/* $OpenBSD: vfs_bio.c,v 1.94 2007/06/01 23:35:42 pedro Exp $ */ /* $NetBSD: vfs_bio.c,v 1.44 1996/06/11 11:15:36 pk Exp $ */ /*- * Copyright (c) 1994 Christopher G. Demetriou * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 */ /* * Some references: * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) * Leffler, et al.: The Design and Implementation of the 4.3BSD * UNIX Operating System (Addison Welley, 1989) */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Definitions for the buffer hash lists. */ #define BUFHASH(dvp, lbn) \ (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash]) LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; u_long bufhash; /* * Insq/Remq for the buffer hash lists. */ #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) #define bremhash(bp) LIST_REMOVE(bp, b_hash) /* * Definitions for the buffer free lists. */ #define BQUEUES 6 /* number of free buffer queues */ #define BQ_DIRTY 0 /* LRU queue with dirty buffers */ TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; int needbuffer; struct bio_ops bioops; /* * Buffer pool for I/O buffers. */ struct pool bufpool; struct vm_map *buf_map; struct bufhead bufhead = LIST_HEAD_INITIALIZER(bufhead); struct buf *buf_get(size_t); struct buf *buf_stub(struct vnode *, daddr64_t); void buf_put(struct buf *); /* * Insq/Remq for the buffer free lists. */ #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) struct buf *bio_doread(struct vnode *, daddr64_t, int, int); struct buf *getnewbuf(size_t); int buf_wait(int, int); void buf_init(struct buf *, int); void bread_cluster_callback(struct buf *); /* * We keep a few counters to monitor the utilization of the buffer cache * * numbufpages - number of pages totally allocated. * numdirtypages - number of pages on BQ_DIRTY queue. * lodirtypages - low water mark for buffer cleaning daemon. * hidirtypages - high water mark for buffer cleaning daemon. * numfreepages - number of pages on BQ_CLEAN and BQ_DIRTY queues. unused. * numcleanpages - number of pages on BQ_CLEAN queue. * Used to track the need to speedup the cleaner and * as a reserve for special processes like syncer. * maxcleanpages - the highest page count on BQ_CLEAN. */ long numbufpages; long numdirtypages; long lodirtypages; long hidirtypages; long numfreepages; long numcleanpages; long locleanpages; long hicleanpages; long maxcleanpages; struct proc *cleanerproc; int bd_req; /* Sleep point for cleaner daemon. */ int size2cqueue(int *size); int size2cqueue(int *size) { int i = 0, q; int s = *size; s -= 1; while (s > 0) { s = s >> 1; i++; } if (i < PAGE_SHIFT) { i = PAGE_SHIFT; /* < 4096 -> 4096 */ } *size = 1 << i; q = (i + 1 - PAGE_SHIFT); /* XXX 4096 is queue 1 */ if (q >= BQUEUES) panic("queue %d > BQUEUES %d", q, BQUEUES); if (q == 0) panic("can't return dirty q"); return(q); } void bremfree(struct buf *bp) { struct bqueues *dp = NULL; /* * We only calculate the head of the freelist when removing * the last element of the list as that is the only time that * it is needed (e.g. to reset the tail pointer). * * NB: This makes an assumption about how tailq's are implemented. */ if (TAILQ_NEXT(bp, b_freelist) == NULL) { for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) if (dp->tqh_last == &TAILQ_NEXT(bp, b_freelist)) break; if (dp == &bufqueues[BQUEUES]) panic("bremfree: lost tail"); } numfreepages -= btoc(bp->b_bufsize); if (!ISSET(bp->b_flags, B_DELWRI)) numcleanpages -= btoc(bp->b_bufsize); else numdirtypages -= btoc(bp->b_bufsize); TAILQ_REMOVE(dp, bp, b_freelist); } void buf_init(struct buf *bp, int size) { int