pending(&so->so_sp->ssp_idleto) ? "" : "not ", so->so_sp->ssp_idleto.to_time); } (*pr)("so_rcv:\n"); sobuf_print(&so->so_rcv, pr); (*pr)("so_snd:\n"); sobuf_print(&so->so_snd, pr); (*pr)("so_upcall: %p so_upcallarg: %p\n", so->so_upcall, so->so_upcallarg); (*pr)("so_euid: %d so_ruid: %d\n", so->so_euid, so->so_ruid); (*pr)("so_egid: %d so_rgid: %d\n", so->so_egid, so->so_rgid); (*pr)("so_cpid: %d\n", so->so_cpid); } #endif