/* $OpenBSD: bpf.c,v 1.210 2022/01/16 06:27:14 dlg Exp $ */ /* $NetBSD: bpf.c,v 1.33 1997/02/21 23:59:35 thorpej Exp $ */ /* * Copyright (c) 1990, 1991, 1993 * The Regents of the University of California. All rights reserved. * Copyright (c) 2010, 2014 Henning Brauer * * This code is derived from the Stanford/CMU enet packet filter, * (net/enet.c) distributed as part of 4.3BSD, and code contributed * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence * Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)bpf.c 8.2 (Berkeley) 3/28/94 */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vlan.h" #if NVLAN > 0 #include #endif #define BPF_BUFSIZE 32768 #define PRINET 26 /* interruptible */ /* * The default read buffer size is patchable. */ int bpf_bufsize = BPF_BUFSIZE; int bpf_maxbufsize = BPF_MAXBUFSIZE; /* * bpf_iflist is the list of interfaces; each corresponds to an ifnet * bpf_d_list is the list of descriptors */ struct bpf_if *bpf_iflist; LIST_HEAD(, bpf_d) bpf_d_list; int bpf_allocbufs(struct bpf_d *); void bpf_ifname(struct bpf_if*, struct ifreq *); void bpf_mcopy(const void *, void *, size_t); int bpf_movein(struct uio *, struct bpf_d *, struct mbuf **, struct sockaddr *); int bpf_setif(struct bpf_d *, struct ifreq *); int bpfpoll(dev_t, int, struct proc *); int bpfkqfilter(dev_t, struct knote *); void bpf_wakeup(struct bpf_d *); void bpf_wakeup_cb(void *); int _bpf_mtap(caddr_t, const struct mbuf *, const struct mbuf *, u_int); void bpf_catchpacket(struct bpf_d *, u_char *, size_t, size_t, const struct bpf_hdr *); int bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *); int bpf_setdlt(struct bpf_d *, u_int); void filt_bpfrdetach(struct knote *); int filt_bpfread(struct knote *, long); int filt_bpfreadmodify(struct kevent *, struct knote *); int filt_bpfreadprocess(struct knote *, struct kevent *); int bpf_sysctl_locked(int *, u_int, void *, size_t *, void *, size_t); struct bpf_d *bpfilter_lookup(int); /* * Called holding ``bd_mtx''. */ void bpf_attachd(struct bpf_d *, struct bpf_if *); void bpf_detachd(struct bpf_d *); void bpf_resetd(struct bpf_d *); void bpf_prog_smr(void *); void bpf_d_smr(void *); /* * Reference count access to descriptor buffers */ void bpf_get(struct bpf_d *); void bpf_put(struct bpf_d *); struct rwlock bpf_sysctl_lk = RWLOCK_INITIALIZER("bpfsz"); int bpf_movein(struct uio *uio, struct bpf_d *d, struct mbuf **mp, struct sockaddr *sockp) { struct bpf_program_smr *bps; struct bpf_insn *fcode = NULL; struct mbuf *m; struct m_tag *mtag; int error; u_int hlen; u_int len; u_int linktype; u_int slen; /* * Build a sockaddr based on the data link layer type. * We do this at this level because the ethernet header * is copied directly into the data field of the sockaddr. * In the case of SLIP, there is no header and the packet * is forwarded as is. * Also, we are careful to leave room at the front of the mbuf * for the link level header. */ linktype = d->bd_bif->bif_dlt; switch (linktype) { case DLT_SLIP: sockp->sa_family = AF_INET; hlen = 0; break; case DLT_PPP: sockp->sa_family = AF_UNSPEC; hlen = 0; break; case DLT_EN10MB: sockp->sa_family = AF_UNSPEC; /* XXX Would MAXLINKHDR be better? */ hlen = ETHER_HDR_LEN; break; case DLT_IEEE802_11: case DLT_IEEE802_11_RADIO: sockp->sa_family = AF_UNSPEC; hlen = 0; break; case DLT_RAW: case DLT_NULL: sockp->sa_family = AF_UNSPEC; hlen = 0; break; case DLT_LOOP: sockp->sa_family = AF_UNSPEC; hlen = sizeof(u_int32_t); break; default: return (EIO); } if (uio->uio_resid > MAXMCLBYTES) return (EIO); len = uio->uio_resid; MGETHDR(m, M_WAIT, MT_DATA); m->m_pkthdr.ph_ifidx = 0; m->m_pkthdr.len = len - hlen; if (len > MHLEN) { MCLGETL(m, M_WAIT, len); if ((m->m_flags & M_EXT) == 0) { error = ENOBUFS; goto bad; } } m->m_len = len; *mp = m; error = uiomove(mtod(m, caddr_t), len, uio); if (error) goto bad; smr_read_enter(); bps = SMR_PTR_GET(&d->bd_wfilter); if (bps != NULL) fcode = bps->bps_bf.bf_insns; slen = bpf_filter(fcode, mtod(m, u_char *), len, len); smr_read_leave(); if (slen < len) { error = EPERM; goto bad; } if (m->m_len < hlen) { error = EPERM; goto bad; } /* * Make room for link header, and copy it to sockaddr */ if (hlen != 0) { if (linktype == DLT_LOOP) { u_int32_t af; /* the link header indicates the address family */ KASSERT(hlen == sizeof(u_int32_t)); memcpy(&af, m->m_data, hlen); sockp->sa_family = ntohl(af); } else memcpy(sockp->sa_data, m->m_data, hlen); m->m_len -= hlen; m->m_data += hlen; /* XXX */ } /* * Prepend the data link type as a mbuf tag */ mtag = m_tag_get(PACKET_TAG_DLT, sizeof(u_int), M_WAIT); *(u_int *)(mtag + 1) = linktype; m_tag_prepend(m, mtag); return (0); bad: m_freem(m); return (error); } /* * Attach file to the bpf interface, i.e. make d listen on bp. */ void bpf_attachd(struct bpf_d *d, struct bpf_if *bp) { MUTEX_ASSERT_LOCKED(&d->bd_mtx); /* * Point d at bp, and add d to the interface's list of listeners. * Finally, point the driver's bpf cookie at the interface so * it will divert packets to bpf. */ d->bd_bif = bp; KERNEL_ASSERT_LOCKED(); SMR_SLIST_INSERT_HEAD_LOCKED(&bp->bif_dlist, d, bd_next); *bp->bif_driverp = bp; } /* * Detach a file from its interface. */ void bpf_detachd(struct bpf_d *d) { struct bpf_if *bp; MUTEX_ASSERT_LOCKED(&d->bd_mtx); bp = d->bd_bif; /* Not attached. */ if (bp == NULL) return; /* Remove ``d'' from the interface's descriptor list. */ KERNEL_ASSERT_LOCKED(); SMR_SLIST_REMOVE_LOCKED(&bp->bif_dlist, d, bpf_d, bd_next); if (SMR_SLIST_EMPTY_LOCKED(&bp->bif_dlist)) { /* * Let the driver know that there are no more listeners. */ *bp->bif_driverp = NULL; } d->bd_bif = NULL; /* * Check if this descriptor had requested promiscuous mode. * If so, turn it off. */ if (d->bd_promisc) { int error; KASSERT(bp->bif_ifp != NULL); d->bd_promisc = 0; bpf_get(d); mtx_leave(&d->bd_mtx); NET_LOCK(); error = ifpromisc(bp->bif_ifp, 0); NET_UNLOCK(); mtx_enter(&d->bd_mtx); bpf_put(d); if (error && !(error == EINVAL || error == ENODEV || error == ENXIO)) /* * Something is really wrong if we were able to put * the driver into promiscuous mode, but can't * take it out. */ panic("bpf: ifpromisc failed"); } } void bpfilterattach(int n) { LIST_INIT(&bpf_d_list); } /* * Open ethernet device. Returns ENXIO for illegal minor device number, * EBUSY if file is open by another process. */ int bpfopen(dev_t dev, int flag, int mode, struct proc *p) { struct bpf_d *bd; int unit = minor(dev); if (unit & ((1 << CLONE_SHIFT) - 1)) return (ENXIO); KASSERT(bpfilter_lookup(unit) == NULL); /* create on demand */ if ((bd = malloc(sizeof(*bd), M_DEVBUF, M_NOWAIT|M_ZERO)) == NULL) return (EBUSY); /* Mark "free" and do most initialization. */ bd->bd_unit = unit; bd->bd_bufsize = bpf_bufsize; bd->bd_sig = SIGIO; mtx_init(&bd->bd_mtx, IPL_NET); task_set(&bd->bd_wake_task, bpf_wakeup_cb, bd); smr_init(&bd->bd_smr); sigio_init(&bd->bd_sigio); klist_init_mutex(&bd->bd_sel.si_note, &bd->bd_mtx); bd->bd_rtout = 0; /* no timeout by default */ bpf_get(bd); LIST_INSERT_HEAD(&bpf_d_list, bd, bd_list); return (0); } /* * Close the descriptor by detaching it from its interface, * deallocating its buffers, and marking it free. */ int bpfclose(dev_t dev, int flag, int mode, struct proc *p) { struct bpf_d *d; d = bpfilter_lookup(minor(dev)); mtx_enter(&d->bd_mtx); bpf_detachd(d); bpf_wakeup(d); LIST_REMOVE(d, bd_list); mtx_leave(&d->bd_mtx); bpf_put(d); return (0); } /* * Rotate the packet buffers in descriptor d. Move the store buffer * into the hold slot, and the free buffer into the store slot. * Zero the length of the new store buffer. */ #define ROTATE_BUFFERS(d) \ KASSERT(d->bd_in_uiomove == 0); \ MUTEX_ASSERT_LOCKED(&d->bd_mtx); \ (d)->bd_hbuf = (d)->bd_sbuf; \ (d)->bd_hlen = (d)->bd_slen; \ (d)->bd_sbuf = (d)->bd_fbuf; \ (d)->bd_slen = 0; \ (d)->bd_fbuf = NULL; /* * bpfread - read next chunk of packets from buffers */ int bpfread(dev_t dev, struct uio *uio, int ioflag) { uint64_t end, now; struct bpf_d *d; caddr_t hbuf; int error, hlen; KERNEL_ASSERT_LOCKED(); d = bpfilter_lookup(minor(dev)); if (d->bd_bif == NULL) return (ENXIO); bpf_get(d); mtx_enter(&d->bd_mtx); /* * Restrict application to use a buffer the same size as * as kernel buffers. */ if (uio->uio_resid != d->bd_bufsize) { error = EINVAL; goto out; } /* * If there's a timeout, mark when the read should end. */ if (d->bd_rtout != 0) { now = nsecuptime(); end = now + d->bd_rtout; if (end < now) end = UINT64_MAX; } /* * If the hold buffer is empty, then do a timed sleep, which * ends when the timeout expires or when enough packets * have arrived to fill the store buffer. */ while (d->bd_hbuf == NULL) { if (d->bd_bif == NULL) { /* interface is gone */ if (d->bd_slen == 0) { error = EIO; goto out; } ROTATE_BUFFERS(d); break; } if (d->bd_immediate && d->bd_slen != 0) { /* * A packet(s) either arrived since the previous * read or arrived while we were asleep. * Rotate the buffers and return what's here. */ ROTATE_BUFFERS(d); break; } if (ISSET(ioflag, IO_NDELAY)) { /* User requested non-blocking I/O */ error = EWOULDBLOCK; } else if (d->bd_rtout == 0) { /* No read timeout set. */ d->bd_nreaders++; error = msleep_nsec(d, &d->bd_mtx, PRINET|PCATCH, "bpf", INFSLP); d->bd_nreaders--; } else if ((now = nsecuptime()) < end) { /* Read timeout has not expired yet. */ d->bd_nreaders++; error = msleep_nsec(d, &d->bd_mtx, PRINET|PCATCH, "bpf", end - now); d->bd_nreaders--; } else { /* Read timeout has expired. */ error = EWOULDBLOCK; } if (error == EINTR || error == ERESTART) goto out; if (error == EWOULDBLOCK) { /* * On a timeout, return what's in the buffer, * which may be nothing. If there is something * in the store buffer, we can rotate the buffers. */ if (d->bd_hbuf != NULL) /* * We filled up the buffer in between * getting the timeout and arriving * here, so we don't need to rotate. */ break; if (d->bd_slen == 0) { error = 0; goto out; } ROTATE_BUFFERS(d); break; } } /* * At this point, we know we have something in the hold slot. */ hbuf = d->bd_hbuf; hlen = d->bd_hlen; d->bd_hbuf = NULL; d->bd_hlen = 0; d->bd_fbuf = NULL; d->bd_in_uiomove = 1; /* * Move data from hold buffer into user space. * We know the entire buffer is transferred since * we checked above that the read buffer is bpf_bufsize bytes. */ mtx_leave(&d->bd_mtx); error = uiomove(hbuf, hlen, uio); mtx_enter(&d->bd_mtx); /* Ensure that bpf_resetd() or ROTATE_BUFFERS() haven't been called. */ KASSERT(d->bd_fbuf == NULL); KASSERT(d->bd_hbuf == NULL); d->bd_fbuf = hbuf; d->bd_in_uiomove = 0; out: mtx_leave(&d->bd_mtx); bpf_put(d); return (error); } /* * If there are processes sleeping on this descriptor, wake them up. */ void bpf_wakeup(struct bpf_d *d) { struct klist *klist; MUTEX_ASSERT_LOCKED(&d->bd_mtx); if (d->bd_nreaders) wakeup(d); klist = &d->bd_sel.si_note; if (!klist_empty(klist)) knote(klist, 0); /* * As long as pgsigio() and selwakeup() need to be protected * by the KERNEL_LOCK() we have to delay the wakeup to * another context to keep the hot path KERNEL_LOCK()-free. */ if ((d->bd_async && d->bd_sig) || d->bd_sel.si_seltid != 0) { bpf_get(d); if (!task_add(systq, &d->bd_wake_task)) bpf_put(d); } } void bpf_wakeup_cb(void *xd) { struct bpf_d *d = xd; if (d->bd_async && d->bd_sig) pgsigio(&d->bd_sigio, d->bd_sig, 0); mtx_enter(&d->bd_mtx); selwakeup(&d->bd_sel); mtx_leave(&d->bd_mtx); bpf_put(d); } int bpfwrite(dev_t dev, struct uio *uio, int ioflag) { struct bpf_d *d; struct ifnet *ifp; struct mbuf *m; int error; struct sockaddr_storage dst; KERNEL_ASSERT_LOCKED(); d = bpfilter_lookup(minor(dev)); if (d->bd_bif == NULL) return (ENXIO); bpf_get(d); ifp = d->bd_bif->bif_ifp; if (ifp == NULL || (ifp->if_flags & IFF_UP) == 0) { error = ENETDOWN; goto out; } if (uio->uio_resid == 0) { error = 0; goto out; } error = bpf_movein(uio, d, &m, sstosa(&dst)); if (error) goto out; if (m->m_pkthdr.len > ifp->if_mtu) { m_freem(m); error = EMSGSIZE; goto out; } m->m_pkthdr.ph_rtableid = ifp->if_rdomain; m->m_pkthdr.pf.prio = ifp->if_llprio; if (d->bd_hdrcmplt && dst.ss_family == AF_UNSPEC) dst.ss_family = pseudo_AF_HDRCMPLT; NET_LOCK(); error = ifp->if_output(ifp, m, sstosa(&dst), NULL); NET_UNLOCK(); out: bpf_put(d); return (error); } /* * Reset a descriptor by flushing its packet buffer and clearing the * receive and drop counts. */ void bpf_resetd(struct bpf_d *d) { MUTEX_ASSERT_LOCKED(&d->bd_mtx); KASSERT(d->bd_in_uiomove == 0); if (d->bd_hbuf != NULL) { /* Free the hold buffer. */ d->bd_fbuf = d->bd_hbuf; d->bd_hbuf = NULL; } d->bd_slen = 0; d->bd_hlen = 0; d->bd_rcount = 0; d->bd_dcount = 0; } /* * FIONREAD Check for read packet available. * BIOCGBLEN Get buffer len [for read()]. * BIOCSETF Set ethernet read filter. * BIOCFLUSH Flush read packet buffer. * BIOCPROMISC Put interface into promiscuous mode. * BIOCGDLTLIST Get supported link layer types. * BIOCGDLT Get link layer type. * BIOCSDLT Set link layer type. * BIOCGETIF Get interface name. * BIOCSETIF Set interface. * BIOCSRTIMEOUT Set read timeout. * BIOCGRTIMEOUT Get read timeout. * BIOCGSTATS Get packet stats. * BIOCIMMEDIATE Set immediate mode. * BIOCVERSION Get filter language version. * BIOCGHDRCMPLT Get "header already complete" flag * BIOCSHDRCMPLT Set "header already complete" flag */ int bpfioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p) { struct bpf_d *d; int error = 0; d = bpfilter_lookup(minor(dev)); if (d->bd_locked && suser(p) != 0) { /* list of allowed ioctls when locked and not root */ switch (cmd) { case BIOCGBLEN: case BIOCFLUSH: case BIOCGDLT: case BIOCGDLTLIST: case BIOCGETIF: case BIOCGRTIMEOUT: case BIOCGSTATS: case BIOCVERSION: case BIOCGRSIG: case BIOCGHDRCMPLT: case FIONREAD: case BIOCLOCK: case BIOCSRTIMEOUT: case BIOCIMMEDIATE: case TIOCGPGRP: case BIOCGDIRFILT: break; default: return (EPERM); } } bpf_get(d); switch (cmd) { default: error = EINVAL; break; /* * Check for read packet available. */ case FIONREAD: { int n; mtx_enter(&d->bd_mtx); n = d->bd_slen; if (d->bd_hbuf != NULL) n += d->bd_hlen; mtx_leave(&d->bd_mtx); *(int *)addr = n; break; } /* * Get buffer len [for read()]. */ case BIOCGBLEN: *(u_int *)addr = d->bd_bufsize; break; /* * Set buffer length. */ case BIOCSBLEN: if (d->bd_bif != NULL) error = EINVAL; else { u_int size = *(u_int *)addr; if (size > bpf_maxbufsize) *(u_int *)addr = size = bpf_maxbufsize; else if (size < BPF_MINBUFSIZE) *(u_int *)addr = size = BPF_MINBUFSIZE; mtx_enter(&d->bd_mtx); d->bd_bufsize = size; mtx_leave(&d->bd_mtx); } break; /* * Set link layer read filter. */ case BIOCSETF: error = bpf_setf(d, (struct bpf_program *)addr, 0); break; /* * Set link layer write filter. */ case BIOCSETWF: error = bpf_setf(d, (struct bpf_program *)addr, 1); break; /* * Flush read packet buffer. */ case BIOCFLUSH: mtx_enter(&d->bd_mtx); bpf_resetd(d); mtx_leave(&d->bd_mtx); break; /* * Put interface into promiscuous mode. */ case BIOCPROMISC: if (d->bd_bif == NULL) { /* * No interface attached yet. */ error = EINVAL; } else if (d->bd_bif->bif_ifp != NULL) { if (d->bd_promisc == 0) { MUTEX_ASSERT_UNLOCKED(&d->bd_mtx); NET_LOCK(); error = ifpromisc(d->bd_bif->bif_ifp, 1); NET_UNLOCK(); if (error == 0) d->bd_promisc = 1; } } break; /* * Get a list of supported device parameters. */ case BIOCGDLTLIST: if (d->bd_bif == NULL) error = EINVAL; else error = bpf_getdltlist(d, (struct bpf_dltlist *)addr); break; /* * Get device parameters. */ case BIOCGDLT: if (d->bd_bif == NULL) error = EINVAL; else *(u_int *)addr = d->bd_bif->bif_dlt; break; /* * Set device parameters. */ case BIOCSDLT: if (d->bd_bif == NULL) error = EINVAL; else { mtx_enter(&d->bd_mtx); error = bpf_setdlt(d, *(u_int *)addr); mtx_leave(&d->bd_mtx); } break; /* * Set interface name. */ case BIOCGETIF: if (d->bd_bif == NULL) error = EINVAL; else bpf_ifname(d->bd_bif, (struct ifreq *)addr); break; /* * Set interface. */ case BIOCSETIF: error = bpf_setif(d, (struct ifreq *)addr); break; /* * Set read timeout. */ case BIOCSRTIMEOUT: { struct timeval *tv = (struct timeval *)addr; uint64_t rtout; if (tv->tv_sec < 0 || !timerisvalid(tv)) { error = EINVAL; break; } rtout = TIMEVAL_TO_NSEC(tv); if (rtout > MAXTSLP) { error = EOVERFLOW; break; } mtx_enter(&d->bd_mtx); d->bd_rtout = rtout; mtx_leave(&d->bd_mtx); break; } /* * Get read timeout. */ case BIOCGRTIMEOUT: { struct timeval *tv = (struct timeval *)addr; memset(tv, 0, sizeof(*tv)); mtx_enter(&d->bd_mtx); NSEC_TO_TIMEVAL(d->bd_rtout, tv); mtx_leave(&d->bd_mtx); break; } /* * Get packet stats. */ case BIOCGSTATS: { struct bpf_stat *bs = (struct bpf_stat *)addr; bs->bs_recv = d->bd_rcount; bs->bs_drop = d->bd_dcount; break; } /* * Set immediate mode. */ case BIOCIMMEDIATE: d->bd_immediate = *(u_int *)addr; break; case BIOCVERSION: { struct bpf_version *bv = (struct bpf_version *)addr; bv->bv_major = BPF_MAJOR_VERSION; bv->bv_minor = BPF_MINOR_VERSION; break; } case BIOCGHDRCMPLT: /* get "header already complete" flag */ *(u_int *)addr = d->bd_hdrcmplt; break; case BIOCSHDRCMPLT: /* set "header already complete" flag */ d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0; break; case BIOCLOCK: /* set "locked" flag (no reset) */ d->bd_locked = 1; break; case BIOCGFILDROP: /* get "filter-drop" flag */ *(u_int *)addr = d->bd_fildrop; break; case BIOCSFILDROP: { /* set "filter-drop" flag */ unsigned int fildrop = *(u_int *)addr; switch (fildrop) { case BPF_FILDROP_PASS: case BPF_FILDROP_CAPTURE: case BPF_FILDROP_DROP: d->bd_fildrop = fildrop; break; default: error = EINVAL; break; } break; } case BIOCGDIRFILT: /* get direction filter */ *(u_int *)addr = d->bd_dirfilt; break; case BIOCSDIRFILT: /* set direction filter */ d->bd_dirfilt = (*(u_int *)addr) & (BPF_DIRECTION_IN|BPF_DIRECTION_OUT); break; case FIONBIO: /* Non-blocking I/O */ /* let vfs to keep track of this */ break; case FIOASYNC: /* Send signal on receive packets */ d->bd_async = *(int *)addr; break; case FIOSETOWN: /* Process or group to send signals to */ case TIOCSPGRP: error = sigio_setown(&d->bd_sigio, cmd, addr); break; case FIOGETOWN: case TIOCGPGRP: sigio_getown(&d->bd_sigio, cmd, addr); break; case BIOCSRSIG: /* Set receive signal */ { u_int sig; sig = *(u_int *)addr; if (sig >= NSIG) error = EINVAL; else d->bd_sig = sig; break; } case BIOCGRSIG: *(u_int *)addr = d->bd_sig; break; } bpf_put(d); return (error); } /* * Set d's packet filter program to fp. If