/* $OpenBSD: uipc_usrreq.c,v 1.140 2019/05/24 15:17:29 bluhm Exp $ */ /* $NetBSD: uipc_usrreq.c,v 1.18 1996/02/09 19:00:50 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void uipc_setaddr(const struct unpcb *, struct mbuf *); /* list of all UNIX domain sockets, for unp_gc() */ LIST_HEAD(unp_head, unpcb) unp_head = LIST_HEAD_INITIALIZER(unp_head); /* * Stack of sets of files that were passed over a socket but were * not received and need to be closed. */ struct unp_deferral { SLIST_ENTRY(unp_deferral) ud_link; int ud_n; /* followed by ud_n struct fdpass */ struct fdpass ud_fp[]; }; void unp_discard(struct fdpass *, int); void unp_mark(struct fdpass *, int); void unp_scan(struct mbuf *, void (*)(struct fdpass *, int)); int unp_nam2sun(struct mbuf *, struct sockaddr_un **, size_t *); /* list of sets of files that were sent over sockets that are now closed */ SLIST_HEAD(,unp_deferral) unp_deferred = SLIST_HEAD_INITIALIZER(unp_deferred); struct task unp_gc_task = TASK_INITIALIZER(unp_gc, NULL); /* * Unix communications domain. * * TODO: * RDM * rethink name space problems * need a proper out-of-band */ struct sockaddr sun_noname = { sizeof(sun_noname), AF_UNIX }; ino_t unp_ino; /* prototype for fake inode numbers */ void uipc_setaddr(const struct unpcb *unp, struct mbuf *nam) { if (unp != NULL && unp->unp_addr != NULL) { nam->m_len = unp->unp_addr->m_len; memcpy(mtod(nam, caddr_t), mtod(unp->unp_addr, caddr_t), nam->m_len); } else { nam->m_len = sizeof(sun_noname); memcpy(mtod(nam, struct sockaddr *), &sun_noname, nam->m_len); } } int uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam, struct mbuf *control, struct proc *p) { struct unpcb *unp = sotounpcb(so); struct unpcb *unp2; struct socket *so2; int error = 0; if (req == PRU_CONTROL) return (EOPNOTSUPP); if (req != PRU_SEND && control && control->m_len) { error = EOPNOTSUPP; goto release; } if (unp == NULL) { error = EINVAL; goto release; } NET_ASSERT_UNLOCKED(); switch (req) { case PRU_BIND: error = unp_bind(unp, nam, p); break; case PRU_LISTEN: if (unp->unp_vnode == NULL) error = EINVAL; break; case PRU_CONNECT: error = unp_connect(so, nam, p); break; case PRU_CONNECT2: error = unp_connect2(so, (struct socket *)nam); if (!error) { unp->unp_connid.uid = p->p_ucred->cr_uid; unp->unp_connid.gid = p->p_ucred->cr_gid; unp->unp_connid.pid = p->p_p->ps_pid; unp->unp_flags |= UNP_FEIDS; unp2 = sotounpcb((struct socket *)nam); unp2->unp_connid.uid = p->p_ucred->cr_uid; unp2->unp_connid.gid = p->p_ucred->cr_gid; unp2->unp_connid.pid = p->p_p->ps_pid; unp2->unp_flags |= UNP_FEIDS; } break; case PRU_DISCONNECT: unp_disconnect(unp); break; case PRU_ACCEPT: /* * Pass back name of connected socket, * if it was bound and we are still connected * (our peer may have closed already!). */ uipc_setaddr(unp->unp_conn, nam); break; case PRU_SHUTDOWN: socantsendmore(so); unp_shutdown(unp); break; case PRU_RCVD: switch (so->so_type) { case SOCK_DGRAM: panic("uipc 1"); /*NOTREACHED*/ case SOCK_STREAM: case SOCK_SEQPACKET: if (unp->unp_conn == NULL) break; so2 = unp->unp_conn->unp_socket; /* * Adjust backpressure on sender * and wakeup any waiting to write. */ so2->so_snd.sb_mbcnt = so->so_rcv.sb_mbcnt; so2->so_snd.sb_cc = so->so_rcv.sb_cc; sowwakeup(so2); break; default: panic("uipc 2"); } break; case PRU_SEND: if (control && (error = unp_internalize(control, p))) break; switch (so->so_type) { case SOCK_DGRAM: { struct sockaddr *from; if (nam) { if (unp->unp_conn) { error = EISCONN; break; } error = unp_connect(so, nam, p); if (error) break; } else { if (unp->unp_conn == NULL) { error = ENOTCONN; break; } } so2 = unp->unp_conn->unp_socket; if (unp->unp_addr) from = mtod(unp->unp_addr, struct sockaddr *); else from = &sun_noname; if (sbappendaddr(so2, &so2->so_rcv, from, m, control)) { sorwakeup(so2); m = NULL; control = NULL; } else error = ENOBUFS; if (nam) unp_disconnect(unp); break; } case SOCK_STREAM: case SOCK_SEQPACKET: if (so->so_state & SS_CANTSENDMORE) { error = EPIPE; break; } if (unp->unp_conn == NULL) { error = ENOTCONN; break; } so2 = unp->unp_conn->unp_socket; /* * Send to paired receive port, and then raise * send buffer counts to maintain backpressure. * Wake up readers. */ if (control) { if (sbappendcontrol(so2, &so2->so_rcv, m, control)) { control = NULL; } else { error = ENOBUFS; break; } } else if (so->so_type == SOCK_SEQPACKET) sbappendrecord(so2, &so2->so_rcv, m); else sbappend(so2, &so2->so_rcv, m); so->so_snd.sb_mbcnt = so2->so_rcv.sb_mbcnt; so->so_snd.sb_cc = so2->so_rcv.sb_cc; if (so2->so_rcv.sb_cc > 0) sorwakeup(so2); m = NULL; break; default: panic("uipc 4"); } /* we need to undo unp_internalize in case of errors */ if (control && error) unp_dispose(control); break; case PRU_ABORT: unp_drop(unp, ECONNABORTED); break; case PRU_SENSE: { struct stat *sb = (struct stat *)m; sb->st_blksize = so->so_snd.sb_hiwat; sb->st_dev = NODEV; if (unp->unp_ino == 0) unp->unp_ino = unp_ino++; sb->st_atim.tv_sec = sb->st_mtim.tv_sec = sb->st_ctim.tv_sec = unp->unp_ctime.tv_sec; sb->st_atim.tv_nsec = sb->st_mtim.tv_nsec = sb->st_ctim.tv_nsec = unp->unp_ctime.tv_nsec; sb->st_ino = unp->unp_ino; break; } case PRU_RCVOOB: case PRU_SENDOOB: error = EOPNOTSUPP; break; case PRU_SOCKADDR: uipc_setaddr(unp, nam); break; case PRU_PEERADDR: uipc_setaddr(unp->unp_conn, nam); break; case PRU_SLOWTIMO: break; default: panic("uipc_usrreq"); } release: if (req != PRU_RCVD && req != PRU_RCVOOB && req != PRU_SENSE) { m_freem(control); m_freem(m); } return (error); } /* * Both send and receive buffers are allocated PIPSIZ bytes of buffering * for stream sockets, although the total for sender and receiver is * actually only PIPSIZ. * Datagram sockets really use the sendspace as the maximum datagram size, * and don't really want to reserve the sendspace. Their recvspace should * be large enough for at least one max-size datagram plus address. */ #define PIPSIZ 4096 u_long unpst_sendspace = PIPSIZ; u_long unpst_recvspace = PIPSIZ; u_long unpdg_sendspace = 2*1024; /* really max datagram size */ u_long unpdg_recvspace = 4*1024; int unp_rights; /* file descriptors in flight */ int uipc_attach(struct socket *so, int proto) { struct unpcb *unp; int error; if (so->so_pcb) return EISCONN; if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { switch (so->so_type) { case SOCK_STREAM: case SOCK_SEQPACKET: error = soreserve(so, unpst_sendspace, unpst_recvspace); break; case SOCK_DGRAM: error = soreserve(so, unpdg_sendspace, unpdg_recvspace); break; default: panic("unp_attach"); } if (error) return (error); } unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT|M_ZERO); if (unp == NULL) return (ENOBUFS); unp->unp_socket = so; so->so_pcb = unp; getnanotime(&unp->unp_ctime); LIST_INSERT_HEAD(&unp_head, unp, unp_link); return (0); } int uipc_detach(struct socket *so) { struct unpcb *unp = sotounpcb(so); if (unp == NULL) return (EINVAL); NET_ASSERT_UNLOCKED(); unp_detach(unp); return (0); } void unp_detach(struct unpcb *unp) { struct vnode *vp; LIST_REMOVE(unp, unp_link); if (unp->unp_vnode) { unp->unp_vnode->v_socket = NULL; vp = unp->unp_vnode; unp->unp_vnode = NULL; vrele(vp); } if (unp->unp_conn) unp_disconnect(unp); while (!SLIST_EMPTY(&unp->unp_refs)) unp_drop(SLIST_FIRST(&unp->unp_refs), ECONNRESET); soisdisconnected(unp->unp_socket); unp->unp_socket->so_pcb = NULL; m_freem(unp->unp_addr); free(unp, M_PCB, sizeof *unp); if (unp_rights) task_add(systq, &unp_gc_task); } int unp_bind(struct unpcb *unp, struct mbuf *nam, struct proc *p) { struct sockaddr_un *soun; struct mbuf *nam2; struct vnode *vp; struct vattr vattr; int error; struct nameidata nd; size_t pathlen; if (unp->unp_vnode != NULL) return (EINVAL); if ((error = unp_nam2sun(nam, &soun, &pathlen))) return (error); nam2 = m_getclr(M_WAITOK, MT_SONAME); nam2->m_len = sizeof(struct sockaddr_un); memcpy(mtod(nam2, struct sockaddr_un *), soun, offsetof(struct sockaddr_un, sun_path) + pathlen); /* No need to NUL terminate: m_getclr() returns zero'd mbufs. */ soun = mtod(nam2, struct sockaddr_un *); /* Fixup sun_len to keep it in sync with m_len. */ soun->sun_len = nam2->m_len; NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT, UIO_SYSSPACE, soun->sun_path, p); nd.ni_pledge = PLEDGE_UNIX; /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ if ((error = namei(&nd)) != 0) { m_freem(nam2); return (error); } vp = nd.ni_vp; if (vp != NULL) { VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd); if (nd.ni_dvp == vp) vrele(nd.ni_dvp); else vput(nd.ni_dvp); vrele(vp); m_freem(nam2); return (EADDRINUSE); } VATTR_NULL(&vattr); vattr.va_type = VSOCK; vattr.va_mode = ACCESSPERMS &~ p->p_fd->fd_cmask; error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); vput(nd.ni_dvp); if (error) { m_freem(nam2); return (error); } unp->unp_addr = nam2; vp = nd.ni_vp; vp->v_socket = unp->unp_socket; unp->unp_vnode = vp; unp->unp_connid.uid = p->p_ucred->cr_uid; unp->unp_connid.gid = p->p_ucred->cr_gid; unp->unp_connid.pid = p->p_p->ps_pid; unp->unp_flags |= UNP_FEIDSBIND; VOP_UNLOCK(vp); return (0); } int unp_connect(struct socket *so, struct mbuf *nam, struct proc *p) { struct sockaddr_un *soun; struct vnode *vp; struct socket *so2, *so3; struct unpcb *unp, *unp2, *unp3; struct nameidata nd; int error; if ((error = unp_nam2sun(nam, &soun, NULL))) return (error); NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, soun->sun_path, p); nd.ni_pledge = PLEDGE_UNIX; if ((error = namei(&nd)) != 0) return (error); vp = nd.ni_vp; if (vp->v_type != VSOCK) { error = ENOTSOCK; goto bad; } if ((error = VOP_ACCESS(vp, VWRITE, p->p_ucred, p)) != 0) goto bad; so2 = vp->v_socket; if (so2 == NULL) { error = ECONNREFUSED; goto bad; } if (so->so_type != so2->so_type) { error = EPROTOTYPE; goto bad; } if (so->so_proto->pr_flags & PR_CONNREQUIRED) { if ((so2->so_options & SO_ACCEPTCONN) == 0 || (so3 = sonewconn(so2, 0)) == 0) { error = ECONNREFUSED; goto bad; } unp = sotounpcb(so); unp2 = sotounpcb(so2); unp3 = sotounpcb(so3); if (unp2->unp_addr) unp3->unp_addr = m_copym(unp2->unp_addr, 0, M_COPYALL, M_NOWAIT); unp3->unp_connid.uid = p->p_ucred->cr_uid; unp3->unp_connid.gid = p->p_ucred->cr_gid; unp3->unp_connid.pid = p->p_p->ps_pid; unp3->unp_flags |= UNP_FEIDS; so2 = so3; if (unp2->unp_flags & UNP_FEIDSBIND) { unp->unp_connid = unp2->unp_connid; unp->unp_flags |= UNP_FEIDS; } } error = unp_connect2(so, so2); bad: vput(vp); return (error); } int unp_connect2(struct socket *so, struct socket *so2) { struct unpcb *unp = sotounpcb(so); struct unpcb *unp2; if (so2->so_type != so->so_type) return (EPROTOTYPE); unp2 = sotounpcb(so2); unp->unp_conn = unp2; switch (so->so_type) { case SOCK_DGRAM: SLIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_nextref); soisconnected(so); break; case SOCK_STREAM: case SOCK_SEQPACKET: unp2->unp_conn = unp; soisconnected(so); soisconnected(so2); break; default: panic("unp_connect2"); } return (0); } void unp_disconnect(struct unpcb *unp) { struct unpcb *unp2 = unp->unp_conn; if (unp2 == NULL) return; unp->unp_conn = NULL; switch (unp->unp_socket->so_type) { case SOCK_DGRAM: SLIST_REMOVE(&unp2->unp_refs, unp, unpcb, unp_nextref); unp->unp_socket->so_state &= ~SS_ISCONNECTED; break; case SOCK_STREAM: case SOCK_SEQPACKET: unp->unp_socket->so_snd.sb_mbcnt = 0; unp->unp_socket->so_snd.sb_cc = 0; soisdisconnected(unp->unp_socket); unp2->unp_conn = NULL; unp2->unp_socket->so_snd.sb_mbcnt = 0; unp2->unp_socket->so_snd.sb_cc = 0; soisdisconnected(unp2->unp_socket); break; } } void unp_shutdown(struct unpcb *unp) { struct socket *so; switch (unp->unp_socket->so_type) { case SOCK_STREAM: case SOCK_SEQPACKET: if (unp->unp_conn && (so = unp->unp_conn->unp_socket)) socantrcvmore(so); break; default: break; } } void unp_drop(struct unpcb *unp, int errno) { struct socket *so = unp->unp_socket; KERNEL_ASSERT_LOCKED(); so->so_error = errno; unp_disconnect(unp); if (so->so_head) { so->so_pcb = NULL; /* * As long as the KERNEL_LOCK() is the default lock for Unix * sockets, do not release it. */ sofree(so, SL_NOUNLOCK); m_freem(unp->unp_addr); free(unp, M_PCB, sizeof *unp); } } #ifdef notdef unp_drain(void) { } #endif extern struct domain unixdomain; static struct unpcb * fptounp(struct file *fp) { struct socket *so; if (fp->f_type != DTYPE_SOCKET) return (NULL); if ((so = fp->f_data) == NULL) return (NULL); if (so->so_proto->pr_domain != &unixdomain) return (NULL); return (sotounpcb(so)); } int unp_externalize(struct mbuf *rights, socklen_t controllen, int flags) { struct proc *p = curproc; /* XXX */ struct cmsghdr *cm = mtod(rights, struct cmsghdr *); struct filedesc *fdp = p->p_fd; int i, *fds = NULL; struct fdpass *rp; struct file *fp; int nfds, error = 0; /* * This code only works because SCM_RIGHTS