npages; splassert(IPL_BIO); npages = btoc(size); bzero((char *)bp, sizeof *bp); bp->b_vnbufs.le_next = NOLIST; bp->b_freelist.tqe_next = NOLIST; bp->b_synctime = time_uptime + 300; bp->b_dev = NODEV; LIST_INIT(&bp->b_dep); numbufpages += npages; numfreepages += npages; numcleanpages += npages; if (maxcleanpages < numcleanpages) maxcleanpages = numcleanpages; } /* * This is a non-sleeping expanded equivalent of getblk() that allocates only * the buffer structure, and not its contents. */ struct buf * buf_stub(struct vnode *vp, daddr64_t lblkno) { struct buf *bp; int s; s = splbio(); bp = pool_get(&bufpool, PR_NOWAIT); splx(s); if (bp == NULL) return (NULL); bzero((char *)bp, sizeof *bp); bp->b_vnbufs.le_next = NOLIST; bp->b_freelist.tqe_next = NOLIST; bp->b_synctime = time_uptime + 300; bp->b_dev = NODEV; bp->b_bufsize = 0; bp->b_data = NULL; bp->b_flags = B_BUSY; bp->b_dev = NODEV; bp->b_blkno = bp->b_lblkno = lblkno; bp->b_iodone = NULL; bp->b_error = 0; bp->b_resid = 0; bp->b_bcount = 0; bp->b_dirtyoff = bp->b_dirtyend = 0; bp->b_validoff = bp->b_validend = 0; LIST_INIT(&bp->b_dep); LIST_INSERT_HEAD(&bufhead, bp, b_list); s = splbio(); bgetvp(vp, bp); splx(s); return (bp); } struct buf * buf_get(size_t size) { struct bqueues *dp; struct buf *bp; int npages; int queue, qs; void *data; splassert(IPL_BIO); KASSERT(size > 0); size = round_page(size); qs = size; queue = size2cqueue(&qs); npages = btoc(qs); if (numbufpages + npages > bufpages) return (NULL); bp = pool_get(&bufpool, PR_WAITOK); data = (void *)uvm_km_alloc(buf_map, qs); if (data == NULL) { pool_put(&bufpool, bp); return (NULL); } buf_init(bp, qs); bp->b_flags = B_INVAL; bp->b_bufsize = qs; bp->b_data = data; dp = &bufqueues[queue]; binsheadfree(bp, dp); binshash(bp, &invalhash); LIST_INSERT_HEAD(&bufhead, bp, b_list); return (bp); } void buf_put(struct buf *bp) { splassert(IPL_BIO); #ifdef DIAGNOSTIC if (bp->b_data != NULL) KASSERT(bp->b_bufsize > 0); #endif #ifdef QUEUE_MACRO_DEBUG if (bp->b_freelist.tqe_next != NOLIST && bp->b_freelist.tqe_next != (void *)-1) panic("buf_put: still on the free list"); if (bp->b_vnbufs.le_next != NOLIST && bp->b_vnbufs.le_next != (void *)-1) panic("buf_put: still on the vnode list"); #endif #ifdef DIAGNOSTIC if (!LIST_EMPTY(&bp->b_dep)) panic("buf_put: b_dep is not empty"); #endif LIST_REMOVE(bp, b_list); if (bp->b_data != NULL) { bremhash(bp); numbufpages -= btoc(bp->b_bufsize); uvm_km_free(buf_map, (vaddr_t)bp->b_data, bp->b_bufsize); } pool_put(&bufpool, bp); } /* * Initialize buffers and hash links for buffers. */ void bufinit(void) { vaddr_t minaddr, maxaddr; struct bqueues *dp; pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); pool_setipl(&bufpool, IPL_BIO); for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) TAILQ_INIT(dp); minaddr = vm_map_min(kernel_map); buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, ptoa(bufpages), 0, FALSE, NULL); bufhashtbl = hashinit(bufpages / 4, M_CACHE, M_WAITOK, &bufhash); hidirtypages = (bufpages / 4) * 3; lodirtypages = bufpages / 2; /* * Reserve 5% of bufpages for syncer's needs, * but not more than 25% and if possible * not less than 2 * MAXBSIZE. locleanpages * value must be not too small */ hicleanpages = bufpages / 2; locleanpages = hicleanpages / 2; if (locleanpages < btoc(2 * MAXBSIZE)) locleanpages = btoc(2 * MAXBSIZE); if (locleanpages > bufpages / 4) locleanpages = bufpages / 4; maxcleanpages = locleanpages; } struct buf * bio_doread(struct vnode *vp, daddr64_t blkno, int size, int async) { struct buf *bp; bp = getblk(vp, blkno, size, 0, 0); /* * If buffer does not have valid data, start