/* $OpenBSD: softfloat.c,v 1.3 2008/10/07 22:06:29 martynas Exp $ */ /* $NetBSD: softfloat.c,v 1.1 2001/04/26 03:10:47 ross Exp $ */ /* * This version hacked for use with gcc -msoft-float by bjh21. * (Mostly a case of #ifdefing out things GCC doesn't need or provides * itself). */ /* * Things you may want to define: * * SOFTFLOAT_FOR_GCC - build only those functions necessary for GCC (with * -msoft-float) to work. Include "softfloat-for-gcc.h" to get them * properly renamed. */ /* =============================================================================== This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic Package, Release 2a. Written by John R. Hauser. This work was made possible in part by the International Computer Science Institute, located at Suite 600, 1947 Center Street, Berkeley, California 94704. Funding was partially provided by the National Science Foundation under grant MIP-9311980. The original version of this code was written as part of a project to build a fixed-point vector processor in collaboration with the University of California at Berkeley, overseen by Profs. Nelson Morgan and John Wawrzynek. More information is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ arithmetic/SoftFloat.html'. THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM THEIR OWN USE OF THE SOFTWARE, AND WHO ALSO EFFECTIVELY INDEMNIFY (possibly via similar legal warning) JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE AGAINST ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM THE USE OF THE SOFTWARE BY THEIR CUSTOMERS AND CLIENTS. Derivative works are acceptable, even for commercial purposes, so long as (1) they include prominent notice that the work is derivative, and (2) they include prominent notice akin to these four paragraphs for those parts of this code that are retained. =============================================================================== */ #include #if defined(LIBC_SCCS) && !defined(lint) __RCSID("$NetBSD: softfloat.c,v 1.1 2001/04/26 03:10:47 ross Exp $"); #endif /* LIBC_SCCS and not lint */ #ifdef SOFTFLOAT_FOR_GCC #include "softfloat-for-gcc.h" #endif #include "milieu.h" #include "softfloat.h" /* * Conversions between floats as stored in memory and floats as * SoftFloat uses them */ #ifndef FLOAT64_DEMANGLE #define FLOAT64_DEMANGLE(a) (a) #endif #ifndef FLOAT64_MANGLE #define FLOAT64_MANGLE(a) (a) #endif /* ------------------------------------------------------------------------------- Floating-point rounding mode, extended double-precision rounding precision, and exception flags. ------------------------------------------------------------------------------- */ /* * XXX: This may cause options-MULTIPROCESSOR or thread problems someday. * Right now, it does not. I've removed all other dynamic global * variables. [ross] */ #ifdef FLOATX80 int8 floatx80_rounding_precision = 80; #endif /* ------------------------------------------------------------------------------- Primitive arithmetic functions, including multi-word arithmetic, and division and square root approximations. (Can be specialized to target if desired.) ------------------------------------------------------------------------------- */ #include "softfloat-macros.h" /* ------------------------------------------------------------------------------- Functions and definitions to determine: (1) whether tininess for underflow is detected before or after rounding by default, (2) what (if anything) happens when exceptions are raised, (3) how signaling NaNs are distinguished from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs are propagated from function inputs to output. These details are target- specific. ------------------------------------------------------------------------------- */ #include "softfloat-specialize.h" #ifndef SOFTFLOAT_FOR_GCC /* Not used */ /* ------------------------------------------------------------------------------- Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 and 7, and returns the properly rounded 32-bit integer corresponding to the input. If `zSign' is 1, the input is negated before being converted to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input is simply rounded to an integer, with the inexact exception raised if the input cannot be represented exactly as an integer. However, if the fixed- point input is too large, the invalid exception is raised and the largest positive or negative integer is returned. ------------------------------------------------------------------------------- */ static int32 roundAndPackInt32( flag zSign, bits64 absZ ) { int8 roundingMode; flag roundNearestEven; int8 roundIncrement, roundBits; int32 z; roundingMode = float_rounding_mode(); roundNearestEven = ( roundingMode == float_round_nearest_even ); roundIncrement = 0x40; if ( ! roundNearestEven ) { if ( roundingMode == float_round_to_zero ) { roundIncrement = 0; } else { roundIncrement = 0x7F; if ( zSign ) { if ( roundingMode == float_round_up ) roundIncrement = 0; } else { if ( roundingMode == float_round_down ) roundIncrement = 0; } } } roundBits = absZ & 0x7F; absZ = ( absZ + roundIncrement )>>7; absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); z = absZ; if ( zSign ) z = - z; if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { float_raise( float_flag_invalid ); return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; } if ( roundBits ) float_set_inexact(); return z; } /* ------------------------------------------------------------------------------- Takes the 128-bit fixed-point value formed by concatenating `absZ0' and `absZ1', with binary point between bits 63 and 64 (between the input words), and returns the properly rounded 64-bit integer corresponding to the input. If `zSign' is 1, the input is negated before being converted to an integer. Ordinarily, the fixed-point input is simply rounded to an integer, with the inexact exception raised if the input cannot be represented exactly as an integer. However, if the fixed-point input is too large, the invalid exception is raised and the largest positive or negative integer is returned. ------------------------------------------------------------------------------- */ static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 ) { int8 roundingMode; flag roundNearestEven, increment; int64 z; roundingMode = float_rounding_mode(); roundNearestEven = ( roundingMode == float_round_nearest_even ); increment = ( (sbits64) absZ1 < 0 ); if ( ! roundNearestEven ) { if ( roundingMode == float_round_to_zero ) { increment = 0; } else { if ( zSign ) { increment = ( roundingMode == float_round_down ) && absZ1; } else { increment = ( roundingMode == float_round_up ) && absZ1; } } } if ( increment ) { ++absZ0; if ( absZ0 == 0 ) goto overflow; absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven ); } z = absZ0; if ( zSign ) z = - z; if ( z && ( ( z < 0 ) ^ zSign ) ) { overflow: float_raise( float_flag_invalid ); return zSign ? (sbits64) LIT64( 0x8000000000000000 ) : LIT64( 0x7FFFFFFFFFFFFFFF ); } if ( absZ1 ) float_set_inexact(); return z; } #ifdef __alpha__ /* ------------------------------------------------------------------------------- Takes the 128-bit fixed-point value formed by concatenating `absZ0' and `absZ1', with binary point between bits 63 and 64 (between the input words), and returns the properly rounded 64-bit integer corresponding to the input. If `zSign' is 1, the input is negated before being converted to an integer. Ordinarily, the fixed-point input is simply rounded to an integer, with the inexact exception raised if the input cannot be represented exactly as an integer. ------------------------------------------------------------------------------- */ static int64 roundAndPackInt64NoOverflow( flag zSign, bits64 absZ0, bits64 absZ1 ) { int8 roundingMode; flag roundNearestEven, increment; int64 z; roundingMode = float_rounding_mode(); roundNearestEven = ( roundingMode == float_round_nearest_even ); increment = ( (sbits64) absZ1 < 0 ); if ( ! roundNearestEven ) { if ( roundingMode == float_round_to_zero ) { increment = 0; } else { if ( zSign ) { increment = ( roundingMode == float_round_down ) && absZ1; } else { increment = ( roundingMode == float_round_up ) && absZ1; } } } if ( increment ) { ++absZ0; absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven ); } z = absZ0; if ( zSign ) z = - z; if ( absZ1 ) float_set_inexact(); return z; } #endif /* __alpha__ */ #endif /* ------------------------------------------------------------------------------- Returns the fraction bits of the single-precision floating-point value `a'. ------------------------------------------------------------------------------- */ INLINE bits32 extractFloat32Frac( float32 a ) { return a & 0x007FFFFF; } /* ------------------------------------------------------------------------------- Returns the exponent bits of the single-precision floating-point value `a'. ------------------------------------------------------------------------------- */ INLINE int16 extractFloat32Exp( float32 a ) { return ( a>>23 ) & 0xFF; } /* ------------------------------------------------------------------------------- Returns the sign bit of the single-precision floating-point value `a'. ------------------------------------------------------------------------------- */ INLINE flag extractFloat32Sign( float32 a ) { return a>>31; } /* ------------------------------------------------------------------------------- Normalizes the subnormal single-precision floating-point value represented by the denormalized significand `aSig'. The normalized exponent and significand are stored at the locations pointed to by `zExpPtr' and `zSigPtr', respectively. ------------------------------------------------------------------------------- */ static void normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) { int8 shiftCount; shiftCount = countLeadingZeros32( aSig ) - 8; *zSigPtr = aSig<>7; zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); if ( zSig == 0 ) zExp = 0; return packFloat32( zSign, zExp, zSig ); } /* ------------------------------------------------------------------------------- Takes an abstract floating-point value having sign `zSign', exponent `zExp', and significand `zSig', and returns the proper single-precision floating- point value corresponding to the abstract input. This routine is just like `roundAndPackFloat32' except that `zSig' does not have to be normalized. Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' floating-point exponent. ------------------------------------------------------------------------------- */ static float32 normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) { int8 shiftCount; shiftCount = countLeadingZeros32( zSig ) - 1; return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<>52 ) & 0x7FF; } /* ------------------------------------------------------------------------------- Returns the sign bit of the double-precision floating-point value `a'. ------------------------------------------------------------------------------- */ INLINE flag extractFloat64Sign( float64 a ) { return FLOAT64_DEMANGLE(a)>>63; } /* ------------------------------------------------------------------------------- Normalizes the subnormal double-precision floating-point value represented by the denormalized significand `aSig'. The normalized exponent and significand are stored at the locations pointed to by `zExpPtr' and `zSigPtr', respectively. ------------------------------------------------------------------------------- */ static void normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) { int8 shiftCount; shiftCount = countLeadingZeros64( aSig ) - 11; *zSigPtr = aSig<>10; zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); if ( zSig == 0 ) zExp = 0; return packFloat64( zSign, zExp, zSig ); } /* ------------------------------------------------------------------------------- Takes an abstract floating-point value having sign `zSign', exponent `zExp', and significand `zSig', and returns the proper double-precision floating- point value corresponding to the abstract input. This routine is just like `roundAndPackFloat64' except that `zSig' does not have to be normalized. Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' floating-point exponent. ------------------------------------------------------------------------------- */ static float64 normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) { int8 shiftCount; shiftCount = countLeadingZeros64( zSig ) - 1; return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<>15; } /* ------------------------------------------------------------------------------- Normalizes the subnormal extended double-precision floating-point value represented by the denormalized significand `aSig'. The normalized exponent and significand are stored at the locations pointed to by `zExpPtr' and `zSigPtr', respectively. ------------------------------------------------------------------------------- */ static void normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) { int8 shiftCount; shiftCount = countLeadingZeros64( aSig ); *zSigPtr = aSig<>48 ) & 0x7FFF; } /* ------------------------------------------------------------------------------- Returns the sign bit of the quadruple-precision floating-point value `a'. ------------------------------------------------------------------------------- */ INLINE flag extractFloat128Sign( float128 a ) { return a.high>>63; } /* ------------------------------------------------------------------------------- Normalizes the subnormal quadruple-precision floating-point value represented by the denormalized significand formed by the concatenation of `aSig0' and `aSig1'. The normalized exponent is stored at the location pointed to by `zExpPtr'. The most significant 49 bits of the normalized significand are stored at the location pointed to by `zSig0Ptr', and the least significant 64 bits of the normalized significand are stored at the location pointed to by `zSig1Ptr'. ------------------------------------------------------------------------------- */ static void normalizeFloat128Subnormal( bits64 aSig0, bits64 aSig1, int32 *zExpPtr, bits64 *zSig0Ptr, bits64 *zSig1Ptr ) { int8 shiftCount; if ( aSig0 == 0 ) { shiftCount = countLeadingZeros64( aSig1 ) - 15; if ( shiftCount < 0 ) { *zSig0Ptr = aSig1>>( - shiftCount ); *zSig1Ptr = aSig1<<( shiftCount & 63 ); } else { *zSig0Ptr = aSig1<>( - shiftCount ); if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { float_set_inexact(); } if ( aSign ) z = - z; return z; } #ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */ /* ------------------------------------------------------------------------------- Returns the result of converting the single-precision floating-point value `a' to the 64-bit two's complement integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic---which means in particular that the conversion is rounded according to the current rounding mode. If `a' is a NaN, the largest positive integer is returned. Otherwise, if the conversion overflows, the largest integer with the same sign as `a' is returned. ------------------------------------------------------------------------------- */ int64 float32_to_int64( float32 a ) { flag aSign; int16 aExp, shiftCount; bits32 aSig; bits64 aSig64, aSigExtra; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); shiftCount = 0xBE - aExp; if ( shiftCount < 0 ) { float_raise( float_flag_invalid ); if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { return LIT64( 0x7FFFFFFFFFFFFFFF ); } return (sbits64) LIT64( 0x8000000000000000 ); } if ( aExp ) aSig |= 0x00800000; aSig64 = aSig; aSig64 <<= 40; shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra ); return roundAndPackInt64( aSign, aSig64, aSigExtra ); } /* ------------------------------------------------------------------------------- Returns the result of converting the single-precision floating-point value `a' to the 64-bit two's complement integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic, except that the conversion is always rounded toward zero. If `a' is a NaN, the largest positive integer is returned. Otherwise, if the conversion overflows, the largest integer with the same sign as `a' is returned. ------------------------------------------------------------------------------- */ int64 float32_to_int64_round_to_zero( float32 a ) { flag aSign; int16 aExp, shiftCount; bits32 aSig; bits64 aSig64; int64 z; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); shiftCount = aExp - 0xBE; if ( 0 <= shiftCount ) { if ( a != 0xDF000000 ) { float_raise( float_flag_invalid ); if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { return LIT64( 0x7FFFFFFFFFFFFFFF ); } } return (sbits64) LIT64( 0x8000000000000000 ); } else if ( aExp <= 0x7E ) { if ( aExp | aSig ) float_set_inexact(); return 0; } aSig64 = aSig | 0x00800000; aSig64 <<= 40; z = aSig64>>( - shiftCount ); if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) { float_set_inexact(); } if ( aSign ) z = - z; return z; } #endif /* !SOFTFLOAT_FOR_GCC */ /* ------------------------------------------------------------------------------- Returns the result of converting the single-precision floating-point value `a' to the double-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float32_to_float64( float32 a ) { flag aSign; int16 aExp; bits32 aSig; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); if ( aExp == 0xFF ) { if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); return packFloat64( aSign, 0x7FF, 0 ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); normalizeFloat32Subnormal( aSig, &aExp, &aSig ); --aExp; } return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); } #ifdef FLOATX80 /* ------------------------------------------------------------------------------- Returns the result of converting the single-precision floating-point value `a' to the extended double-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 float32_to_floatx80( float32 a ) { flag aSign; int16 aExp; bits32 aSig; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); if ( aExp == 0xFF ) { if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); normalizeFloat32Subnormal( aSig, &aExp, &aSig ); } aSig |= 0x00800000; return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); } #endif #ifdef FLOAT128 /* ------------------------------------------------------------------------------- Returns the result of converting the single-precision floating-point value `a' to the double-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float32_to_float128( float32 a ) { flag aSign; int16 aExp; bits32 aSig; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); if ( aExp == 0xFF ) { if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) ); return packFloat128( aSign, 0x7FFF, 0, 0 ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); normalizeFloat32Subnormal( aSig, &aExp, &aSig ); --aExp; } return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 ); } #endif #ifndef SOFTFLOAT_FOR_GCC /* Not needed */ /* ------------------------------------------------------------------------------- Rounds the single-precision floating-point value `a' to an integer, and returns the result as a single-precision floating-point value. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float32_round_to_int( float32 a ) { flag aSign; int16 aExp; bits32 lastBitMask, roundBitsMask; int8 roundingMode; float32 z; aExp = extractFloat32Exp( a ); if ( 0x96 <= aExp ) { if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { return propagateFloat32NaN( a, a ); } return a; } if ( aExp <= 0x7E ) { if ( (bits32) ( a<<1 ) == 0 ) return a; float_set_inexact(); aSign = extractFloat32Sign( a ); switch ( float_rounding_mode() ) { case float_round_nearest_even: if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { return packFloat32( aSign, 0x7F, 0 ); } break; case float_round_down: return aSign ? 0xBF800000 : 0; case float_round_up: return aSign ? 0x80000000 : 0x3F800000; } return packFloat32( aSign, 0, 0 ); } lastBitMask = 1; lastBitMask <<= 0x96 - aExp; roundBitsMask = lastBitMask - 1; z = a; roundingMode = float_rounding_mode(); if ( roundingMode == float_round_nearest_even ) { z += lastBitMask>>1; if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; } else if ( roundingMode != float_round_to_zero ) { if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { z += roundBitsMask; } } z &= ~ roundBitsMask; if ( z != a ) float_set_inexact(); return z; } #endif /* !SOFTFLOAT_FOR_GCC */ /* ------------------------------------------------------------------------------- Returns the result of adding the absolute values of the single-precision floating-point values `a' and `b'. If `zSign' is 1, the sum is negated before being returned. `zSign' is ignored if the result is a NaN. The addition is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) { int16 aExp, bExp, zExp; bits32 aSig, bSig, zSig; int16 expDiff; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); bSig = extractFloat32Frac( b ); bExp = extractFloat32Exp( b ); expDiff = aExp - bExp; aSig <<= 6; bSig <<= 6; if ( 0 < expDiff ) { if ( aExp == 0xFF ) { if ( aSig ) return propagateFloat32NaN( a, b ); return a; } if ( bExp == 0 ) { --expDiff; } else { bSig |= 0x20000000; } shift32RightJamming( bSig, expDiff, &bSig ); zExp = aExp; } else if ( expDiff < 0 ) { if ( bExp == 0xFF ) { if ( bSig ) return propagateFloat32NaN( a, b ); return packFloat32( zSign, 0xFF, 0 ); } if ( aExp == 0 ) { ++expDiff; } else { aSig |= 0x20000000; } shift32RightJamming( aSig, - expDiff, &aSig ); zExp = bExp; } else { if ( aExp == 0xFF ) { if ( aSig | bSig ) return propagateFloat32NaN( a, b ); return a; } if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); zSig = 0x40000000 + aSig + bSig; zExp = aExp; goto roundAndPack; } aSig |= 0x20000000; zSig = ( aSig + bSig )<<1; --zExp; if ( (sbits32) zSig < 0 ) { zSig = aSig + bSig; ++zExp; } roundAndPack: return roundAndPackFloat32( zSign, zExp, zSig ); } /* ------------------------------------------------------------------------------- Returns the result of subtracting the absolute values of the single- precision floating-point values `a' and `b'. If `zSign' is 1, the difference is negated before being returned. `zSign' is ignored if the result is a NaN. The subtraction is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) { int16 aExp, bExp, zExp; bits32 aSig, bSig, zSig; int16 expDiff; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); bSig = extractFloat32Frac( b ); bExp = extractFloat32Exp( b ); expDiff = aExp - bExp; aSig <<= 7; bSig <<= 7; if ( 0 < expDiff ) goto aExpBigger; if ( expDiff < 0 ) goto bExpBigger; if ( aExp == 0xFF ) { if ( aSig | bSig ) return propagateFloat32NaN( a, b ); float_raise( float_flag_invalid ); return float32_default_nan; } if ( aExp == 0 ) { aExp = 1; bExp = 1; } if ( bSig < aSig ) goto aBigger; if ( aSig < bSig ) goto bBigger; return packFloat32( float_rounding_mode() == float_round_down, 0, 0 ); bExpBigger: if ( bExp == 0xFF ) { if ( bSig ) return propagateFloat32NaN( a, b ); return packFloat32( zSign ^ 1, 0xFF, 0 ); } if ( aExp == 0 ) { ++expDiff; } else { aSig |= 0x40000000; } shift32RightJamming( aSig, - expDiff, &aSig ); bSig |= 0x40000000; bBigger: zSig = bSig - aSig; zExp = bExp; zSign ^= 1; goto normalizeRoundAndPack; aExpBigger: if ( aExp == 0xFF ) { if ( aSig ) return propagateFloat32NaN( a, b ); return a; } if ( bExp == 0 ) { --expDiff; } else { bSig |= 0x40000000; } shift32RightJamming( bSig, expDiff, &bSig ); aSig |= 0x40000000; aBigger: zSig = aSig - bSig; zExp = aExp; normalizeRoundAndPack: --zExp; return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); } /* ------------------------------------------------------------------------------- Returns the result of adding the single-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float32_add( float32 a, float32 b ) { flag aSign, bSign; aSign = extractFloat32Sign( a ); bSign = extractFloat32Sign( b ); if ( aSign == bSign ) { return addFloat32Sigs( a, b, aSign ); } else { return subFloat32Sigs( a, b, aSign ); } } /* ------------------------------------------------------------------------------- Returns the result of subtracting the single-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float32_sub( float32 a, float32 b ) { flag aSign, bSign; aSign = extractFloat32Sign( a ); bSign = extractFloat32Sign( b ); if ( aSign == bSign ) { return subFloat32Sigs( a, b, aSign ); } else { return addFloat32Sigs( a, b, aSign ); } } /* ------------------------------------------------------------------------------- Returns the result of multiplying the single-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float32_mul( float32 a, float32 b ) { flag aSign, bSign, zSign; int16 aExp, bExp, zExp; bits32 aSig, bSig; bits64 zSig64; bits32 zSig; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); bSig = extractFloat32Frac( b ); bExp = extractFloat32Exp( b ); bSign = extractFloat32Sign( b ); zSign = aSign ^ bSign; if ( aExp == 0xFF ) { if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { return propagateFloat32NaN( a, b ); } if ( ( bExp | bSig ) == 0 ) { float_raise( float_flag_invalid ); return float32_default_nan; } return packFloat32( zSign, 0xFF, 0 ); } if ( bExp == 0xFF ) { if ( bSig ) return propagateFloat32NaN( a, b ); if ( ( aExp | aSig ) == 0 ) { float_raise( float_flag_invalid ); return float32_default_nan; } return packFloat32( zSign, 0xFF, 0 ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); normalizeFloat32Subnormal( aSig, &aExp, &aSig ); } if ( bExp == 0 ) { if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); normalizeFloat32Subnormal( bSig, &bExp, &bSig ); } zExp = aExp + bExp - 0x7F; aSig = ( aSig | 0x00800000 )<<7; bSig = ( bSig | 0x00800000 )<<8; shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); zSig = zSig64; if ( 0 <= (sbits32) ( zSig<<1 ) ) { zSig <<= 1; --zExp; } return roundAndPackFloat32( zSign, zExp, zSig ); } /* ------------------------------------------------------------------------------- Returns the result of dividing the single-precision floating-point value `a' by the corresponding value `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float32_div( float32 a, float32 b ) { flag aSign, bSign, zSign; int16 aExp, bExp, zExp; bits32 aSig, bSig, zSig; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); bSig = extractFloat32Frac( b ); bExp = extractFloat32Exp( b ); bSign = extractFloat32Sign( b ); zSign = aSign ^ bSign; if ( aExp == 0xFF ) { if ( aSig ) return propagateFloat32NaN( a, b ); if ( bExp == 0xFF ) { if ( bSig ) return propagateFloat32NaN( a, b ); float_raise( float_flag_invalid ); return float32_default_nan; } return packFloat32( zSign, 0xFF, 0 ); } if ( bExp == 0xFF ) { if ( bSig ) return propagateFloat32NaN( a, b ); return packFloat32( zSign, 0, 0 ); } if ( bExp == 0 ) { if ( bSig == 0 ) { if ( ( aExp | aSig ) == 0 ) { float_raise( float_flag_invalid ); return float32_default_nan; } float_raise( float_flag_divbyzero ); return packFloat32( zSign, 0xFF, 0 ); } normalizeFloat32Subnormal( bSig, &bExp, &bSig ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); normalizeFloat32Subnormal( aSig, &aExp, &aSig ); } zExp = aExp - bExp + 0x7D; aSig = ( aSig | 0x00800000 )<<7; bSig = ( bSig | 0x00800000 )<<8; if ( bSig <= ( aSig + aSig ) ) { aSig >>= 1; ++zExp; } zSig = ( ( (bits64) aSig )<<32 ) / bSig; if ( ( zSig & 0x3F ) == 0 ) { zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 ); } return roundAndPackFloat32( zSign, zExp, zSig ); } #ifndef SOFTFLOAT_FOR_GCC /* Not needed */ /* ------------------------------------------------------------------------------- Returns the remainder of the single-precision floating-point value `a' with respect to the corresponding value `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float32_rem( float32 a, float32 b ) { flag aSign, bSign, zSign; int16 aExp, bExp, expDiff; bits32 aSig, bSig; bits32 q; bits64 aSig64, bSig64, q64; bits32 alternateASig; sbits32 sigMean; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); bSig = extractFloat32Frac( b ); bExp = extractFloat32Exp( b ); bSign = extractFloat32Sign( b ); if ( aExp == 0xFF ) { if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { return propagateFloat32NaN( a, b ); } float_raise( float_flag_invalid ); return float32_default_nan; } if ( bExp == 0xFF ) { if ( bSig ) return propagateFloat32NaN( a, b ); return a; } if ( bExp == 0 ) { if ( bSig == 0 ) { float_raise( float_flag_invalid ); return float32_default_nan; } normalizeFloat32Subnormal( bSig, &bExp, &bSig ); } if ( aExp == 0 ) { if ( aSig == 0 ) return a; normalizeFloat32Subnormal( aSig, &aExp, &aSig ); } expDiff = aExp - bExp; aSig |= 0x00800000; bSig |= 0x00800000; if ( expDiff < 32 ) { aSig <<= 8; bSig <<= 8; if ( expDiff < 0 ) { if ( expDiff < -1 ) return a; aSig >>= 1; } q = ( bSig <= aSig ); if ( q ) aSig -= bSig; if ( 0 < expDiff ) { q = ( ( (bits64) aSig )<<32 ) / bSig; q >>= 32 - expDiff; bSig >>= 2; aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; } else { aSig >>= 2; bSig >>= 2; } } else { if ( bSig <= aSig ) aSig -= bSig; aSig64 = ( (bits64) aSig )<<40; bSig64 = ( (bits64) bSig )<<40; expDiff -= 64; while ( 0 < expDiff ) { q64 = estimateDiv128To64( aSig64, 0, bSig64 ); q64 = ( 2 < q64 ) ? q64 - 2 : 0; aSig64 = - ( ( bSig * q64 )<<38 ); expDiff -= 62; } expDiff += 64; q64 = estimateDiv128To64( aSig64, 0, bSig64 ); q64 = ( 2 < q64 ) ? q64 - 2 : 0; q = q64>>( 64 - expDiff ); bSig <<= 6; aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; } do { alternateASig = aSig; ++q; aSig -= bSig; } while ( 0 <= (sbits32) aSig ); sigMean = aSig + alternateASig; if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { aSig = alternateASig; } zSign = ( (sbits32) aSig < 0 ); if ( zSign ) aSig = - aSig; return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); } #endif /* !SOFTFLOAT_FOR_GCC */ #ifndef SOFTFLOAT_FOR_GCC /* Not needed */ /* ------------------------------------------------------------------------------- Returns the square root of the single-precision floating-point value `a'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float32_sqrt( float32 a ) { flag aSign; int16 aExp, zExp; bits32 aSig, zSig; bits64 rem, term; aSig = extractFloat32Frac( a ); aExp = extractFloat32Exp( a ); aSign = extractFloat32Sign( a ); if ( aExp == 0xFF ) { if ( aSig ) return propagateFloat32NaN( a, 0 ); if ( ! aSign ) return a; float_raise( float_flag_invalid ); return float32_default_nan; } if ( aSign ) { if ( ( aExp | aSig ) == 0 ) return a; float_raise( float_flag_invalid ); return float32_default_nan; } if ( aExp == 0 ) { if ( aSig == 0 ) return 0; normalizeFloat32Subnormal( aSig, &aExp, &aSig ); } zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; aSig = ( aSig | 0x00800000 )<<8; zSig = estimateSqrt32( aExp, aSig ) + 2; if ( ( zSig & 0x7F ) <= 5 ) { if ( zSig < 2 ) { zSig = 0x7FFFFFFF; goto roundAndPack; } aSig >>= aExp & 1; term = ( (bits64) zSig ) * zSig; rem = ( ( (bits64) aSig )<<32 ) - term; while ( (sbits64) rem < 0 ) { --zSig; rem += ( ( (bits64) zSig )<<1 ) | 1; } zSig |= ( rem != 0 ); } shift32RightJamming( zSig, 1, &zSig ); roundAndPack: return roundAndPackFloat32( 0, zExp, zSig ); } #endif /* !SOFTFLOAT_FOR_GCC */ /* ------------------------------------------------------------------------------- Returns 1 if the single-precision floating-point value `a' is equal to the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float32_eq( float32 a, float32 b ) { if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) ) { if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); } /* ------------------------------------------------------------------------------- Returns 1 if the single-precision floating-point value `a' is less than or equal to the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float32_le( float32 a, float32 b ) { flag aSign, bSign; if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) ) { float_raise( float_flag_invalid ); return 0; } aSign = extractFloat32Sign( a ); bSign = extractFloat32Sign( b ); if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); return ( a == b ) || ( aSign ^ ( a < b ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the single-precision floating-point value `a' is less than the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float32_lt( float32 a, float32 b ) { flag aSign, bSign; if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) ) { float_raise( float_flag_invalid ); return 0; } aSign = extractFloat32Sign( a ); bSign = extractFloat32Sign( b ); if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); return ( a != b ) && ( aSign ^ ( a < b ) ); } #ifndef SOFTFLOAT_FOR_GCC /* Not needed */ /* ------------------------------------------------------------------------------- Returns 1 if the single-precision floating-point value `a' is equal to the corresponding value `b', and 0 otherwise. The invalid exception is raised if either operand is a NaN. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float32_eq_signaling( float32 a, float32 b ) { if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) ) { float_raise( float_flag_invalid ); return 0; } return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); } /* ------------------------------------------------------------------------------- Returns 1 if the single-precision floating-point value `a' is less than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an exception. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float32_le_quiet( float32 a, float32 b ) { flag aSign, bSign; if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) ) { if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } aSign = extractFloat32Sign( a ); bSign = extractFloat32Sign( b ); if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); return ( a == b ) || ( aSign ^ ( a < b ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the single-precision floating-point value `a' is less than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an exception. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float32_lt_quiet( float32 a, float32 b ) { flag aSign, bSign; if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) ) { if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } aSign = extractFloat32Sign( a ); bSign = extractFloat32Sign( b ); if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); return ( a != b ) && ( aSign ^ ( a < b ) ); } #endif /* !SOFTFLOAT_FOR_GCC */ #ifndef SOFTFLOAT_FOR_GCC /* Not needed */ /* ------------------------------------------------------------------------------- Returns the result of converting the double-precision floating-point value `a' to the 32-bit two's complement integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic---which means in particular that the conversion is rounded according to the current rounding mode. If `a' is a NaN, the largest positive integer is returned. Otherwise, if the conversion overflows, the largest integer with the same sign as `a' is returned. ------------------------------------------------------------------------------- */ int32 float64_to_int32( float64 a ) { flag aSign; int16 aExp, shiftCount; bits64 aSig; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); shiftCount = 0x42C - aExp; if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); return roundAndPackInt32( aSign, aSig ); } #endif /* !SOFTFLOAT_FOR_GCC */ /* ------------------------------------------------------------------------------- Returns the result of converting the double-precision floating-point value `a' to the 32-bit two's complement integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic, except that the conversion is always rounded toward zero. If `a' is a NaN, the largest positive integer is returned. Otherwise, if the conversion overflows, the largest integer with the same sign as `a' is returned. ------------------------------------------------------------------------------- */ int32 float64_to_int32_round_to_zero( float64 a ) { flag aSign; int16 aExp, shiftCount; bits64 aSig, savedASig; int32 z; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); if ( 0x41E < aExp ) { if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; goto invalid; } else if ( aExp < 0x3FF ) { if ( aExp || aSig ) float_set_inexact(); return 0; } aSig |= LIT64( 0x0010000000000000 ); shiftCount = 0x433 - aExp; savedASig = aSig; aSig >>= shiftCount; z = aSig; if ( aSign ) z = - z; if ( ( z < 0 ) ^ aSign ) { invalid: float_raise( float_flag_invalid ); return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; } if ( ( aSig<>( - shiftCount ); if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { float_set_inexact(); } } if ( aSign ) z = - z; return z; } #endif /* !SOFTFLOAT_FOR_GCC */ /* ------------------------------------------------------------------------------- Returns the result of converting the double-precision floating-point value `a' to the single-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float64_to_float32( float64 a ) { flag aSign; int16 aExp; bits64 aSig; bits32 zSig; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); if ( aExp == 0x7FF ) { if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); return packFloat32( aSign, 0xFF, 0 ); } shift64RightJamming( aSig, 22, &aSig ); zSig = aSig; if ( aExp || zSig ) { zSig |= 0x40000000; aExp -= 0x381; } return roundAndPackFloat32( aSign, aExp, zSig ); } #ifdef FLOATX80 /* ------------------------------------------------------------------------------- Returns the result of converting the double-precision floating-point value `a' to the extended double-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 float64_to_floatx80( float64 a ) { flag aSign; int16 aExp; bits64 aSig; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); if ( aExp == 0x7FF ) { if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); normalizeFloat64Subnormal( aSig, &aExp, &aSig ); } return packFloatx80( aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); } #endif #ifdef FLOAT128 /* ------------------------------------------------------------------------------- Returns the result of converting the double-precision floating-point value `a' to the quadruple-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float64_to_float128( float64 a ) { flag aSign; int16 aExp; bits64 aSig, zSig0, zSig1; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); if ( aExp == 0x7FF ) { if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) ); return packFloat128( aSign, 0x7FFF, 0, 0 ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 ); normalizeFloat64Subnormal( aSig, &aExp, &aSig ); --aExp; } shift128Right( aSig, 0, 4, &zSig0, &zSig1 ); return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 ); } #endif #ifndef SOFTFLOAT_FOR_GCC /* ------------------------------------------------------------------------------- Rounds the double-precision floating-point value `a' to an integer, and returns the result as a double-precision floating-point value. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float64_round_to_int( float64 a ) { flag aSign; int16 aExp; bits64 lastBitMask, roundBitsMask; int8 roundingMode; float64 z; aExp = extractFloat64Exp( a ); if ( 0x433 <= aExp ) { if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { return propagateFloat64NaN( a, a ); } return a; } if ( aExp < 0x3FF ) { if ( (bits64) ( a<<1 ) == 0 ) return a; float_set_inexact(); aSign = extractFloat64Sign( a ); switch ( float_rounding_mode() ) { case float_round_nearest_even: if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { return packFloat64( aSign, 0x3FF, 0 ); } break; case float_round_down: return aSign ? LIT64( 0xBFF0000000000000 ) : 0; case float_round_up: return aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); } return packFloat64( aSign, 0, 0 ); } lastBitMask = 1; lastBitMask <<= 0x433 - aExp; roundBitsMask = lastBitMask - 1; z = a; roundingMode = float_rounding_mode(); if ( roundingMode == float_round_nearest_even ) { z += lastBitMask>>1; if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; } else if ( roundingMode != float_round_to_zero ) { if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { z += roundBitsMask; } } z &= ~ roundBitsMask; if ( z != a ) float_set_inexact(); return z; } #endif /* ------------------------------------------------------------------------------- Returns the result of adding the absolute values of the double-precision floating-point values `a' and `b'. If `zSign' is 1, the sum is negated before being returned. `zSign' is ignored if the result is a NaN. The addition is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) { int16 aExp, bExp, zExp; bits64 aSig, bSig, zSig; int16 expDiff; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); bSig = extractFloat64Frac( b ); bExp = extractFloat64Exp( b ); expDiff = aExp - bExp; aSig <<= 9; bSig <<= 9; if ( 0 < expDiff ) { if ( aExp == 0x7FF ) { if ( aSig ) return propagateFloat64NaN( a, b ); return a; } if ( bExp == 0 ) { --expDiff; } else { bSig |= LIT64( 0x2000000000000000 ); } shift64RightJamming( bSig, expDiff, &bSig ); zExp = aExp; } else if ( expDiff < 0 ) { if ( bExp == 0x7FF ) { if ( bSig ) return propagateFloat64NaN( a, b ); return packFloat64( zSign, 0x7FF, 0 ); } if ( aExp == 0 ) { ++expDiff; } else { aSig |= LIT64( 0x2000000000000000 ); } shift64RightJamming( aSig, - expDiff, &aSig ); zExp = bExp; } else { if ( aExp == 0x7FF ) { if ( aSig | bSig ) return propagateFloat64NaN( a, b ); return a; } if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; zExp = aExp; goto roundAndPack; } aSig |= LIT64( 0x2000000000000000 ); zSig = ( aSig + bSig )<<1; --zExp; if ( (sbits64) zSig < 0 ) { zSig = aSig + bSig; ++zExp; } roundAndPack: return roundAndPackFloat64( zSign, zExp, zSig ); } /* ------------------------------------------------------------------------------- Returns the result of subtracting the absolute values of the double- precision floating-point values `a' and `b'. If `zSign' is 1, the difference is negated before being returned. `zSign' is ignored if the result is a NaN. The subtraction is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) { int16 aExp, bExp, zExp; bits64 aSig, bSig, zSig; int16 expDiff; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); bSig = extractFloat64Frac( b ); bExp = extractFloat64Exp( b ); expDiff = aExp - bExp; aSig <<= 10; bSig <<= 10; if ( 0 < expDiff ) goto aExpBigger; if ( expDiff < 0 ) goto bExpBigger; if ( aExp == 0x7FF ) { if ( aSig | bSig ) return propagateFloat64NaN( a, b ); float_raise( float_flag_invalid ); return float64_default_nan; } if ( aExp == 0 ) { aExp = 1; bExp = 1; } if ( bSig < aSig ) goto aBigger; if ( aSig < bSig ) goto bBigger; return packFloat64( float_rounding_mode() == float_round_down, 0, 0 ); bExpBigger: if ( bExp == 0x7FF ) { if ( bSig ) return propagateFloat64NaN( a, b ); return packFloat64( zSign ^ 1, 0x7FF, 0 ); } if ( aExp == 0 ) { ++expDiff; } else { aSig |= LIT64( 0x4000000000000000 ); } shift64RightJamming( aSig, - expDiff, &aSig ); bSig |= LIT64( 0x4000000000000000 ); bBigger: zSig = bSig - aSig; zExp = bExp; zSign ^= 1; goto normalizeRoundAndPack; aExpBigger: if ( aExp == 0x7FF ) { if ( aSig ) return propagateFloat64NaN( a, b ); return a; } if ( bExp == 0 ) { --expDiff; } else { bSig |= LIT64( 0x4000000000000000 ); } shift64RightJamming( bSig, expDiff, &bSig ); aSig |= LIT64( 0x4000000000000000 ); aBigger: zSig = aSig - bSig; zExp = aExp; normalizeRoundAndPack: --zExp; return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); } /* ------------------------------------------------------------------------------- Returns the result of adding the double-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float64_add( float64 a, float64 b ) { flag aSign, bSign; aSign = extractFloat64Sign( a ); bSign = extractFloat64Sign( b ); if ( aSign == bSign ) { return addFloat64Sigs( a, b, aSign ); } else { return subFloat64Sigs( a, b, aSign ); } } /* ------------------------------------------------------------------------------- Returns the result of subtracting the double-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float64_sub( float64 a, float64 b ) { flag aSign, bSign; aSign = extractFloat64Sign( a ); bSign = extractFloat64Sign( b ); if ( aSign == bSign ) { return subFloat64Sigs( a, b, aSign ); } else { return addFloat64Sigs( a, b, aSign ); } } /* ------------------------------------------------------------------------------- Returns the result of multiplying the double-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float64_mul( float64 a, float64 b ) { flag aSign, bSign, zSign; int16 aExp, bExp, zExp; bits64 aSig, bSig, zSig0, zSig1; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); bSig = extractFloat64Frac( b ); bExp = extractFloat64Exp( b ); bSign = extractFloat64Sign( b ); zSign = aSign ^ bSign; if ( aExp == 0x7FF ) { if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { return propagateFloat64NaN( a, b ); } if ( ( bExp | bSig ) == 0 ) { float_raise( float_flag_invalid ); return float64_default_nan; } return packFloat64( zSign, 0x7FF, 0 ); } if ( bExp == 0x7FF ) { if ( bSig ) return propagateFloat64NaN( a, b ); if ( ( aExp | aSig ) == 0 ) { float_raise( float_flag_invalid ); return float64_default_nan; } return packFloat64( zSign, 0x7FF, 0 ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); normalizeFloat64Subnormal( aSig, &aExp, &aSig ); } if ( bExp == 0 ) { if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); normalizeFloat64Subnormal( bSig, &bExp, &bSig ); } zExp = aExp + bExp - 0x3FF; aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; mul64To128( aSig, bSig, &zSig0, &zSig1 ); zSig0 |= ( zSig1 != 0 ); if ( 0 <= (sbits64) ( zSig0<<1 ) ) { zSig0 <<= 1; --zExp; } return roundAndPackFloat64( zSign, zExp, zSig0 ); } /* ------------------------------------------------------------------------------- Returns the result of dividing the double-precision floating-point value `a' by the corresponding value `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float64_div( float64 a, float64 b ) { flag aSign, bSign, zSign; int16 aExp, bExp, zExp; bits64 aSig, bSig, zSig; bits64 rem0, rem1; bits64 term0, term1; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); bSig = extractFloat64Frac( b ); bExp = extractFloat64Exp( b ); bSign = extractFloat64Sign( b ); zSign = aSign ^ bSign; if ( aExp == 0x7FF ) { if ( aSig ) return propagateFloat64NaN( a, b ); if ( bExp == 0x7FF ) { if ( bSig ) return propagateFloat64NaN( a, b ); float_raise( float_flag_invalid ); return float64_default_nan; } return packFloat64( zSign, 0x7FF, 0 ); } if ( bExp == 0x7FF ) { if ( bSig ) return propagateFloat64NaN( a, b ); return packFloat64( zSign, 0, 0 ); } if ( bExp == 0 ) { if ( bSig == 0 ) { if ( ( aExp | aSig ) == 0 ) { float_raise( float_flag_invalid ); return float64_default_nan; } float_raise( float_flag_divbyzero ); return packFloat64( zSign, 0x7FF, 0 ); } normalizeFloat64Subnormal( bSig, &bExp, &bSig ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); normalizeFloat64Subnormal( aSig, &aExp, &aSig ); } zExp = aExp - bExp + 0x3FD; aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; if ( bSig <= ( aSig + aSig ) ) { aSig >>= 1; ++zExp; } zSig = estimateDiv128To64( aSig, 0, bSig ); if ( ( zSig & 0x1FF ) <= 2 ) { mul64To128( bSig, zSig, &term0, &term1 ); sub128( aSig, 0, term0, term1, &rem0, &rem1 ); while ( (sbits64) rem0 < 0 ) { --zSig; add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); } zSig |= ( rem1 != 0 ); } return roundAndPackFloat64( zSign, zExp, zSig ); } #ifndef SOFTFLOAT_FOR_GCC /* ------------------------------------------------------------------------------- Returns the remainder of the double-precision floating-point value `a' with respect to the corresponding value `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float64_rem( float64 a, float64 b ) { flag aSign, bSign, zSign; int16 aExp, bExp, expDiff; bits64 aSig, bSig; bits64 q, alternateASig; sbits64 sigMean; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); bSig = extractFloat64Frac( b ); bExp = extractFloat64Exp( b ); bSign = extractFloat64Sign( b ); if ( aExp == 0x7FF ) { if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { return propagateFloat64NaN( a, b ); } float_raise( float_flag_invalid ); return float64_default_nan; } if ( bExp == 0x7FF ) { if ( bSig ) return propagateFloat64NaN( a, b ); return a; } if ( bExp == 0 ) { if ( bSig == 0 ) { float_raise( float_flag_invalid ); return float64_default_nan; } normalizeFloat64Subnormal( bSig, &bExp, &bSig ); } if ( aExp == 0 ) { if ( aSig == 0 ) return a; normalizeFloat64Subnormal( aSig, &aExp, &aSig ); } expDiff = aExp - bExp; aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; if ( expDiff < 0 ) { if ( expDiff < -1 ) return a; aSig >>= 1; } q = ( bSig <= aSig ); if ( q ) aSig -= bSig; expDiff -= 64; while ( 0 < expDiff ) { q = estimateDiv128To64( aSig, 0, bSig ); q = ( 2 < q ) ? q - 2 : 0; aSig = - ( ( bSig>>2 ) * q ); expDiff -= 62; } expDiff += 64; if ( 0 < expDiff ) { q = estimateDiv128To64( aSig, 0, bSig ); q = ( 2 < q ) ? q - 2 : 0; q >>= 64 - expDiff; bSig >>= 2; aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; } else { aSig >>= 2; bSig >>= 2; } do { alternateASig = aSig; ++q; aSig -= bSig; } while ( 0 <= (sbits64) aSig ); sigMean = aSig + alternateASig; if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { aSig = alternateASig; } zSign = ( (sbits64) aSig < 0 ); if ( zSign ) aSig = - aSig; return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); } /* ------------------------------------------------------------------------------- Returns the square root of the double-precision floating-point value `a'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float64_sqrt( float64 a ) { flag aSign; int16 aExp, zExp; bits64 aSig, zSig, doubleZSig; bits64 rem0, rem1, term0, term1; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); if ( aExp == 0x7FF ) { if ( aSig ) return propagateFloat64NaN( a, a ); if ( ! aSign ) return a; float_raise( float_flag_invalid ); return float64_default_nan; } if ( aSign ) { if ( ( aExp | aSig ) == 0 ) return a; float_raise( float_flag_invalid ); return float64_default_nan; } if ( aExp == 0 ) { if ( aSig == 0 ) return 0; normalizeFloat64Subnormal( aSig, &aExp, &aSig ); } zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; aSig |= LIT64( 0x0010000000000000 ); zSig = estimateSqrt32( aExp, aSig>>21 ); aSig <<= 9 - ( aExp & 1 ); zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); if ( ( zSig & 0x1FF ) <= 5 ) { doubleZSig = zSig<<1; mul64To128( zSig, zSig, &term0, &term1 ); sub128( aSig, 0, term0, term1, &rem0, &rem1 ); while ( (sbits64) rem0 < 0 ) { --zSig; doubleZSig -= 2; add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); } zSig |= ( ( rem0 | rem1 ) != 0 ); } return roundAndPackFloat64( 0, zExp, zSig ); } #endif /* ------------------------------------------------------------------------------- Returns 1 if the double-precision floating-point value `a' is equal to the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float64_eq( float64 a, float64 b ) { if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) ) { if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } return ( a == b ) || ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 ); } /* ------------------------------------------------------------------------------- Returns 1 if the double-precision floating-point value `a' is less than or equal to the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float64_le( float64 a, float64 b ) { flag aSign, bSign; if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) ) { float_raise( float_flag_invalid ); return 0; } aSign = extractFloat64Sign( a ); bSign = extractFloat64Sign( b ); if ( aSign != bSign ) return aSign || ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) == 0 ); return ( a == b ) || ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the double-precision floating-point value `a' is less than the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float64_lt( float64 a, float64 b ) { flag aSign, bSign; if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) ) { float_raise( float_flag_invalid ); return 0; } aSign = extractFloat64Sign( a ); bSign = extractFloat64Sign( b ); if ( aSign != bSign ) return aSign && ( (bits64) ( ( FLOAT64_DEMANGLE(a) | FLOAT64_DEMANGLE(b) )<<1 ) != 0 ); return ( a != b ) && ( aSign ^ ( FLOAT64_DEMANGLE(a) < FLOAT64_DEMANGLE(b) ) ); } #ifndef SOFTFLOAT_FOR_GCC /* ------------------------------------------------------------------------------- Returns 1 if the double-precision floating-point value `a' is equal to the corresponding value `b', and 0 otherwise. The invalid exception is raised if either operand is a NaN. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float64_eq_signaling( float64 a, float64 b ) { if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) ) { float_raise( float_flag_invalid ); return 0; } return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); } /* ------------------------------------------------------------------------------- Returns 1 if the double-precision floating-point value `a' is less than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an exception. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float64_le_quiet( float64 a, float64 b ) { flag aSign, bSign; if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) ) { if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } aSign = extractFloat64Sign( a ); bSign = extractFloat64Sign( b ); if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); return ( a == b ) || ( aSign ^ ( a < b ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the double-precision floating-point value `a' is less than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an exception. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float64_lt_quiet( float64 a, float64 b ) { flag aSign, bSign; if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) ) { if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } aSign = extractFloat64Sign( a ); bSign = extractFloat64Sign( b ); if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); return ( a != b ) && ( aSign ^ ( a < b ) ); } #endif #ifdef FLOATX80 /* ------------------------------------------------------------------------------- Returns the result of converting the extended double-precision floating- point value `a' to the 32-bit two's complement integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic---which means in particular that the conversion is rounded according to the current rounding mode. If `a' is a NaN, the largest positive integer is returned. Otherwise, if the conversion overflows, the largest integer with the same sign as `a' is returned. ------------------------------------------------------------------------------- */ int32 floatx80_to_int32( floatx80 a ) { flag aSign; int32 aExp, shiftCount; bits64 aSig; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; shiftCount = 0x4037 - aExp; if ( shiftCount <= 0 ) shiftCount = 1; shift64RightJamming( aSig, shiftCount, &aSig ); return roundAndPackInt32( aSign, aSig ); } /* ------------------------------------------------------------------------------- Returns the result of converting the extended double-precision floating- point value `a' to the 32-bit two's complement integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic, except that the conversion is always rounded toward zero. If `a' is a NaN, the largest positive integer is returned. Otherwise, if the conversion overflows, the largest integer with the same sign as `a' is returned. ------------------------------------------------------------------------------- */ int32 floatx80_to_int32_round_to_zero( floatx80 a ) { flag aSign; int32 aExp, shiftCount; bits64 aSig, savedASig; int32 z; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); if ( 0x401E < aExp ) { if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; goto invalid; } else if ( aExp < 0x3FFF ) { if ( aExp || aSig ) float_set_inexact(); return 0; } shiftCount = 0x403E - aExp; savedASig = aSig; aSig >>= shiftCount; z = aSig; if ( aSign ) z = - z; if ( ( z < 0 ) ^ aSign ) { invalid: float_raise( float_flag_invalid ); return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; } if ( ( aSig<>( - shiftCount ); if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) { float_set_inexact(); } if ( aSign ) z = - z; return z; } /* ------------------------------------------------------------------------------- Returns the result of converting the extended double-precision floating- point value `a' to the single-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 floatx80_to_float32( floatx80 a ) { flag aSign; int32 aExp; bits64 aSig; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); if ( aExp == 0x7FFF ) { if ( (bits64) ( aSig<<1 ) ) { return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); } return packFloat32( aSign, 0xFF, 0 ); } shift64RightJamming( aSig, 33, &aSig ); if ( aExp || aSig ) aExp -= 0x3F81; return roundAndPackFloat32( aSign, aExp, aSig ); } /* ------------------------------------------------------------------------------- Returns the result of converting the extended double-precision floating- point value `a' to the double-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 floatx80_to_float64( floatx80 a ) { flag aSign; int32 aExp; bits64 aSig, zSig; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); if ( aExp == 0x7FFF ) { if ( (bits64) ( aSig<<1 ) ) { return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); } return packFloat64( aSign, 0x7FF, 0 ); } shift64RightJamming( aSig, 1, &zSig ); if ( aExp || aSig ) aExp -= 0x3C01; return roundAndPackFloat64( aSign, aExp, zSig ); } #ifdef FLOAT128 /* ------------------------------------------------------------------------------- Returns the result of converting the extended double-precision floating- point value `a' to the quadruple-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 floatx80_to_float128( floatx80 a ) { flag aSign; int16 aExp; bits64 aSig, zSig0, zSig1; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) { return commonNaNToFloat128( floatx80ToCommonNaN( a ) ); } shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); return packFloat128( aSign, aExp, zSig0, zSig1 ); } #endif /* ------------------------------------------------------------------------------- Rounds the extended double-precision floating-point value `a' to an integer, and returns the result as an extended quadruple-precision floating-point value. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 floatx80_round_to_int( floatx80 a ) { flag aSign; int32 aExp; bits64 lastBitMask, roundBitsMask; int8 roundingMode; floatx80 z; aExp = extractFloatx80Exp( a ); if ( 0x403E <= aExp ) { if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { return propagateFloatx80NaN( a, a ); } return a; } if ( aExp < 0x3FFF ) { if ( ( aExp == 0 ) && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { return a; } float_set_inexact(); aSign = extractFloatx80Sign( a ); switch ( float_rounding_mode() ) { case float_round_nearest_even: if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { return packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); } break; case float_round_down: return aSign ? packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) : packFloatx80( 0, 0, 0 ); case float_round_up: return aSign ? packFloatx80( 1, 0, 0 ) : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); } return packFloatx80( aSign, 0, 0 ); } lastBitMask = 1; lastBitMask <<= 0x403E - aExp; roundBitsMask = lastBitMask - 1; z = a; roundingMode = float_rounding_mode(); if ( roundingMode == float_round_nearest_even ) { z.low += lastBitMask>>1; if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; } else if ( roundingMode != float_round_to_zero ) { if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { z.low += roundBitsMask; } } z.low &= ~ roundBitsMask; if ( z.low == 0 ) { ++z.high; z.low = LIT64( 0x8000000000000000 ); } if ( z.low != a.low ) float_set_inexact(); return z; } /* ------------------------------------------------------------------------------- Returns the result of adding the absolute values of the extended double- precision floating-point values `a' and `b'. If `zSign' is 1, the sum is negated before being returned. `zSign' is ignored if the result is a NaN. The addition is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) { int32 aExp, bExp, zExp; bits64 aSig, bSig, zSig0, zSig1; int32 expDiff; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); bSig = extractFloatx80Frac( b ); bExp = extractFloatx80Exp( b ); expDiff = aExp - bExp; if ( 0 < expDiff ) { if ( aExp == 0x7FFF ) { if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); return a; } if ( bExp == 0 ) --expDiff; shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); zExp = aExp; } else if ( expDiff < 0 ) { if ( bExp == 0x7FFF ) { if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); } if ( aExp == 0 ) ++expDiff; shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); zExp = bExp; } else { if ( aExp == 0x7FFF ) { if ( (bits64) ( ( aSig | bSig )<<1 ) ) { return propagateFloatx80NaN( a, b ); } return a; } zSig1 = 0; zSig0 = aSig + bSig; if ( aExp == 0 ) { normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); goto roundAndPack; } zExp = aExp; goto shiftRight1; } zSig0 = aSig + bSig; if ( (sbits64) zSig0 < 0 ) goto roundAndPack; shiftRight1: shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); zSig0 |= LIT64( 0x8000000000000000 ); ++zExp; roundAndPack: return roundAndPackFloatx80( floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); } /* ------------------------------------------------------------------------------- Returns the result of subtracting the absolute values of the extended double-precision floating-point values `a' and `b'. If `zSign' is 1, the difference is negated before being returned. `zSign' is ignored if the result is a NaN. The subtraction is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) { int32 aExp, bExp, zExp; bits64 aSig, bSig, zSig0, zSig1; int32 expDiff; floatx80 z; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); bSig = extractFloatx80Frac( b ); bExp = extractFloatx80Exp( b ); expDiff = aExp - bExp; if ( 0 < expDiff ) goto aExpBigger; if ( expDiff < 0 ) goto bExpBigger; if ( aExp == 0x7FFF ) { if ( (bits64) ( ( aSig | bSig )<<1 ) ) { return propagateFloatx80NaN( a, b ); } float_raise( float_flag_invalid ); z.low = floatx80_default_nan_low; z.high = floatx80_default_nan_high; return z; } if ( aExp == 0 ) { aExp = 1; bExp = 1; } zSig1 = 0; if ( bSig < aSig ) goto aBigger; if ( aSig < bSig ) goto bBigger; return packFloatx80( float_rounding_mode() == float_round_down, 0, 0 ); bExpBigger: if ( bExp == 0x7FFF ) { if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); } if ( aExp == 0 ) ++expDiff; shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); bBigger: sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); zExp = bExp; zSign ^= 1; goto normalizeRoundAndPack; aExpBigger: if ( aExp == 0x7FFF ) { if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); return a; } if ( bExp == 0 ) --expDiff; shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); aBigger: sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); zExp = aExp; normalizeRoundAndPack: return normalizeRoundAndPackFloatx80( floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); } /* ------------------------------------------------------------------------------- Returns the result of adding the extended double-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 floatx80_add( floatx80 a, floatx80 b ) { flag aSign, bSign; aSign = extractFloatx80Sign( a ); bSign = extractFloatx80Sign( b ); if ( aSign == bSign ) { return addFloatx80Sigs( a, b, aSign ); } else { return subFloatx80Sigs( a, b, aSign ); } } /* ------------------------------------------------------------------------------- Returns the result of subtracting the extended double-precision floating- point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 floatx80_sub( floatx80 a, floatx80 b ) { flag aSign, bSign; aSign = extractFloatx80Sign( a ); bSign = extractFloatx80Sign( b ); if ( aSign == bSign ) { return subFloatx80Sigs( a, b, aSign ); } else { return addFloatx80Sigs( a, b, aSign ); } } /* ------------------------------------------------------------------------------- Returns the result of multiplying the extended double-precision floating- point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 floatx80_mul( floatx80 a, floatx80 b ) { flag aSign, bSign, zSign; int32 aExp, bExp, zExp; bits64 aSig, bSig, zSig0, zSig1; floatx80 z; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); bSig = extractFloatx80Frac( b ); bExp = extractFloatx80Exp( b ); bSign = extractFloatx80Sign( b ); zSign = aSign ^ bSign; if ( aExp == 0x7FFF ) { if ( (bits64) ( aSig<<1 ) || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { return propagateFloatx80NaN( a, b ); } if ( ( bExp | bSig ) == 0 ) goto invalid; return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); } if ( bExp == 0x7FFF ) { if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); if ( ( aExp | aSig ) == 0 ) { invalid: float_raise( float_flag_invalid ); z.low = floatx80_default_nan_low; z.high = floatx80_default_nan_high; return z; } return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); } if ( bExp == 0 ) { if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); } zExp = aExp + bExp - 0x3FFE; mul64To128( aSig, bSig, &zSig0, &zSig1 ); if ( 0 < (sbits64) zSig0 ) { shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); --zExp; } return roundAndPackFloatx80( floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); } /* ------------------------------------------------------------------------------- Returns the result of dividing the extended double-precision floating-point value `a' by the corresponding value `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 floatx80_div( floatx80 a, floatx80 b ) { flag aSign, bSign, zSign; int32 aExp, bExp, zExp; bits64 aSig, bSig, zSig0, zSig1; bits64 rem0, rem1, rem2, term0, term1, term2; floatx80 z; aSig = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); bSig = extractFloatx80Frac( b ); bExp = extractFloatx80Exp( b ); bSign = extractFloatx80Sign( b ); zSign = aSign ^ bSign; if ( aExp == 0x7FFF ) { if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); if ( bExp == 0x7FFF ) { if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); goto invalid; } return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); } if ( bExp == 0x7FFF ) { if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); return packFloatx80( zSign, 0, 0 ); } if ( bExp == 0 ) { if ( bSig == 0 ) { if ( ( aExp | aSig ) == 0 ) { invalid: float_raise( float_flag_invalid ); z.low = floatx80_default_nan_low; z.high = floatx80_default_nan_high; return z; } float_raise( float_flag_divbyzero ); return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); } normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); } if ( aExp == 0 ) { if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); } zExp = aExp - bExp + 0x3FFE; rem1 = 0; if ( bSig <= aSig ) { shift128Right( aSig, 0, 1, &aSig, &rem1 ); ++zExp; } zSig0 = estimateDiv128To64( aSig, rem1, bSig ); mul64To128( bSig, zSig0, &term0, &term1 ); sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); while ( (sbits64) rem0 < 0 ) { --zSig0; add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); } zSig1 = estimateDiv128To64( rem1, 0, bSig ); if ( (bits64) ( zSig1<<1 ) <= 8 ) { mul64To128( bSig, zSig1, &term1, &term2 ); sub128( rem1, 0, term1, term2, &rem1, &rem2 ); while ( (sbits64) rem1 < 0 ) { --zSig1; add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); } zSig1 |= ( ( rem1 | rem2 ) != 0 ); } return roundAndPackFloatx80( floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); } /* ------------------------------------------------------------------------------- Returns the remainder of the extended double-precision floating-point value `a' with respect to the corresponding value `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 floatx80_rem( floatx80 a, floatx80 b ) { flag aSign, bSign, zSign; int32 aExp, bExp, expDiff; bits64 aSig0, aSig1, bSig; bits64 q, term0, term1, alternateASig0, alternateASig1; floatx80 z; aSig0 = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); bSig = extractFloatx80Frac( b ); bExp = extractFloatx80Exp( b ); bSign = extractFloatx80Sign( b ); if ( aExp == 0x7FFF ) { if ( (bits64) ( aSig0<<1 ) || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { return propagateFloatx80NaN( a, b ); } goto invalid; } if ( bExp == 0x7FFF ) { if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); return a; } if ( bExp == 0 ) { if ( bSig == 0 ) { invalid: float_raise( float_flag_invalid ); z.low = floatx80_default_nan_low; z.high = floatx80_default_nan_high; return z; } normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); } if ( aExp == 0 ) { if ( (bits64) ( aSig0<<1 ) == 0 ) return a; normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); } bSig |= LIT64( 0x8000000000000000 ); zSign = aSign; expDiff = aExp - bExp; aSig1 = 0; if ( expDiff < 0 ) { if ( expDiff < -1 ) return a; shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); expDiff = 0; } q = ( bSig <= aSig0 ); if ( q ) aSig0 -= bSig; expDiff -= 64; while ( 0 < expDiff ) { q = estimateDiv128To64( aSig0, aSig1, bSig ); q = ( 2 < q ) ? q - 2 : 0; mul64To128( bSig, q, &term0, &term1 ); sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); expDiff -= 62; } expDiff += 64; if ( 0 < expDiff ) { q = estimateDiv128To64( aSig0, aSig1, bSig ); q = ( 2 < q ) ? q - 2 : 0; q >>= 64 - expDiff; mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); while ( le128( term0, term1, aSig0, aSig1 ) ) { ++q; sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); } } else { term1 = 0; term0 = bSig; } sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) && ( q & 1 ) ) ) { aSig0 = alternateASig0; aSig1 = alternateASig1; zSign = ! zSign; } return normalizeRoundAndPackFloatx80( 80, zSign, bExp + expDiff, aSig0, aSig1 ); } /* ------------------------------------------------------------------------------- Returns the square root of the extended double-precision floating-point value `a'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 floatx80_sqrt( floatx80 a ) { flag aSign; int32 aExp, zExp; bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0; bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; floatx80 z; aSig0 = extractFloatx80Frac( a ); aExp = extractFloatx80Exp( a ); aSign = extractFloatx80Sign( a ); if ( aExp == 0x7FFF ) { if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); if ( ! aSign ) return a; goto invalid; } if ( aSign ) { if ( ( aExp | aSig0 ) == 0 ) return a; invalid: float_raise( float_flag_invalid ); z.low = floatx80_default_nan_low; z.high = floatx80_default_nan_high; return z; } if ( aExp == 0 ) { if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); } zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; zSig0 = estimateSqrt32( aExp, aSig0>>32 ); shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); doubleZSig0 = zSig0<<1; mul64To128( zSig0, zSig0, &term0, &term1 ); sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); while ( (sbits64) rem0 < 0 ) { --zSig0; doubleZSig0 -= 2; add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); } zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) { if ( zSig1 == 0 ) zSig1 = 1; mul64To128( doubleZSig0, zSig1, &term1, &term2 ); sub128( rem1, 0, term1, term2, &rem1, &rem2 ); mul64To128( zSig1, zSig1, &term2, &term3 ); sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); while ( (sbits64) rem1 < 0 ) { --zSig1; shortShift128Left( 0, zSig1, 1, &term2, &term3 ); term3 |= 1; term2 |= doubleZSig0; add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); } zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); } shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); zSig0 |= doubleZSig0; return roundAndPackFloatx80( floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); } /* ------------------------------------------------------------------------------- Returns 1 if the extended double-precision floating-point value `a' is equal to the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag floatx80_eq( floatx80 a, floatx80 b ) { if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) || ( ( extractFloatx80Exp( b ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( b )<<1 ) ) ) { if ( floatx80_is_signaling_nan( a ) || floatx80_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } return ( a.low == b.low ) && ( ( a.high == b.high ) || ( ( a.low == 0 ) && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the extended double-precision floating-point value `a' is less than or equal to the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag floatx80_le( floatx80 a, floatx80 b ) { flag aSign, bSign; if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) || ( ( extractFloatx80Exp( b ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( b )<<1 ) ) ) { float_raise( float_flag_invalid ); return 0; } aSign = extractFloatx80Sign( a ); bSign = extractFloatx80Sign( b ); if ( aSign != bSign ) { return aSign || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) == 0 ); } return aSign ? le128( b.high, b.low, a.high, a.low ) : le128( a.high, a.low, b.high, b.low ); } /* ------------------------------------------------------------------------------- Returns 1 if the extended double-precision floating-point value `a' is less than the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag floatx80_lt( floatx80 a, floatx80 b ) { flag aSign, bSign; if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) || ( ( extractFloatx80Exp( b ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( b )<<1 ) ) ) { float_raise( float_flag_invalid ); return 0; } aSign = extractFloatx80Sign( a ); bSign = extractFloatx80Sign( b ); if ( aSign != bSign ) { return aSign && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) != 0 ); } return aSign ? lt128( b.high, b.low, a.high, a.low ) : lt128( a.high, a.low, b.high, b.low ); } /* ------------------------------------------------------------------------------- Returns 1 if the extended double-precision floating-point value `a' is equal to the corresponding value `b', and 0 otherwise. The invalid exception is raised if either operand is a NaN. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag floatx80_eq_signaling( floatx80 a, floatx80 b ) { if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) || ( ( extractFloatx80Exp( b ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( b )<<1 ) ) ) { float_raise( float_flag_invalid ); return 0; } return ( a.low == b.low ) && ( ( a.high == b.high ) || ( ( a.low == 0 ) && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the extended double-precision floating-point value `a' is less than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an exception. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag floatx80_le_quiet( floatx80 a, floatx80 b ) { flag aSign, bSign; if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) || ( ( extractFloatx80Exp( b ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( b )<<1 ) ) ) { if ( floatx80_is_signaling_nan( a ) || floatx80_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } aSign = extractFloatx80Sign( a ); bSign = extractFloatx80Sign( b ); if ( aSign != bSign ) { return aSign || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) == 0 ); } return aSign ? le128( b.high, b.low, a.high, a.low ) : le128( a.high, a.low, b.high, b.low ); } /* ------------------------------------------------------------------------------- Returns 1 if the extended double-precision floating-point value `a' is less than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an exception. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag floatx80_lt_quiet( floatx80 a, floatx80 b ) { flag aSign, bSign; if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) || ( ( extractFloatx80Exp( b ) == 0x7FFF ) && (bits64) ( extractFloatx80Frac( b )<<1 ) ) ) { if ( floatx80_is_signaling_nan( a ) || floatx80_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } aSign = extractFloatx80Sign( a ); bSign = extractFloatx80Sign( b ); if ( aSign != bSign ) { return aSign && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) != 0 ); } return aSign ? lt128( b.high, b.low, a.high, a.low ) : lt128( a.high, a.low, b.high, b.low ); } #endif #ifdef FLOAT128 /* ------------------------------------------------------------------------------- Returns the result of converting the quadruple-precision floating-point value `a' to the 32-bit two's complement integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic---which means in particular that the conversion is rounded according to the current rounding mode. If `a' is a NaN, the largest positive integer is returned. Otherwise, if the conversion overflows, the largest integer with the same sign as `a' is returned. ------------------------------------------------------------------------------- */ int32 float128_to_int32( float128 a ) { flag aSign; int32 aExp, shiftCount; bits64 aSig0, aSig1; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0; if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 ); aSig0 |= ( aSig1 != 0 ); shiftCount = 0x4028 - aExp; if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 ); return roundAndPackInt32( aSign, aSig0 ); } /* ------------------------------------------------------------------------------- Returns the result of converting the quadruple-precision floating-point value `a' to the 32-bit two's complement integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic, except that the conversion is always rounded toward zero. If `a' is a NaN, the largest positive integer is returned. Otherwise, if the conversion overflows, the largest integer with the same sign as `a' is returned. ------------------------------------------------------------------------------- */ int32 float128_to_int32_round_to_zero( float128 a ) { flag aSign; int32 aExp, shiftCount; bits64 aSig0, aSig1, savedASig; int32 z; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); aSig0 |= ( aSig1 != 0 ); if ( 0x401E < aExp ) { if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0; goto invalid; } else if ( aExp < 0x3FFF ) { if ( aExp || aSig0 ) float_set_inexact(); return 0; } aSig0 |= LIT64( 0x0001000000000000 ); shiftCount = 0x402F - aExp; savedASig = aSig0; aSig0 >>= shiftCount; z = aSig0; if ( aSign ) z = - z; if ( ( z < 0 ) ^ aSign ) { invalid: float_raise( float_flag_invalid ); return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF; } if ( ( aSig0<>( ( - shiftCount ) & 63 ) ); if ( (bits64) ( aSig1<>( - shiftCount ); if ( aSig1 || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) { float_set_inexact(); } } if ( aSign ) z = - z; return z; } /* ------------------------------------------------------------------------------- Returns the result of converting the quadruple-precision floating-point value `a' to the single-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float32 float128_to_float32( float128 a ) { flag aSign; int32 aExp; bits64 aSig0, aSig1; bits32 zSig; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 ) { return commonNaNToFloat32( float128ToCommonNaN( a ) ); } return packFloat32( aSign, 0xFF, 0 ); } aSig0 |= ( aSig1 != 0 ); shift64RightJamming( aSig0, 18, &aSig0 ); zSig = aSig0; if ( aExp || zSig ) { zSig |= 0x40000000; aExp -= 0x3F81; } return roundAndPackFloat32( aSign, aExp, zSig ); } /* ------------------------------------------------------------------------------- Returns the result of converting the quadruple-precision floating-point value `a' to the double-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float64 float128_to_float64( float128 a ) { flag aSign; int32 aExp; bits64 aSig0, aSig1; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 ) { return commonNaNToFloat64( float128ToCommonNaN( a ) ); } return packFloat64( aSign, 0x7FF, 0 ); } shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); aSig0 |= ( aSig1 != 0 ); if ( aExp || aSig0 ) { aSig0 |= LIT64( 0x4000000000000000 ); aExp -= 0x3C01; } return roundAndPackFloat64( aSign, aExp, aSig0 ); } #ifdef FLOATX80 /* ------------------------------------------------------------------------------- Returns the result of converting the quadruple-precision floating-point value `a' to the extended double-precision floating-point format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ floatx80 float128_to_floatx80( float128 a ) { flag aSign; int32 aExp; bits64 aSig0, aSig1; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 ) { return commonNaNToFloatx80( float128ToCommonNaN( a ) ); } return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); } if ( aExp == 0 ) { if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); } else { aSig0 |= LIT64( 0x0001000000000000 ); } shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 ); } #endif /* ------------------------------------------------------------------------------- Rounds the quadruple-precision floating-point value `a' to an integer, and returns the result as a quadruple-precision floating-point value. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float128_round_to_int( float128 a ) { flag aSign; int32 aExp; bits64 lastBitMask, roundBitsMask; int8 roundingMode; float128 z; aExp = extractFloat128Exp( a ); if ( 0x402F <= aExp ) { if ( 0x406F <= aExp ) { if ( ( aExp == 0x7FFF ) && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) { return propagateFloat128NaN( a, a ); } return a; } lastBitMask = 1; lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1; roundBitsMask = lastBitMask - 1; z = a; roundingMode = float_rounding_mode(); if ( roundingMode == float_round_nearest_even ) { if ( lastBitMask ) { add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low ); if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; } else { if ( (sbits64) z.low < 0 ) { ++z.high; if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1; } } } else if ( roundingMode != float_round_to_zero ) { if ( extractFloat128Sign( z ) ^ ( roundingMode == float_round_up ) ) { add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low ); } } z.low &= ~ roundBitsMask; } else { if ( aExp < 0x3FFF ) { if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a; float_set_inexact(); aSign = extractFloat128Sign( a ); switch ( float_rounding_mode() ) { case float_round_nearest_even: if ( ( aExp == 0x3FFE ) && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) { return packFloat128( aSign, 0x3FFF, 0, 0 ); } break; case float_round_down: return aSign ? packFloat128( 1, 0x3FFF, 0, 0 ) : packFloat128( 0, 0, 0, 0 ); case float_round_up: return aSign ? packFloat128( 1, 0, 0, 0 ) : packFloat128( 0, 0x3FFF, 0, 0 ); } return packFloat128( aSign, 0, 0, 0 ); } lastBitMask = 1; lastBitMask <<= 0x402F - aExp; roundBitsMask = lastBitMask - 1; z.low = 0; z.high = a.high; roundingMode = float_rounding_mode(); if ( roundingMode == float_round_nearest_even ) { z.high += lastBitMask>>1; if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) { z.high &= ~ lastBitMask; } } else if ( roundingMode != float_round_to_zero ) { if ( extractFloat128Sign( z ) ^ ( roundingMode == float_round_up ) ) { z.high |= ( a.low != 0 ); z.high += roundBitsMask; } } z.high &= ~ roundBitsMask; } if ( ( z.low != a.low ) || ( z.high != a.high ) ) { float_set_inexact(); } return z; } /* ------------------------------------------------------------------------------- Returns the result of adding the absolute values of the quadruple-precision floating-point values `a' and `b'. If `zSign' is 1, the sum is negated before being returned. `zSign' is ignored if the result is a NaN. The addition is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ static float128 addFloat128Sigs( float128 a, float128 b, flag zSign ) { int32 aExp, bExp, zExp; bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; int32 expDiff; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); bSig1 = extractFloat128Frac1( b ); bSig0 = extractFloat128Frac0( b ); bExp = extractFloat128Exp( b ); expDiff = aExp - bExp; if ( 0 < expDiff ) { if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); return a; } if ( bExp == 0 ) { --expDiff; } else { bSig0 |= LIT64( 0x0001000000000000 ); } shift128ExtraRightJamming( bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 ); zExp = aExp; } else if ( expDiff < 0 ) { if ( bExp == 0x7FFF ) { if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); return packFloat128( zSign, 0x7FFF, 0, 0 ); } if ( aExp == 0 ) { ++expDiff; } else { aSig0 |= LIT64( 0x0001000000000000 ); } shift128ExtraRightJamming( aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 ); zExp = bExp; } else { if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 | bSig0 | bSig1 ) { return propagateFloat128NaN( a, b ); } return a; } add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 ); zSig2 = 0; zSig0 |= LIT64( 0x0002000000000000 ); zExp = aExp; goto shiftRight1; } aSig0 |= LIT64( 0x0001000000000000 ); add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); --zExp; if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack; ++zExp; shiftRight1: shift128ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); roundAndPack: return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); } /* ------------------------------------------------------------------------------- Returns the result of subtracting the absolute values of the quadruple- precision floating-point values `a' and `b'. If `zSign' is 1, the difference is negated before being returned. `zSign' is ignored if the result is a NaN. The subtraction is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ static float128 subFloat128Sigs( float128 a, float128 b, flag zSign ) { int32 aExp, bExp, zExp; bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1; int32 expDiff; float128 z; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); bSig1 = extractFloat128Frac1( b ); bSig0 = extractFloat128Frac0( b ); bExp = extractFloat128Exp( b ); expDiff = aExp - bExp; shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 ); shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 ); if ( 0 < expDiff ) goto aExpBigger; if ( expDiff < 0 ) goto bExpBigger; if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 | bSig0 | bSig1 ) { return propagateFloat128NaN( a, b ); } float_raise( float_flag_invalid ); z.low = float128_default_nan_low; z.high = float128_default_nan_high; return z; } if ( aExp == 0 ) { aExp = 1; bExp = 1; } if ( bSig0 < aSig0 ) goto aBigger; if ( aSig0 < bSig0 ) goto bBigger; if ( bSig1 < aSig1 ) goto aBigger; if ( aSig1 < bSig1 ) goto bBigger; return packFloat128( float_rounding_mode() == float_round_down, 0, 0, 0 ); bExpBigger: if ( bExp == 0x7FFF ) { if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 ); } if ( aExp == 0 ) { ++expDiff; } else { aSig0 |= LIT64( 0x4000000000000000 ); } shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); bSig0 |= LIT64( 0x4000000000000000 ); bBigger: sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 ); zExp = bExp; zSign ^= 1; goto normalizeRoundAndPack; aExpBigger: if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); return a; } if ( bExp == 0 ) { --expDiff; } else { bSig0 |= LIT64( 0x4000000000000000 ); } shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 ); aSig0 |= LIT64( 0x4000000000000000 ); aBigger: sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 ); zExp = aExp; normalizeRoundAndPack: --zExp; return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 ); } /* ------------------------------------------------------------------------------- Returns the result of adding the quadruple-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float128_add( float128 a, float128 b ) { flag aSign, bSign; aSign = extractFloat128Sign( a ); bSign = extractFloat128Sign( b ); if ( aSign == bSign ) { return addFloat128Sigs( a, b, aSign ); } else { return subFloat128Sigs( a, b, aSign ); } } /* ------------------------------------------------------------------------------- Returns the result of subtracting the quadruple-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float128_sub( float128 a, float128 b ) { flag aSign, bSign; aSign = extractFloat128Sign( a ); bSign = extractFloat128Sign( b ); if ( aSign == bSign ) { return subFloat128Sigs( a, b, aSign ); } else { return addFloat128Sigs( a, b, aSign ); } } /* ------------------------------------------------------------------------------- Returns the result of multiplying the quadruple-precision floating-point values `a' and `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float128_mul( float128 a, float128 b ) { flag aSign, bSign, zSign; int32 aExp, bExp, zExp; bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; float128 z; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); bSig1 = extractFloat128Frac1( b ); bSig0 = extractFloat128Frac0( b ); bExp = extractFloat128Exp( b ); bSign = extractFloat128Sign( b ); zSign = aSign ^ bSign; if ( aExp == 0x7FFF ) { if ( ( aSig0 | aSig1 ) || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { return propagateFloat128NaN( a, b ); } if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; return packFloat128( zSign, 0x7FFF, 0, 0 ); } if ( bExp == 0x7FFF ) { if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); if ( ( aExp | aSig0 | aSig1 ) == 0 ) { invalid: float_raise( float_flag_invalid ); z.low = float128_default_nan_low; z.high = float128_default_nan_high; return z; } return packFloat128( zSign, 0x7FFF, 0, 0 ); } if ( aExp == 0 ) { if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); } if ( bExp == 0 ) { if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); } zExp = aExp + bExp - 0x4000; aSig0 |= LIT64( 0x0001000000000000 ); shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); zSig2 |= ( zSig3 != 0 ); if ( LIT64( 0x0002000000000000 ) <= zSig0 ) { shift128ExtraRightJamming( zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); ++zExp; } return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); } /* ------------------------------------------------------------------------------- Returns the result of dividing the quadruple-precision floating-point value `a' by the corresponding value `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float128_div( float128 a, float128 b ) { flag aSign, bSign, zSign; int32 aExp, bExp, zExp; bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2; bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; float128 z; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); bSig1 = extractFloat128Frac1( b ); bSig0 = extractFloat128Frac0( b ); bExp = extractFloat128Exp( b ); bSign = extractFloat128Sign( b ); zSign = aSign ^ bSign; if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b ); if ( bExp == 0x7FFF ) { if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); goto invalid; } return packFloat128( zSign, 0x7FFF, 0, 0 ); } if ( bExp == 0x7FFF ) { if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); return packFloat128( zSign, 0, 0, 0 ); } if ( bExp == 0 ) { if ( ( bSig0 | bSig1 ) == 0 ) { if ( ( aExp | aSig0 | aSig1 ) == 0 ) { invalid: float_raise( float_flag_invalid ); z.low = float128_default_nan_low; z.high = float128_default_nan_high; return z; } float_raise( float_flag_divbyzero ); return packFloat128( zSign, 0x7FFF, 0, 0 ); } normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); } if ( aExp == 0 ) { if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); } zExp = aExp - bExp + 0x3FFD; shortShift128Left( aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 ); shortShift128Left( bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) { shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 ); ++zExp; } zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 ); mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 ); sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 ); while ( (sbits64) rem0 < 0 ) { --zSig0; add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 ); } zSig1 = estimateDiv128To64( rem1, rem2, bSig0 ); if ( ( zSig1 & 0x3FFF ) <= 4 ) { mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 ); sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 ); while ( (sbits64) rem1 < 0 ) { --zSig1; add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 ); } zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); } shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 ); return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 ); } /* ------------------------------------------------------------------------------- Returns the remainder of the quadruple-precision floating-point value `a' with respect to the corresponding value `b'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float128_rem( float128 a, float128 b ) { flag aSign, bSign, zSign; int32 aExp, bExp, expDiff; bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; bits64 allZero, alternateASig0, alternateASig1, sigMean1; sbits64 sigMean0; float128 z; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); bSig1 = extractFloat128Frac1( b ); bSig0 = extractFloat128Frac0( b ); bExp = extractFloat128Exp( b ); bSign = extractFloat128Sign( b ); if ( aExp == 0x7FFF ) { if ( ( aSig0 | aSig1 ) || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { return propagateFloat128NaN( a, b ); } goto invalid; } if ( bExp == 0x7FFF ) { if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b ); return a; } if ( bExp == 0 ) { if ( ( bSig0 | bSig1 ) == 0 ) { invalid: float_raise( float_flag_invalid ); z.low = float128_default_nan_low; z.high = float128_default_nan_high; return z; } normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); } if ( aExp == 0 ) { if ( ( aSig0 | aSig1 ) == 0 ) return a; normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); } expDiff = aExp - bExp; if ( expDiff < -1 ) return a; shortShift128Left( aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15 - ( expDiff < 0 ), &aSig0, &aSig1 ); shortShift128Left( bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 ); q = le128( bSig0, bSig1, aSig0, aSig1 ); if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); expDiff -= 64; while ( 0 < expDiff ) { q = estimateDiv128To64( aSig0, aSig1, bSig0 ); q = ( 4 < q ) ? q - 4 : 0; mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); expDiff -= 61; } if ( -64 < expDiff ) { q = estimateDiv128To64( aSig0, aSig1, bSig0 ); q = ( 4 < q ) ? q - 4 : 0; q >>= - expDiff; shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); expDiff += 52; if ( expDiff < 0 ) { shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); } else { shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); } mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); } else { shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); } do { alternateASig0 = aSig0; alternateASig1 = aSig1; ++q; sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); } while ( 0 <= (sbits64) aSig0 ); add128( aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 ); if ( ( sigMean0 < 0 ) || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { aSig0 = alternateASig0; aSig1 = alternateASig1; } zSign = ( (sbits64) aSig0 < 0 ); if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); return normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 ); } /* ------------------------------------------------------------------------------- Returns the square root of the quadruple-precision floating-point value `a'. The operation is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ float128 float128_sqrt( float128 a ) { flag aSign; int32 aExp, zExp; bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; float128 z; aSig1 = extractFloat128Frac1( a ); aSig0 = extractFloat128Frac0( a ); aExp = extractFloat128Exp( a ); aSign = extractFloat128Sign( a ); if ( aExp == 0x7FFF ) { if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a ); if ( ! aSign ) return a; goto invalid; } if ( aSign ) { if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; invalid: float_raise( float_flag_invalid ); z.low = float128_default_nan_low; z.high = float128_default_nan_high; return z; } if ( aExp == 0 ) { if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); } zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; aSig0 |= LIT64( 0x0001000000000000 ); zSig0 = estimateSqrt32( aExp, aSig0>>17 ); shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); doubleZSig0 = zSig0<<1; mul64To128( zSig0, zSig0, &term0, &term1 ); sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); while ( (sbits64) rem0 < 0 ) { --zSig0; doubleZSig0 -= 2; add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); } zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); if ( ( zSig1 & 0x1FFF ) <= 5 ) { if ( zSig1 == 0 ) zSig1 = 1; mul64To128( doubleZSig0, zSig1, &term1, &term2 ); sub128( rem1, 0, term1, term2, &rem1, &rem2 ); mul64To128( zSig1, zSig1, &term2, &term3 ); sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); while ( (sbits64) rem1 < 0 ) { --zSig1; shortShift128Left( 0, zSig1, 1, &term2, &term3 ); term3 |= 1; term2 |= doubleZSig0; add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); } zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); } shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 ); } /* ------------------------------------------------------------------------------- Returns 1 if the quadruple-precision floating-point value `a' is equal to the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float128_eq( float128 a, float128 b ) { if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || ( ( extractFloat128Exp( b ) == 0x7FFF ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) ) { if ( float128_is_signaling_nan( a ) || float128_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } return ( a.low == b.low ) && ( ( a.high == b.high ) || ( ( a.low == 0 ) && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the quadruple-precision floating-point value `a' is less than or equal to the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float128_le( float128 a, float128 b ) { flag aSign, bSign; if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || ( ( extractFloat128Exp( b ) == 0x7FFF ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) ) { float_raise( float_flag_invalid ); return 0; } aSign = extractFloat128Sign( a ); bSign = extractFloat128Sign( b ); if ( aSign != bSign ) { return aSign || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) == 0 ); } return aSign ? le128( b.high, b.low, a.high, a.low ) : le128( a.high, a.low, b.high, b.low ); } /* ------------------------------------------------------------------------------- Returns 1 if the quadruple-precision floating-point value `a' is less than the corresponding value `b', and 0 otherwise. The comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float128_lt( float128 a, float128 b ) { flag aSign, bSign; if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || ( ( extractFloat128Exp( b ) == 0x7FFF ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) ) { float_raise( float_flag_invalid ); return 0; } aSign = extractFloat128Sign( a ); bSign = extractFloat128Sign( b ); if ( aSign != bSign ) { return aSign && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) != 0 ); } return aSign ? lt128( b.high, b.low, a.high, a.low ) : lt128( a.high, a.low, b.high, b.low ); } /* ------------------------------------------------------------------------------- Returns 1 if the quadruple-precision floating-point value `a' is equal to the corresponding value `b', and 0 otherwise. The invalid exception is raised if either operand is a NaN. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float128_eq_signaling( float128 a, float128 b ) { if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || ( ( extractFloat128Exp( b ) == 0x7FFF ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) ) { float_raise( float_flag_invalid ); return 0; } return ( a.low == b.low ) && ( ( a.high == b.high ) || ( ( a.low == 0 ) && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) ) ); } /* ------------------------------------------------------------------------------- Returns 1 if the quadruple-precision floating-point value `a' is less than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an exception. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float128_le_quiet( float128 a, float128 b ) { flag aSign, bSign; if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || ( ( extractFloat128Exp( b ) == 0x7FFF ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) ) { if ( float128_is_signaling_nan( a ) || float128_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } aSign = extractFloat128Sign( a ); bSign = extractFloat128Sign( b ); if ( aSign != bSign ) { return aSign || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) == 0 ); } return aSign ? le128( b.high, b.low, a.high, a.low ) : le128( a.high, a.low, b.high, b.low ); } /* ------------------------------------------------------------------------------- Returns 1 if the quadruple-precision floating-point value `a' is less than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an exception. Otherwise, the comparison is performed according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. ------------------------------------------------------------------------------- */ flag float128_lt_quiet( float128 a, float128 b ) { flag aSign, bSign; if ( ( ( extractFloat128Exp( a ) == 0x7FFF ) && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || ( ( extractFloat128Exp( b ) == 0x7FFF ) && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) ) ) { if ( float128_is_signaling_nan( a ) || float128_is_signaling_nan( b ) ) { float_raise( float_flag_invalid ); } return 0; } aSign = extractFloat128Sign( a ); bSign = extractFloat128Sign( b ); if ( aSign != bSign ) { return aSign && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) != 0 ); } return aSign ? lt128( b.high, b.low, a.high, a.low ) : lt128( a.high, a.low, b.high, b.low ); } #endif #if defined(SOFTFLOAT_FOR_GCC) && defined(SOFTFLOAT_NEED_FIXUNS) /* * These two routines are not part of the original softfloat distribution. * * They are based on the corresponding conversions to integer but return * unsigned numbers instead since these functions are required by GCC. * * Added by Mark Brinicombe 27/09/97 * * float64 version overhauled for SoftFloat 2a [bjh21 2000-07-15] */ /* ------------------------------------------------------------------------------- Returns the result of converting the double-precision floating-point value `a' to the 32-bit unsigned integer format. The conversion is performed according to the IEC/IEEE Standard for Binary Floating-point Arithmetic, except that the conversion is always rounded toward zero. If `a' is a NaN, the largest positive integer is returned. If the conversion overflows, the largest integer positive is returned. ------------------------------------------------------------------------------- */ uint32 float64_to_uint32_round_to_zero( float64 a ) { flag aSign; int16 aExp, shiftCount; bits64 aSig, savedASig; uint32 z; aSig = extractFloat64Frac( a ); aExp = extractFloat64Exp( a ); aSign = extractFloat64Sign( a ); if (aSign) { float_raise( float_flag_invalid ); return(0); } if ( 0x41E < aExp ) { float_raise( float_flag_invalid ); return 0xffffffff; } else if ( aExp < 0x3FF ) { if ( aExp || aSig ) float_set_inexact(); return 0; } aSig |= LIT64( 0x0010000000000000 ); shiftCount = 0x433 - aExp; savedASig = aSig; aSig >>= shiftCount; z = aSig; if ( ( aSig<>( - shiftCount ); if ( aSig<<( shiftCount & 31 ) ) { float_set_inexact(); } return z; } #endif