this file already has a filter, * free it and replace it. Returns EINVAL for bogus requests. */ int bpf_setf(struct bpf_d *d, struct bpf_program *fp, int wf) { struct bpf_program_smr *bps, *old_bps; struct bpf_insn *fcode; u_int flen, size; KERNEL_ASSERT_LOCKED(); if (fp->bf_insns == 0) { if (fp->bf_len != 0) return (EINVAL); bps = NULL; } else { flen = fp->bf_len; if (flen > BPF_MAXINSNS) return (EINVAL); fcode = mallocarray(flen, sizeof(*fp->bf_insns), M_DEVBUF, M_WAITOK | M_CANFAIL); if (fcode == NULL) return (ENOMEM); size = flen * sizeof(*fp->bf_insns); if (copyin(fp->bf_insns, fcode, size) != 0 || bpf_validate(fcode, (int)flen) == 0) { free(fcode, M_DEVBUF, size); return (EINVAL); } bps = malloc(sizeof(*bps), M_DEVBUF, M_WAITOK); smr_init(&bps->bps_smr); bps->bps_bf.bf_len = flen; bps->bps_bf.bf_insns = fcode; } if (wf == 0) { old_bps = SMR_PTR_GET_LOCKED(&d->bd_rfilter); SMR_PTR_SET_LOCKED(&d->bd_rfilter, bps); } else { old_bps = SMR_PTR_GET_LOCKED(&d->bd_wfilter); SMR_PTR_SET_LOCKED(&d->bd_wfilter, bps); } mtx_enter(&d->bd_mtx); bpf_resetd(d); mtx_leave(&d->bd_mtx); if (old_bps != NULL) smr_call(&old_bps->bps_smr, bpf_prog_smr, old_bps); return (0); } /* * Detach a file from its current interface (if attached at all) and attach * to the interface indicated by the name stored in ifr. * Return an errno or 0. */ int bpf_setif(struct bpf_d *d, struct ifreq *ifr) { struct bpf_if *bp, *candidate = NULL; int error = 0; /* * Look through attached interfaces for the named one. */ for (bp = bpf_iflist; bp != NULL; bp = bp->bif_next) { if (strcmp(bp->bif_name, ifr->ifr_name) != 0) continue; if (candidate == NULL || candidate->bif_dlt > bp->bif_dlt) candidate = bp; } /* Not found. */ if (candidate == NULL) return (ENXIO); /* * Allocate the packet buffers if we need to. * If we're already attached to requested interface, * just flush the buffer. */ mtx_enter(&d->bd_mtx); if (d->bd_sbuf == NULL) { if ((error = bpf_allocbufs(d))) goto out; } if (candidate != d->bd_bif) { /* * Detach if attached to something else. */ bpf_detachd(d); bpf_attachd(d, candidate); } bpf_resetd(d); out: mtx_leave(&d->bd_mtx); return (error); } /* * Copy the interface name to the ifreq. */ void bpf_ifname(struct bpf_if *bif, struct ifreq *ifr) { bcopy(bif->bif_name, ifr->ifr_name, sizeof(ifr->ifr_name)); } /* * Support for poll() system call */ int bpfpoll(dev_t dev, int events, struct proc *p) { struct bpf_d *d; int revents; KERNEL_ASSERT_LOCKED(); /* * An imitation of the FIONREAD ioctl code. */ d = bpfilter_lookup(minor(dev)); /* * XXX The USB stack manages it to trigger some race condition * which causes bpfilter_lookup to return NULL when a USB device * gets detached while it is up and has an open bpf handler (e.g. * dhclient). We still should recheck if we can fix the root * cause of this issue. */ if (d == NULL) return (POLLERR); /* Always ready to write data */ revents = events & (POLLOUT | POLLWRNORM); if (events & (POLLIN | POLLRDNORM)) { mtx_enter(&d->bd_mtx); if (d->bd_hlen != 0 || (d->bd_immediate && d->bd_slen != 0)) revents |= events & (POLLIN | POLLRDNORM); else selrecord(p, &d->bd_sel); mtx_leave(&d->bd_mtx); } return (revents); } const struct filterops bpfread_filtops = { .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, .f_attach = NULL, .f_detach = filt_bpfrdetach, .f_event = filt_bpfread, .f_modify = filt_bpfreadmodify, .f_process = filt_bpfreadprocess, }; int bpfkqfilter(dev_t dev, struct knote *kn) { struct bpf_d *d; struct klist *klist; KERNEL_ASSERT_LOCKED(); d = bpfilter_lookup(minor(dev)); if (d == NULL) return (ENXIO); switch (kn->kn_filter) { case EVFILT_READ: klist = &d->bd_sel.si_note; kn->kn_fop = &bpfread_filtops; break; default: return (EINVAL); } bpf_get(d); kn->kn_hook = d; klist_insert(klist, kn); return (0); } void filt_bpfrdetach(struct knote *kn) { struct bpf_d *d = kn->kn_hook; klist_remove(&d->bd_sel.si_note, kn); bpf_put(d); } int filt_bpfread_common(struct knote *kn, struct bpf_d *d) { MUTEX_ASSERT_LOCKED(&d->bd_mtx); kn->kn_data = d->bd_hlen; if (d->bd_immediate) kn->kn_data += d->bd_slen; return (kn->kn_data > 0); } int filt_bpfread(struct knote *kn, long hint) { struct bpf_d *d = kn->kn_hook; if (hint == NOTE_SUBMIT) /* ignore activation from selwakeup */ return (0); return (filt_bpfread_common(kn, d)); } int filt_bpfreadmodify(struct kevent *kev, struct knote *kn) { struct bpf_d *d = kn->kn_hook; int active; mtx_enter(&d->bd_mtx); knote_modify(kev, kn); active = filt_bpfread_common(kn, d); mtx_leave(&d->bd_mtx); return (active); } int filt_bpfreadprocess(struct knote *kn, struct kevent *kev) { struct bpf_d *d = kn->kn_hook; int active; mtx_enter(&d->bd_mtx); if (kev != NULL && (kn->kn_flags & EV_ONESHOT)) active = 1; else active = filt_bpfread_common(kn, d); if (active) knote_submit(kn, kev); mtx_leave(&d->bd_mtx); return (active); } /* * Copy data from an mbuf chain into a buffer. This code is derived * from m_copydata in sys/uipc_mbuf.c. */ void bpf_mcopy(const void *src_arg, void *dst_arg, size_t len) { const struct mbuf *m; u_int count; u_char *dst; m = src_arg; dst = dst_arg; while (len > 0) { if (m == NULL) panic("bpf_mcopy"); count = min(m->m_len, len); bcopy(mtod(m, caddr_t), (caddr_t)dst, count); m = m->m_next; dst += count; len -= count; } } int bpf_mtap(caddr_t arg, const struct mbuf *m, u_int direction) { return _bpf_mtap(arg, m, m, direction); } int _bpf_mtap(caddr_t arg, const struct mbuf *mp, const struct mbuf *m, u_int direction) { struct bpf_if *bp = (struct bpf_if *)arg; struct bpf_d *d; size_t pktlen, slen; const struct mbuf *m0; struct bpf_hdr tbh; int gothdr = 0; int drop = 0; if (m == NULL) return (0); if (bp == NULL) return (0); pktlen = 0; for (m0 = m; m0 != NULL; m0 = m0->m_next) pktlen += m0->m_len; smr_read_enter(); SMR_SLIST_FOREACH(d, &bp->bif_dlist, bd_next) { struct bpf_program_smr *bps; struct bpf_insn *fcode = NULL; atomic_inc_long(&d->bd_rcount); if (ISSET(d->bd_dirfilt, direction)) continue; bps = SMR_PTR_GET(&d->bd_rfilter); if (bps != NULL) fcode = bps->bps_bf.bf_insns; slen = bpf_mfilter(fcode, m, pktlen); if (slen == 0) continue; if (d->bd_fildrop != BPF_FILDROP_PASS) drop = 1; if (d->bd_fildrop != BPF_FILDROP_DROP) { if (!gothdr) { struct timeval tv; memset(&tbh, 0, sizeof(tbh)); if (ISSET(mp->m_flags, M_PKTHDR)) { tbh.bh_ifidx = mp->m_pkthdr.ph_ifidx; tbh.bh_flowid = mp->m_pkthdr.ph_flowid; tbh.bh_flags = mp->m_pkthdr.pf.prio; if (ISSET(mp->m_pkthdr.csum_flags, M_FLOWID)) SET(tbh.bh_flags, BPF_F_FLOWID); m_microtime(mp, &tv); } else microtime(&tv); tbh.bh_tstamp.tv_sec = tv.tv_sec; tbh.bh_tstamp.tv_usec = tv.tv_usec; SET(tbh.bh_flags, direction << BPF_F_DIR_SHIFT); gothdr = 1; } mtx_enter(&d->bd_mtx); bpf_catchpacket(d, (u_char *)m, pktlen, slen, &tbh); mtx_leave(&d->bd_mtx); } } smr_read_leave(); return (drop); } /* * Incoming linkage from device drivers, where a data buffer should be * prepended by an arbitrary header. In this situation we already have a * way of representing a chain of memory buffers, ie, mbufs, so reuse * the existing functionality by attaching the buffers to mbufs. * * Con up a minimal mbuf chain to pacify bpf by allocating (only) a * struct m_hdr each for the header and data on the stack. */ int bpf_tap_hdr(caddr_t arg, const void *hdr, unsigned int hdrlen, const void *buf, unsigned int buflen, u_int direction) { struct m_hdr mh, md; struct mbuf *m0 = NULL; struct mbuf **mp = &m0; if (hdr != NULL) { mh.mh_flags = 0; mh.mh_next = NULL; mh.mh_len = hdrlen; mh.mh_data = (void *)hdr; *mp = (struct mbuf *)&mh; mp = &mh.mh_next; } if (buf != NULL) { md.mh_flags = 0; md.mh_next = NULL; md.mh_len = buflen; md.mh_data = (void *)buf; *mp = (struct mbuf *)&md; } return bpf_mtap(arg, m0, direction); } /* * Incoming linkage from device drivers, where we have a mbuf chain * but need to prepend some arbitrary header from a linear buffer. * * Con up a minimal dummy header to pacify bpf. Allocate (only) a * struct m_hdr on the stack. This is safe as bpf only reads from the * fields in this header that we initialize, and will not try to free * it or keep a pointer to it. */ int bpf_mtap_hdr(caddr_t arg, const void *data, u_int dlen, const struct mbuf *m, u_int direction) { struct m_hdr mh; const struct mbuf *m0; if (dlen > 0) { mh.mh_flags = 0; mh.mh_next = (struct mbuf *)m; mh.mh_len = dlen; mh.mh_data = (void *)data; m0 = (struct mbuf *)&mh; } else m0 = m; return _bpf_mtap(arg, m, m0, direction); } /* * Incoming linkage from device drivers, where we have a mbuf chain * but need to prepend the address family. * * Con up a minimal dummy header to pacify bpf. We allocate (only) a * struct m_hdr on the stack. This is safe as bpf only reads from the * fields in this header that we initialize, and will not try to free * it or keep a pointer to it. */ int bpf_mtap_af(caddr_t arg, u_int32_t af, const struct mbuf *m, u_int direction) { u_int32_t afh; afh = htonl(af); return bpf_mtap_hdr(arg, &afh, sizeof(afh), m, direction); } /* * Incoming linkage from device drivers, where we have a mbuf chain * but need to prepend a VLAN encapsulation header. * * Con up a minimal dummy header to pacify bpf. Allocate (only) a * struct m_hdr on the stack. This is safe as bpf only reads from the * fields in this header that we initialize, and will not try to free * it or keep a pointer to it. */ int bpf_mtap_ether(caddr_t arg, const struct mbuf *m, u_int direction) { #if NVLAN > 0 struct ether_vlan_header evh; struct m_hdr mh, md; if ((m->m_flags & M_VLANTAG) == 0) #endif { return _bpf_mtap(arg, m, m, direction); } #if NVLAN > 0 KASSERT(m->m_len >= ETHER_HDR_LEN); memcpy(&evh, mtod(m, char *), ETHER_HDR_LEN); evh.evl_proto = evh.evl_encap_proto; evh.evl_encap_proto = htons(ETHERTYPE_VLAN); evh.evl_tag = htons(m->m_pkthdr.ether_vtag); mh.mh_flags = 0; mh.mh_data = (caddr_t)&evh; mh.mh_len = sizeof(evh); mh.mh_next = (struct mbuf *)&md; md.mh_flags = 0; md.mh_data = m->m_data + ETHER_HDR_LEN; md.mh_len = m->m_len - ETHER_HDR_LEN; md.mh_next = m->m_next; return _bpf_mtap(arg, m, (struct mbuf *)&mh, direction); #endif } /* * Move the packet data from interface memory (pkt) into the * store buffer. Wake up listeners if needed. * "copy" is the routine called to do the actual data * transfer. bcopy is passed in to copy contiguous chunks, while * bpf_mcopy is passed in to copy mbuf chains. In the latter case, * pkt is really an mbuf. */ void bpf_catchpacket(struct bpf_d *d, u_char *pkt, size_t pktlen, size_t snaplen, const struct bpf_hdr *tbh) { struct bpf_hdr *bh; int totlen, curlen; int hdrlen, do_wakeup = 0; MUTEX_ASSERT_LOCKED(&d->bd_mtx); if (d->bd_bif == NULL) return; hdrlen = d->bd_bif->bif_hdrlen; /* * Figure out how many bytes to move. If the packet is * greater or equal to the snapshot length, transfer that * much. Otherwise, transfer the whole packet (unless * we hit the buffer size limit). */ totlen = hdrlen + min(snaplen, pktlen); if (totlen > d->bd_bufsize) totlen = d->bd_bufsize; /* * Round up the end of the previous packet to the next longword. */ curlen = BPF_WORDALIGN(d->bd_slen); if (curlen + totlen > d->bd_bufsize) { /* * This packet will overflow the storage buffer. * Rotate the buffers if we can, then wakeup any * pending reads. */ if (d->bd_fbuf == NULL) { /* * We haven't completed the previous read yet, * so drop the packet. */ ++d->bd_dcount; return; } ROTATE_BUFFERS(d); do_wakeup = 1; curlen = 0; } /* * Append the bpf header. */ bh = (struct bpf_hdr *)(d->bd_sbuf + curlen); *bh = *tbh; bh->bh_datalen = pktlen; bh->bh_hdrlen = hdrlen; bh->bh_caplen = totlen - hdrlen; /* * Copy the packet data into the store buffer and update its length. */ bpf_mcopy(pkt, (u_char *)bh + hdrlen, bh->bh_caplen); d->bd_slen = curlen + totlen; if (d->bd_immediate) { /* * Immediate mode is set. A packet arrived so any * reads should be woken up. */ do_wakeup = 1; } if (do_wakeup) bpf_wakeup(d); } /* * Initialize all nonzero fields of a descriptor. */ int bpf_allocbufs(struct bpf_d *d) { MUTEX_ASSERT_LOCKED(&d->bd_mtx); d->bd_fbuf = malloc(d->bd_bufsize, M_DEVBUF, M_NOWAIT); if (d->bd_fbuf == NULL) return (ENOMEM); d->bd_sbuf = malloc(d->bd_bufsize, M_DEVBUF, M_NOWAIT); if (d->bd_sbuf == NULL) { free(d->bd_fbuf, M_DEVBUF, d->bd_bufsize); d->bd_fbuf = NULL; return (ENOMEM); } d->bd_slen = 0; d->bd_hlen = 0; return (0); } void bpf_prog_smr(void *bps_arg) { struct bpf_program_smr *bps = bps_arg; free(bps->bps_bf.bf_insns, M_DEVBUF, bps->bps_bf.bf_len * sizeof(struct bpf_insn)); free(bps, M_DEVBUF, sizeof(struct bpf_program_smr)); } void bpf_d_smr(void *smr) { struct bpf_d *bd = smr; sigio_free(&bd->bd_sigio); free(bd->bd_sbuf, M_DEVBUF, bd->bd_bufsize); free(bd->bd_hbuf, M_DEVBUF, bd->bd_bufsize); free(bd->bd_fbuf, M_DEVBUF, bd->bd_bufsize); if (bd->bd_rfilter != NULL) bpf_prog_smr(bd->bd_rfilter); if (bd->bd_wfilter != NULL) bpf_prog_smr(bd->bd_wfilter); klist_free(&bd->bd_sel.si_note); free(bd, M_DEVBUF, sizeof(*bd)); } void bpf_get(struct bpf_d *bd) { atomic_inc_int(&bd->bd_ref); } /* * Free buffers currently in use by a descriptor * when the reference count drops to zero. */ void bpf_put(struct bpf_d *bd) { if (atomic_dec_int_nv(&bd->bd_ref) > 0) return; smr_call(&bd->bd_smr, bpf_d_smr, bd); } void * bpfsattach(caddr_t *bpfp, const char *name, u_int dlt, u_int hdrlen) { struct bpf_if *bp; if ((bp = malloc(sizeof(*bp), M_DEVBUF, M_NOWAIT)) == NULL) panic("bpfattach"); SMR_SLIST_INIT(&bp->bif_dlist); bp->bif_driverp = (struct bpf_if **)bpfp; bp->bif_name = name; bp->bif_ifp = NULL; bp->bif_dlt = dlt; bp->bif_next = bpf_iflist; bpf_iflist = bp; *bp->bif_driverp = NULL; /* * Compute the length of the bpf header. This is not necessarily * equal to SIZEOF_BPF_HDR because we want to insert spacing such * that the