a read. * Note that if buffer is B_INVAL, getblk() won't return it. * Therefore, it's valid if its I/O has completed or been delayed. */ if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { SET(bp->b_flags, B_READ | async); VOP_STRATEGY(bp); /* Pay for the read. */ curproc->p_stats->p_ru.ru_inblock++; /* XXX */ } else if (async) { brelse(bp); } return (bp); } /* * Read a disk block. * This algorithm described in Bach (p.54). */ int bread(struct vnode *vp, daddr64_t blkno, int size, struct ucred *cred, struct buf **bpp) { struct buf *bp; /* Get buffer for block. */ bp = *bpp = bio_doread(vp, blkno, size, 0); /* Wait for the read to complete, and return result. */ return (biowait(bp)); } /* * Read-ahead multiple disk blocks. The first is sync, the rest async. * Trivial modification to the breada algorithm presented in Bach (p.55). */ int breadn(struct vnode *vp, daddr64_t blkno, int size, daddr64_t rablks[], int rasizes[], int nrablks, struct ucred *cred, struct buf **bpp) { struct buf *bp; int i; bp = *bpp = bio_doread(vp, blkno, size, 0); /* * For each of the read-ahead blocks, start a read, if necessary. */ for (i = 0; i < nrablks; i++) { /* If it's in the cache, just go on to next one. */ if (incore(vp, rablks[i])) continue; /* Get a buffer for the read-ahead block */ (void) bio_doread(vp, rablks[i], rasizes[i], B_ASYNC); } /* Otherwise, we had to start a read for it; wait until it's valid. */ return (biowait(bp)); } /* * Called from interrupt context. */ void bread_cluster_callback(struct buf *bp) { int i; struct buf **xbpp; xbpp = (struct buf **)bp->b_saveaddr; for (i = 0; xbpp[i] != 0; i++) { if (ISSET(bp->b_flags, B_ERROR)) SET(xbpp[i]->b_flags, B_INVAL | B_ERROR); biodone(xbpp[i]); } free(xbpp, M_TEMP); bp->b_data = NULL; buf_put(bp); } int bread_cluster(struct vnode *vp, daddr64_t blkno, int size, struct buf **rbpp) { struct buf *bp, **xbpp; int howmany, i, maxra, inc; daddr64_t sblkno; size_t spill; *rbpp = bio_doread(vp, blkno, size, 0); size = round_page(size); howmany = MAXPHYS / size; if (VOP_BMAP(vp, blkno + 1, NULL, &sblkno, &maxra)) return (biowait(*rbpp)); maxra++; if (sblkno == -1 || maxra < 2) return (biowait(*rbpp)); if (howmany > maxra) howmany = maxra; xbpp = malloc((howmany + 1) * sizeof(struct buf *), M_TEMP, M_NOWAIT); if (xbpp == NULL) return (biowait(*rbpp)); for (i = 0; i < howmany; i++) { if (incore(vp, blkno + i + 1)) { for (--i; i >= 0; i--) { SET(xbpp[i]->b_flags, B_INVAL); brelse(xbpp[i]); } free(xbpp, M_TEMP); return (biowait(*rbpp)); } xbpp[i] = buf_stub(vp, blkno + i + 1); if (xbpp[i] == NULL) { for (--i; i >= 0; i--) { SET(xbpp[i]->b_flags, B_INVAL); brelse(xbpp[i]); } free(xbpp, M_TEMP); return (biowait(*rbpp)); } } xbpp[howmany] = 0; bp = getnewbuf(howmany * size); if (bp == NULL) { for (i = 0; i < howmany; i++) { SET(xbpp[i]->b_flags, B_INVAL); brelse(xbpp[i]); } free(xbpp, M_TEMP); return (biowait(*rbpp)); } inc = btodb(size); for (i = 0; i < howmany; i++) { SET(xbpp[i]->b_flags, B_READ | B_ASYNC); binshash(xbpp[i], BUFHASH(vp, xbpp[i]->b_lblkno)); xbpp[i]->b_blkno = sblkno + (i * inc); xbpp[i]->b_bufsize = xbpp[i]->b_bcount = size; xbpp[i]->b_data = bp->b_data + (i * size); } bp->b_blkno = sblkno; bp->b_lblkno = blkno + 1; SET(bp->b_flags, B_READ | B_ASYNC | B_CALL); bp->b_saveaddr = (void *)xbpp; bp->b_iodone = bread_cluster_callback; bp->b_vp = vp; spill = bp->b_bufsize - bp->b_bcount; if (spill) { uvm_km_free(buf_map, (vaddr_t) bp->b_data + bp->b_bcount, spill); numbufpages -= atop(spill); } VOP_STRATEGY(bp); curproc->p_stats->p_ru.ru_inblock++; return (biowait(*rbpp)); } /* * Block