is the only supported * control message type on unix sockets. Enforce this here. */ if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET) return EINVAL; nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(struct fdpass); if (controllen < CMSG_ALIGN(sizeof(struct cmsghdr))) controllen = 0; else controllen -= CMSG_ALIGN(sizeof(struct cmsghdr)); if (nfds > controllen / sizeof(int)) { error = EMSGSIZE; goto restart; } /* Make sure the recipient should be able to see the descriptors.. */ rp = (struct fdpass *)CMSG_DATA(cm); for (i = 0; i < nfds; i++) { fp = rp->fp; rp++; error = pledge_recvfd(p, fp); if (error) break; /* * No to block devices. If passing a directory, * make sure that it is underneath the root. */ if (fdp->fd_rdir != NULL && fp->f_type == DTYPE_VNODE) { struct vnode *vp = (struct vnode *)fp->f_data; if (vp->v_type == VBLK || (vp->v_type == VDIR && !vn_isunder(vp, fdp->fd_rdir, p))) { error = EPERM; break; } } } fds = mallocarray(nfds, sizeof(int), M_TEMP, M_WAITOK); restart: fdplock(fdp); if (error != 0) { if (nfds > 0) { rp = ((struct fdpass *)CMSG_DATA(cm)); unp_discard(rp, nfds); } goto out; } /* * First loop -- allocate file descriptor table slots for the * new descriptors. */ rp = ((struct fdpass *)CMSG_DATA(cm)); for (i = 0; i < nfds; i++) { if ((error = fdalloc(p, 0, &fds[i])) != 0) { /* * Back out what we've done so far. */ for (--i; i >= 0; i--) fdremove(fdp, fds[i]); if (error == ENOSPC) { fdexpand(p); error = 0; } else { /* * This is the error that has historically * been returned, and some callers may * expect it. */ error = EMSGSIZE; } fdpunlock(fdp); goto restart; } /* * Make the slot reference the descriptor so that * fdalloc() works properly.. We finalize it all * in the loop below. */ mtx_enter(&fdp->fd_fplock); KASSERT(fdp->fd_ofiles[fds[i]] == NULL); fdp->fd_ofiles[fds[i]] = rp->fp; mtx_leave(&fdp->fd_fplock); fdp->fd_ofileflags[fds[i]] = (rp->flags & UF_PLEDGED); if (flags & MSG_CMSG_CLOEXEC) fdp->fd_ofileflags[fds[i]] |= UF_EXCLOSE; rp++; } /* * Now that adding them has succeeded, update all of the * descriptor passing state. */ rp = (struct fdpass *)CMSG_DATA(cm); for (i = 0; i < nfds; i++) { struct unpcb *unp; fp = rp->fp; rp++; if ((unp = fptounp(fp)) != NULL) unp->unp_msgcount--; unp_rights--; } /* * Copy temporary array to message and adjust length, in case of * transition from large struct file pointers to ints. */ memcpy(CMSG_DATA(cm), fds, nfds * sizeof(int)); cm->cmsg_len = CMSG_LEN(nfds * sizeof(int)); rights->m_len = CMSG_LEN(nfds * sizeof(int)); out: fdpunlock(fdp); if (fds != NULL) free(fds, M_TEMP, nfds * sizeof(int)); return (error); } int unp_internalize(struct mbuf *control, struct proc *p) { struct filedesc *fdp = p->p_fd; struct cmsghdr *cm = mtod(control, struct cmsghdr *); struct fdpass *rp; struct file *fp; struct unpcb *unp; int i, error; int nfds, *ip, fd, neededspace; /* * Check for two potential msg_controllen values because * IETF stuck their nose in a place it does not belong. */ if (control->m_len < CMSG_LEN(0) || cm->cmsg_len < CMSG_LEN(0)) return (EINVAL); if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET || !(cm->cmsg_len == control->m_len || control->m_len == CMSG_ALIGN(cm->cmsg_len))) return (EINVAL); nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof (int); if (unp_rights + nfds > maxfiles / 10) return (EMFILE); /* Make sure we have room for the struct file pointers */ morespace: neededspace = CMSG_SPACE(nfds * sizeof(struct fdpass)) - control->m_len; if (neededspace > m_trailingspace(control)) { char *tmp; /* if we already have a cluster, the message is just too big */ if (control->m_flags & M_EXT) return (E2BIG); /* copy cmsg data temporarily out of the mbuf */ tmp = malloc(control->m_len, M_TEMP, M_WAITOK); memcpy(tmp, mtod(control, caddr_t), control->m_len); /* allocate a cluster and try again */ MCLGET(control, M_WAIT); if ((control->m_flags & M_EXT) == 0) { free(tmp, M_TEMP, control->m_len); return (ENOBUFS); /* allocation failed */ } /* copy the data back into the cluster */ cm = mtod(control, struct cmsghdr *); memcpy(cm, tmp, control->m_len); free(tmp, M_TEMP, control->m_len); goto morespace; } /* adjust message & mbuf to note amount of space actually used. */ cm->cmsg_len = CMSG_LEN(nfds * sizeof(struct fdpass)); control->m_len = CMSG_SPACE(nfds * sizeof(struct fdpass)); ip = ((int *)CMSG_DATA(cm)) + nfds - 1; rp = ((struct fdpass *)CMSG_DATA(cm)) + nfds - 1; fdplock(fdp); for (i = 0; i < nfds; i++) { memcpy(&fd, ip, sizeof fd); ip--; if ((fp = fd_getfile(fdp, fd)) == NULL) { error = EBADF; goto fail; } if (fp->f_count >= FDUP_MAX_COUNT) { error = EDEADLK; goto fail; } error = pledge_sendfd(p, fp); if (error) goto fail; /* kqueue descriptors cannot be copied */ if (fp->f_type == DTYPE_KQUEUE) { error = EINVAL; goto fail; } rp->fp = fp; rp->flags = fdp->fd_ofileflags[fd] & UF_PLEDGED; rp--; if ((unp = fptounp(fp)) != NULL) { unp->unp_file = fp; unp->unp_msgcount++; } unp_rights++; } fdpunlock(fdp); return (0); fail: fdpunlock(fdp); if (fp != NULL) FRELE(fp, p); /* Back out what we just did. */ for ( ; i > 0; i--) { rp++; fp = rp->fp; if ((unp = fptounp(fp)) != NULL) unp->unp_msgcount--; FRELE(fp, p); unp_rights--; } return (error); } int unp_defer, unp_gcing; void unp_gc(void *arg __unused) { struct unp_deferral *defer; struct file *fp; struct socket *so; struct unpcb *unp; int nunref, i; if (unp_gcing) return; unp_gcing = 1; /* close any fds on the deferred list */ while ((defer = SLIST_FIRST(&unp_deferred)) != NULL) { SLIST_REMOVE_HEAD(&unp_deferred, ud_link); for (i = 0; i < defer->ud_n; i++) { fp = defer->ud_fp[i].fp; if (fp == NULL) continue; /* closef() expects a refcount of 2 */ FREF(fp); if ((unp = fptounp(fp)) != NULL) unp->unp_msgcount--; unp_rights--; (void) closef(fp, NULL); } free(defer, M_TEMP, sizeof(*defer) + sizeof(struct fdpass) * defer->ud_n); } unp_defer = 0; LIST_FOREACH(unp, &unp_head, unp_link) unp->unp_flags &= ~(UNP_GCMARK | UNP_GCDEFER | UNP_GCDEAD); do { nunref = 0; LIST_FOREACH(unp, &unp_head, unp_link) { fp = unp->unp_file; if (unp->unp_flags & UNP_GCDEFER) { /* * This socket is referenced by another * socket which is known to be live, * so it's certainly live. */ unp->unp_flags &= ~UNP_GCDEFER; unp_defer--; } else if (unp->unp_flags & UNP_GCMARK) { /* marked as live in previous pass */ continue; } else if (fp == NULL) { /* not being passed, so can't be in loop */ } else if (fp->f_count == 0) { /* * Already being closed, let normal close * path take its course */ } else { /* * Unreferenced by other sockets so far, * so if all the references (f_count) are * from passing (unp_msgcount) then this * socket is prospectively dead */ if (fp->f_count == unp->unp_msgcount) { nunref++; unp->unp_flags |= UNP_GCDEAD; continue; } } /* * This is the first time we've seen this socket on * the mark pass and known it has a live reference, * so mark it, then scan its receive buffer for * sockets and note them as deferred (== referenced, * but not yet marked). */ unp->unp_flags |= UNP_GCMARK; so = unp->unp_socket; unp_scan(so->so_rcv.sb_mb, unp_mark); } } while (unp_defer); /* * If there are any unreferenced sockets, then for each dispose * of files in its receive buffer and then close it. */ if (nunref) { LIST_FOREACH(unp, &unp_head, unp_link) { if (unp->unp_flags & UNP_GCDEAD) unp_scan(unp->unp_socket->so_rcv.sb_mb, unp_discard); } } unp_gcing = 0; } void unp_dispose(struct mbuf *m) { if (m) unp_scan(m, unp_discard); } void unp_scan(struct mbuf *m0, void (*op)(struct fdpass *, int)) { struct mbuf *m; struct fdpass *rp; struct cmsghdr *cm; int qfds; while (m0) { for (m = m0; m; m = m->m_next) { if (m->m_type == MT_CONTROL && m->m_len >= sizeof(*cm)) { cm = mtod(m, struct cmsghdr *); if (cm->cmsg_level != SOL_SOCKET || cm->cmsg_type != SCM_RIGHTS) continue; qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof *cm)) / sizeof(struct fdpass); if (qfds > 0) { rp = (struct fdpass *)CMSG_DATA(cm); op(rp, qfds); } break; /* XXX, but saves time */ } } m0 = m0->m_nextpkt; } } void unp_mark(struct fdpass *rp, int nfds) { struct unpcb *unp; int i; for (i = 0; i < nfds; i++) { if (rp[i].fp == NULL) continue; unp = fptounp(rp[i].fp); if (unp == NULL) continue; if (unp->unp_flags & (UNP_GCMARK|UNP_GCDEFER)) continue; unp_defer++; unp->unp_flags |= UNP_GCDEFER; unp->unp_flags &= ~UNP_GCDEAD; } } void unp_discard(struct fdpass *rp, int nfds) { struct unp_deferral *defer; /* copy the file pointers to a deferral structure */ defer = malloc(sizeof(*defer) + sizeof(*rp) * nfds, M_TEMP, M_WAITOK); defer->ud_n = nfds; memcpy(&defer->ud_fp[0], rp, sizeof(*rp) * nfds); memset(rp, 0, sizeof(*rp) * nfds); SLIST_INSERT_HEAD(&unp_deferred, defer, ud_link); task_add(systq, &unp_gc_task); } int unp_nam2sun(struct mbuf *nam, struct sockaddr_un **sun, size_t *pathlen) { struct sockaddr *sa = mtod(nam, struct sockaddr *); size_t size, len; if (nam->m_len < offsetof(struct sockaddr, sa_data)) return EINVAL; if (sa->sa_family != AF_UNIX) return EAFNOSUPPORT; if (sa->sa_len != nam->m_len) return EINVAL; if (sa->sa_len > sizeof(struct sockaddr_un)) return EINVAL; *sun = (struct sockaddr_un *)sa; /* ensure that sun_path is NUL terminated and fits */ size = (*sun)->sun_len - offsetof(struct sockaddr_un, sun_path); len = strnlen((*sun)->sun_path, size); if (len == sizeof((*sun)->sun_path)) return EINVAL; if (len == size) { if (m_trailingspace(nam) == 0) return EINVAL; nam->m_len++; (*sun)->sun_len++; (*sun)->sun_path[len] = '\0'; } if (pathlen != NULL) *pathlen = len; return 0; }