network layer header begins on a longword boundary (for * performance reasons and to alleviate alignment restrictions). */ bp->bif_hdrlen = BPF_WORDALIGN(hdrlen + SIZEOF_BPF_HDR) - hdrlen; return (bp); } void bpfattach(caddr_t *driverp, struct ifnet *ifp, u_int dlt, u_int hdrlen) { struct bpf_if *bp; bp = bpfsattach(driverp, ifp->if_xname, dlt, hdrlen); bp->bif_ifp = ifp; } /* Detach an interface from its attached bpf device. */ void bpfdetach(struct ifnet *ifp) { struct bpf_if *bp, *nbp; KERNEL_ASSERT_LOCKED(); for (bp = bpf_iflist; bp; bp = nbp) { nbp = bp->bif_next; if (bp->bif_ifp == ifp) bpfsdetach(bp); } ifp->if_bpf = NULL; } void bpfsdetach(void *p) { struct bpf_if *bp = p, *tbp; struct bpf_d *bd; int maj; KERNEL_ASSERT_LOCKED(); /* Locate the major number. */ for (maj = 0; maj < nchrdev; maj++) if (cdevsw[maj].d_open == bpfopen) break; while ((bd = SMR_SLIST_FIRST_LOCKED(&bp->bif_dlist))) { vdevgone(maj, bd->bd_unit, bd->bd_unit, VCHR); klist_invalidate(&bd->bd_sel.si_note); } for (tbp = bpf_iflist; tbp; tbp = tbp->bif_next) { if (tbp->bif_next == bp) { tbp->bif_next = bp->bif_next; break; } } if (bpf_iflist == bp) bpf_iflist = bp->bif_next; free(bp, M_DEVBUF, sizeof(*bp)); } int bpf_sysctl_locked(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { switch (name[0]) { case NET_BPF_BUFSIZE: return sysctl_int_bounded(oldp, oldlenp, newp, newlen, &bpf_bufsize, BPF_MINBUFSIZE, bpf_maxbufsize); case NET_BPF_MAXBUFSIZE: return sysctl_int_bounded(oldp, oldlenp, newp, newlen, &bpf_maxbufsize, BPF_MINBUFSIZE, INT_MAX); default: return (EOPNOTSUPP); } } int bpf_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int flags = RW_INTR; int error; if (namelen != 1) return (ENOTDIR); flags |= (newp == NULL) ? RW_READ : RW_WRITE; error = rw_enter(&bpf_sysctl_lk, flags); if (error != 0) return (error); error = bpf_sysctl_locked(name, namelen, oldp, oldlenp, newp, newlen); rw_exit(&bpf_sysctl_lk); return (error); } struct bpf_d * bpfilter_lookup(int unit) { struct bpf_d *bd; KERNEL_ASSERT_LOCKED(); LIST_FOREACH(bd, &bpf_d_list, bd_list) if (bd->bd_unit == unit) return (bd); return (NULL); } /* * Get a list of available data link type of the interface. */ int bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl) { int n, error; struct bpf_if *bp; const char *name; name = d->bd_bif->bif_name; n = 0; error = 0; for (bp = bpf_iflist; bp != NULL; bp = bp->bif_next) { if (strcmp(name, bp->bif_name) != 0) continue; if (bfl->bfl_list != NULL) { if (n >= bfl->bfl_len) return (ENOMEM); error = copyout(&bp->bif_dlt, bfl->bfl_list + n, sizeof(u_int)); if (error) break; } n++; } bfl->bfl_len = n; return (error); } /* * Set the data link type of a BPF instance. */ int bpf_setdlt(struct bpf_d *d, u_int dlt) { const char *name; struct bpf_if *bp; MUTEX_ASSERT_LOCKED(&d->bd_mtx); if (d->bd_bif->bif_dlt == dlt) return (0); name = d->bd_bif->bif_name; for (bp = bpf_iflist; bp != NULL; bp = bp->bif_next) { if (strcmp(name, bp->bif_name) != 0) continue; if (bp->bif_dlt == dlt) break; } if (bp == NULL) return (EINVAL); bpf_detachd(d); bpf_attachd(d, bp); bpf_resetd(d); return (0); } u_int32_t bpf_mbuf_ldw(const void *, u_int32_t, int *); u_int32_t bpf_mbuf_ldh(const void *, u_int32_t, int *); u_int32_t bpf_mbuf_ldb(const void *, u_int32_t, int *); int bpf_mbuf_copy(const struct mbuf *, u_int32_t, void *, u_int32_t); const struct bpf_ops bpf_mbuf_ops = { bpf_mbuf_ldw, bpf_mbuf_ldh, bpf_mbuf_ldb, }; int bpf_mbuf_copy(const struct mbuf *m, u_int32_t off, void *buf, u_int32_t len) { u_int8_t *cp = buf; u_int32_t count; while (off >= m->m_len) { off -= m->m_len; m = m->m_next; if (m == NULL) return (-1); } for (;;) { count = min(m->m_len - off, len); memcpy(cp, m->m_data + off, count); len -= count; if (len == 0) return (0); m = m->m_next; if (m == NULL) break; cp += count; off = 0; } return (-1); } u_int32_t bpf_mbuf_ldw(const void *m0, u_int32_t k, int *err) { u_int32_t v; if (bpf_mbuf_copy(m0, k, &v, sizeof(v)) != 0) { *err = 1; return (0); } *err = 0; return ntohl(v); } u_int32_t bpf_mbuf_ldh(const void *m0, u_int32_t k, int *err) { u_int16_t v; if (bpf_mbuf_copy(m0, k, &v, sizeof(v)) != 0) { *err = 1; return (0); } *err = 0; return ntohs(v); } u_int32_t bpf_mbuf_ldb(const void *m0, u_int32_t k, int *err) { const struct mbuf *m = m0; u_int8_t v; while (k >= m->m_len) { k -= m->m_len; m = m->m_next; if (m == NULL) { *err = 1; return (0); } } v = m->m_data[k]; *err = 0; return v; } u_int bpf_mfilter(const struct bpf_insn *pc, const struct mbuf *m, u_int wirelen) { return _bpf_filter(pc, &bpf_mbuf_ops, m, wirelen); }