write. Described in Bach (p.56) */ int bwrite(struct buf *bp) { int rv, async, wasdelayed, s; struct vnode *vp; struct mount *mp; vp = bp->b_vp; if (vp != NULL) mp = vp->v_type == VBLK? vp->v_specmountpoint : vp->v_mount; else mp = NULL; /* * Remember buffer type, to switch on it later. If the write was * synchronous, but the file system was mounted with MNT_ASYNC, * convert it to a delayed write. * XXX note that this relies on delayed tape writes being converted * to async, not sync writes (which is safe, but ugly). */ async = ISSET(bp->b_flags, B_ASYNC); if (!async && mp && ISSET(mp->mnt_flag, MNT_ASYNC)) { bdwrite(bp); return (0); } /* * Collect statistics on synchronous and asynchronous writes. * Writes to block devices are charged to their associated * filesystem (if any). */ if (mp != NULL) { if (async) mp->mnt_stat.f_asyncwrites++; else mp->mnt_stat.f_syncwrites++; } wasdelayed = ISSET(bp->b_flags, B_DELWRI); CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); s = splbio(); /* * If not synchronous, pay for the I/O operation and make * sure the buf is on the correct vnode queue. We have * to do this now, because if we don't, the vnode may not * be properly notified that its I/O has completed. */ if (wasdelayed) { reassignbuf(bp); } else curproc->p_stats->p_ru.ru_oublock++; /* Initiate disk write. Make sure the appropriate party is charged. */ bp->b_vp->v_numoutput++; splx(s); SET(bp->b_flags, B_WRITEINPROG); VOP_STRATEGY(bp); if (async) return (0); /* * If I/O was synchronous, wait for it to complete. */ rv = biowait(bp); /* Release the buffer. */ brelse(bp); return (rv); } /* * Delayed write. * * The buffer is marked dirty, but is not queued for I/O. * This routine should be used when the buffer is expected * to be modified again soon, typically a small write that * partially fills a buffer. * * NB: magnetic tapes cannot be delayed; they must be * written in the order that the writes are requested. * * Described in Leffler, et al. (pp. 208-213). */ void bdwrite(struct buf *bp) { int s; /* * If the block hasn't been seen before: * (1) Mark it as having been seen, * (2) Charge for the write. * (3) Make sure it's on its vnode's correct block list, * (4) If a buffer is rewritten, move it to end of dirty list */ if (!ISSET(bp->b_flags, B_DELWRI)) { SET(bp->b_flags, B_DELWRI); bp->b_synctime = time_uptime + 35; s = splbio(); reassignbuf(bp); splx(s); curproc->p_stats->p_ru.ru_oublock++; /* XXX */ } else { /* * see if this buffer has slacked through the syncer * and enforce an async write upon it. */ if (bp->b_synctime < time_uptime) { bawrite(bp); return; } } /* If this is a tape block, write the block now. */ if (major(bp->b_dev) < nblkdev && bdevsw[major(bp->b_dev)].d_type == D_TAPE) { bawrite(bp); return; } /* Otherwise, the "write" is done, so mark and release the buffer. */ CLR(bp->b_flags, B_NEEDCOMMIT); SET(bp->b_flags, B_DONE); brelse(bp); } /* * Asynchronous block write; just an asynchronous bwrite(). */ void bawrite(struct buf *bp) { SET(bp->b_flags, B_ASYNC); VOP_BWRITE(bp); } /* * Must be called at splbio() */ void buf_dirty(struct buf *bp) { splassert(IPL_BIO); if (ISSET(bp->b_flags, B_DELWRI) == 0) { SET(bp->b_flags, B_DELWRI); bp->b_synctime = time_uptime + 35; reassignbuf(bp); } } /* * Must be called at splbio() */ void buf_undirty(struct buf *bp) { splassert(IPL_BIO); if (ISSET(bp->b_flags, B_DELWRI)) { CLR(bp->b_flags, B_DELWRI); reassignbuf(bp); } } /* * Release a buffer on to the free lists. * Described in Bach (p. 46). */ void brelse(struct buf *bp) { struct bqueues *bufq; int s; /* Block disk interrupts. */ s = splbio(); if (bp->b_data != NULL) KASSERT(bp->b_bufsize > 0); /* * Determine which queue the buffer should be on, then put it there. */ /* If it's not cacheable, or an error, mark it invalid. */ if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) SET(bp->b_flags, B_INVAL); if (ISSET(bp->b_flags, B_INVAL)) { int queue, qs; /* * If the buffer is invalid, place it in the clean queue, so it * can be reused. */ if (LIST_FIRST(&bp->b_dep) != NULL) buf_deallocate(bp); if (ISSET(bp->b_flags, B_DELWRI)) { CLR(bp->b_flags, B_DELWRI); } if (bp->b_vp) brelvp(bp); /* * If the buffer has no associated data, place it back in the * pool. */ if (bp->b_data == NULL) { buf_put(bp); splx(s); return; } qs = bp->b_bufsize; queue = size2cqueue(&qs); numcleanpages += btoc(bp->b_bufsize); if (maxcleanpages < numcleanpages) maxcleanpages = numcleanpages; binsheadfree(bp, &bufqueues[queue]); } else { /* * It has valid data. Put it on the end of the appropriate * queue, so that it'll stick around for as long as possible. */ int queue, qs; numfreepages += btoc(bp->b_bufsize); qs = bp->b_bufsize; queue = size2cqueue(&qs); if (!ISSET(bp->b_flags, B_DELWRI)) { numcleanpages += btoc(bp->b_bufsize); if (maxcleanpages < numcleanpages) maxcleanpages = numcleanpages; bufq = &bufqueues[queue]; } else { numdirtypages += btoc(bp->b_bufsize); bufq = &bufqueues[BQ_DIRTY]; } if (ISSET(bp->b_flags, B_AGE)) { binsheadfree(bp, bufq); bp->b_synctime = time_uptime + 30; } else { binstailfree(bp, bufq); bp->b_synctime = time_uptime + 300; } } /* Unlock the buffer. */ CLR(bp->b_flags, (B_AGE | B_ASYNC | B_BUSY | B_NOCACHE | B_DEFERRED)); /* Wake up any processes waiting for any buffer to become free. */ if (needbuffer) { needbuffer--; wakeup_one(&needbuffer); } /* Wake up any processes waiting for _this_ buffer to become free. */ if (ISSET(bp->b_flags, B_WANTED)) { CLR(bp->b_flags, B_WANTED); wakeup(bp); } splx(s); } /* * Determine if a block is in the cache. Just look on what would be its hash * chain. If it's there, return a pointer to it, unless it's marked invalid. */ struct buf * incore(struct vnode *vp, daddr64_t blkno) { struct buf *bp; /* Search hash chain */ LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { if (bp->b_lblkno == blkno && bp->b_vp == vp && !ISSET(bp->b_flags, B_INVAL)) return (bp); } return (NULL); } /* * Get a block of requested size that is associated with * a given vnode and block offset. If it is found in the * block cache, mark it as having been found, make it busy * and return it. Otherwise, return an empty block of the * correct size. It is up to the caller to ensure that the * cached blocks be of the correct size. */ struct buf * getblk(struct vnode *vp, daddr64_t blkno, int size, int slpflag, int slptimeo) { struct bufhashhdr *bh; struct buf *bp, *nb = NULL; int s, error; /* * XXX * The following is an inlined version of 'incore()', but with * the 'invalid' test moved to after the 'busy' test. It's * necessary because there are some cases in which the NFS * code sets B_INVAL prior to writing data to the server, but * in which the buffers actually contain valid data. In this * case, we can't allow the system to allocate a new buffer for * the block until the write is finished. */ bh = BUFHASH(vp, blkno); start: LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { if (bp->b_lblkno != blkno || bp->b_vp != vp) continue; s = splbio(); if (ISSET(bp->b_flags, B_BUSY)) { if (nb != NULL) { SET(nb->b_flags, B_INVAL); binshash(nb, &invalhash); brelse(nb); nb = NULL; } SET(bp->b_flags, B_WANTED); error = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", slptimeo); splx(s); if (error) return (NULL); goto start; } if (!ISSET(bp->b_flags, B_INVAL)) { SET(bp->b_flags, (B_BUSY | B_CACHE)); bremfree(bp); splx(s); break; } splx(s); } if (nb && bp) { SET(nb->b_flags, B_INVAL); binshash(nb, &invalhash); brelse(nb); nb = NULL; } if (bp == NULL && nb == NULL) { nb = getnewbuf(size); if (nb == NULL) { error = buf_wait(slpflag, slptimeo); if (error == ERESTART || error == EINTR) return (NULL); } goto start; } if (nb) { bp = nb; binshash(bp, bh); bp->b_blkno = bp->b_lblkno = blkno; s = splbio(); bgetvp(vp, bp); splx(s); } return (bp); } /* * Get an empty, disassociated buffer of given size. */ struct buf * geteblk(int size) { struct buf *bp; while ((bp = getnewbuf(size)) == NULL) buf_wait(0, 0); SET(bp->b_flags, B_INVAL); binshash(bp, &invalhash); return (bp); } /* * Find a buffer which is available for use. */ struct buf * getnewbuf(size_t size) { struct buf *bp; int s, queue, qs; #if 0 /* we would really like this but sblock update kills it */ KASSERT(curproc != syncerproc && curproc != cleanerproc); #endif s = splbio(); /* * Wake up cleaner if we're getting low on pages. */ if (numdirtypages >= hidirtypages || numcleanpages <= locleanpages) wakeup(&bd_req); /* we just ask. it can say no.. */ getsome: qs = size; queue = size2cqueue(&qs); bp = buf_get(qs); /* XXX use qs instead and no need in buf_get? */ if (bp == NULL) { /* no free ones, try to reuse a clean one.. */ for (bp = TAILQ_FIRST(&bufqueues[queue]); bp != NULL && queue < BQUEUES; queue++) { /* XXX */ } } if (bp == NULL) { /* we couldn't reuse a free one, nothing of the right size */ /* XXX free 20 buffers per q - ugly hack should really * reuse big ones without truncating. fix later */ int q, gotsome = 0; int freemax = 20; for (q = 1; q < BQUEUES; q++) { int i = freemax; while ((bp = TAILQ_FIRST(&bufqueues[q])) && i--) { gotsome++; bremfree(bp); if (LIST_FIRST(&bp->b_dep) != NULL) buf_deallocate(bp); if (ISSET(bp->b_flags, B_DELWRI)) { CLR(bp->b_flags, B_DELWRI); } if (bp->b_vp) brelvp(bp); buf_put(bp); } } if (gotsome) goto getsome; } if (bp == NULL) { splx(s); return (NULL); } bremfree(bp); /* Buffer is no longer on free lists. */ SET(bp->b_flags, B_BUSY); #ifdef DIAGNOSTIC if (ISSET(bp->b_flags, B_DELWRI)) panic("Dirty buffer on BQ_CLEAN"); #endif /* disassociate us from our vnode, if we had one... */ if (bp->b_vp) brelvp(bp); splx(s); #ifdef DIAGNOSTIC /* CLEAN buffers must have no dependencies */ if (LIST_FIRST(&bp->b_dep) != NULL) panic("BQ_CLEAN has buffer with dependencies"); #endif /* clear out various other fields */ bp->b_flags = B_BUSY; bp->b_dev = NODEV; bp->b_blkno = bp->b_lblkno = 0; bp->b_iodone = NULL; bp->b_error = 0; bp->b_resid = 0; bp->b_bcount = size; bp->b_dirtyoff = bp->b_dirtyend = 0; bp->b_validoff = bp->b_validend = 0; bremhash(bp); return (bp); } int buf_wait(int flag, int timeo) { int s, error; s = splbio(); needbuffer++; error = tsleep(&needbuffer, flag | (PRIBIO + 1), "buf_wait", timeo); splx(s); return (error); } /* * Buffer cleaning daemon. */ void buf_daemon(struct proc *p) { struct timeval starttime, timediff; struct buf *bp; int s; cleanerproc = curproc; s = splbio(); for (;;) { if (!numdirtypages || (numdirtypages < hidirtypages && !needbuffer)) tsleep(&bd_req, PRIBIO - 7, "cleaner", 0); getmicrouptime(&starttime); while ((bp = TAILQ_FIRST(&bufqueues[BQ_DIRTY]))) { struct timeval tv; if (numdirtypages < lodirtypages && !needbuffer) break; bremfree(bp); SET(bp->b_flags, B_BUSY); splx(s); if (ISSET(bp->b_flags, B_INVAL)) { brelse(bp); s = splbio(); continue; } #ifdef DIAGNOSTIC if (!ISSET(bp->b_flags, B_DELWRI)) panic("Clean buffer on BQ_DIRTY"); #endif if (LIST_FIRST(&bp->b_dep) != NULL && !ISSET(bp->b_flags, B_DEFERRED) && buf_countdeps(bp, 0, 0)) { SET(bp->b_flags, B_DEFERRED); s = splbio(); numfreepages += btoc(bp->b_bufsize); numdirtypages += btoc(bp->b_bufsize); binstailfree(bp, &bufqueues[BQ_DIRTY]); CLR(bp->b_flags, B_BUSY); continue; } bawrite(bp); /* Never allow processing to run for more than 1 sec */ getmicrouptime(&tv); timersub(&tv, &starttime, &timediff); if (timediff.tv_sec) break; s = splbio(); } } } /* * Wait for operations on the buffer to complete. * When they do, extract and return the I/O's error value. */ int biowait(struct buf *bp) { int s; s = splbio(); while (!ISSET(bp->b_flags, B_DONE)) tsleep(bp, PRIBIO + 1, "biowait", 0); splx(s); /* check for interruption of I/O (e.g. via NFS), then errors. */ if (ISSET(bp->b_flags, B_EINTR)) { CLR(bp->b_flags, B_EINTR); return (EINTR); } if (ISSET(bp->b_flags, B_ERROR)) return (bp->b_error ? bp->b_error : EIO); else return (0); } /* * Mark I/O complete on a buffer. * * If a callback has been requested, e.g. the pageout * daemon, do so. Otherwise, awaken waiting processes. * * [ Leffler, et al., says on p.247: * "This routine wakes up the blocked process, frees the buffer * for an asynchronous write, or, for a request by the pagedaemon * process, invokes a procedure specified in the buffer structure" ] * * In real life, the pagedaemon (or other system processes) wants * to do async stuff to, and doesn't want the buffer brelse()'d. * (for swap pager, that puts swap buffers on the free lists (!!!), * for the vn device, that puts malloc'd buffers on the free lists!) * * Must be called at splbio(). */ void biodone(struct buf *bp) { splassert(IPL_BIO); if (ISSET(bp->b_flags, B_DONE)) panic("biodone already"); SET(bp->b_flags, B_DONE); /* note that it's done */ if (LIST_FIRST(&bp->b_dep) != NULL) buf_complete(bp); if (!ISSET(bp->b_flags, B_READ)) { CLR(bp->b_flags, B_WRITEINPROG); vwakeup(bp->b_vp); } if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ CLR(bp->b_flags, B_CALL); /* but note callout done */ (*bp->b_iodone)(bp); } else { if (ISSET(bp->b_flags, B_ASYNC)) {/* if async, release it */ brelse(bp); } else { /* or just wakeup the buffer */ CLR(bp->b_flags, B_WANTED); wakeup(bp); } } } #if 1 void vfs_bufstats(void) { return; } /* #ifdef DDB */ #else /* * Print out statistics on the current allocation of the buffer pool. * Can be enabled to print out on every ``sync'' by setting "syncprt" * in vfs_syscalls.c using sysctl. */ void vfs_bufstats(void) { int s, i, j, count; register struct buf *bp; register struct bqueues *dp; int counts[MAXBSIZE/PAGE_SIZE+1]; int totals[BQUEUES]; long ptotals[BQUEUES]; long pages; static char *bname[BQUEUES] = { "CLEAN", "DIRTY", "EMPTY" }; s = splbio(); for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { count = 0; pages = 0; for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) counts[j] = 0; TAILQ_FOREACH(bp, dp, b_freelist) { counts[bp->b_bufsize/PAGE_SIZE]++; count++; pages += btoc(bp->b_bufsize); } totals[i] = count; ptotals[i] = pages; printf("%s: total-%d(%d pages)", bname[i], count, pages); for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) if (counts[j] != 0) printf(", %d-%d", j * PAGE_SIZE, counts[j]); printf("\n"); } if ((ptotals[BQ_CLEAN] + ptotals[BQ_DIRTY]) != numfreepages) printf("numfreepages counter wrong: %ld != %ld\n", numfreepages, ptotals[BQ_CLEAN] + ptotals[BQ_DIRTY]); if (ptotals[BQ_CLEAN] != numcleanpages) printf("numcleanpages counter wrong: %ld != %ld\n", numcleanpages, ptotals[