/* $OpenBSD: if.c,v 1.512 2017/08/22 15:02:34 mpi Exp $ */ /* $NetBSD: if.c,v 1.35 1996/05/07 05:26:04 thorpej Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.3 (Berkeley) 1/4/94 */ #include "bpfilter.h" #include "bridge.h" #include "carp.h" #include "ether.h" #include "pf.h" #include "pfsync.h" #include "ppp.h" #include "pppoe.h" #include "switch.h" #include "trunk.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MROUTING #include #endif #ifdef INET6 #include #include #include #include #include #endif #ifdef MPLS #include #endif #if NBPFILTER > 0 #include #endif #if NBRIDGE > 0 #include #endif #if NCARP > 0 #include #endif #if NPF > 0 #include #endif void if_attachsetup(struct ifnet *); void if_attachdomain(struct ifnet *); void if_attach_common(struct ifnet *); int if_setrdomain(struct ifnet *, int); void if_slowtimo(void *); void if_detached_qstart(struct ifqueue *); int if_detached_ioctl(struct ifnet *, u_long, caddr_t); int if_getgroup(caddr_t, struct ifnet *); int if_getgroupmembers(caddr_t); int if_getgroupattribs(caddr_t); int if_setgroupattribs(caddr_t); void if_linkstate(struct ifnet *); void if_linkstate_task(void *); int if_clone_list(struct if_clonereq *); struct if_clone *if_clone_lookup(const char *, int *); int if_group_egress_build(void); void if_watchdog_task(void *); void if_input_process(void *); void if_netisr(void *); #ifdef DDB void ifa_print_all(void); #endif void if_qstart_compat(struct ifqueue *); /* * interface index map * * the kernel maintains a mapping of interface indexes to struct ifnet * pointers. * * the map is an array of struct ifnet pointers prefixed by an if_map * structure. the if_map structure stores the length of its array. * * as interfaces are attached to the system, the map is grown on demand * up to USHRT_MAX entries. * * interface index 0 is reserved and represents no interface. this * supports the use of the interface index as the scope for IPv6 link * local addresses, where scope 0 means no scope has been specified. * it also supports the use of interface index as the unique identifier * for network interfaces in SNMP applications as per RFC2863. therefore * if_get(0) returns NULL. */ void if_ifp_dtor(void *, void *); void if_map_dtor(void *, void *); struct ifnet *if_ref(struct ifnet *); /* * struct if_map * * bounded array of ifnet srp pointers used to fetch references of live * interfaces with if_get(). */ struct if_map { unsigned long limit; /* followed by limit ifnet srp pointers */ }; /* * struct if_idxmap * * infrastructure to manage updates and accesses to the current if_map. */ struct if_idxmap { unsigned int serial; unsigned int count; struct srp map; }; void if_idxmap_init(unsigned int); void if_idxmap_insert(struct ifnet *); void if_idxmap_remove(struct ifnet *); TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head); LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners); int if_cloners_count; struct timeout net_tick_to; void net_tick(void *); int net_livelocked(void); int ifq_congestion; int netisr; struct taskq *softnettq; struct task if_input_task_locked = TASK_INITIALIZER(if_netisr, NULL); /* * Serialize socket operations to ensure no new sleeping points * are introduced in IP output paths. */ struct rwlock netlock = RWLOCK_INITIALIZER("netlock"); /* * Network interface utility routines. */ void ifinit(void) { /* * most machines boot with 4 or 5 interfaces, so size the initial map * to accomodate this */ if_idxmap_init(8); timeout_set(&net_tick_to, net_tick, &net_tick_to); softnettq = taskq_create("softnet", 1, IPL_NET, TASKQ_MPSAFE); if (softnettq == NULL) panic("unable to create softnet taskq"); net_tick(&net_tick_to); } static struct if_idxmap if_idxmap = { 0, 0, SRP_INITIALIZER() }; struct srp_gc if_ifp_gc = SRP_GC_INITIALIZER(if_ifp_dtor, NULL); struct srp_gc if_map_gc = SRP_GC_INITIALIZER(if_map_dtor, NULL); struct ifnet_head ifnet = TAILQ_HEAD_INITIALIZER(ifnet); void if_idxmap_init(unsigned int limit) { struct if_map *if_map; struct srp *map; unsigned int i; if_idxmap.serial = 1; /* skip ifidx 0 so it can return NULL */ if_map = malloc(sizeof(*if_map) + limit * sizeof(*map), M_IFADDR, M_WAITOK); if_map->limit = limit; map = (struct srp *)(if_map + 1); for (i = 0; i < limit; i++) srp_init(&map[i]); /* this is called early so there's nothing to race with */ srp_update_locked(&if_map_gc, &if_idxmap.map, if_map); } void if_idxmap_insert(struct ifnet *ifp) { struct if_map *if_map; struct srp *map; unsigned int index, i; refcnt_init(&ifp->if_refcnt); /* the kernel lock guarantees serialised modifications to if_idxmap */ KERNEL_ASSERT_LOCKED(); if (++if_idxmap.count > USHRT_MAX) panic("too many interfaces"); if_map = srp_get_locked(&if_idxmap.map); map = (struct srp *)(if_map + 1); index = if_idxmap.serial++ & USHRT_MAX; if (index >= if_map->limit) { struct if_map *nif_map; struct srp *nmap; unsigned int nlimit; struct ifnet *nifp; nlimit = if_map->limit * 2; nif_map = malloc(sizeof(*nif_map) + nlimit * sizeof(*nmap), M_IFADDR, M_WAITOK); nmap = (struct srp *)(nif_map + 1); nif_map->limit = nlimit; for (i = 0; i < if_map->limit; i++) { srp_init(&nmap[i]); nifp = srp_get_locked(&map[i]); if (nifp != NULL) { srp_update_locked(&if_ifp_gc, &nmap[i], if_ref(nifp)); } } while (i < nlimit) { srp_init(&nmap[i]); i++; } srp_update_locked(&if_map_gc, &if_idxmap.map, nif_map); if_map = nif_map; map = nmap; } /* pick the next free index */ for (i = 0; i < USHRT_MAX; i++) { if (index != 0 && srp_get_locked(&map[index]) == NULL) break; index = if_idxmap.serial++ & USHRT_MAX; } /* commit */ ifp->if_index = index; srp_update_locked(&if_ifp_gc, &map[index], if_ref(ifp)); } void if_idxmap_remove(struct ifnet *ifp) { struct if_map *if_map; struct srp *map; unsigned int index; index = ifp->if_index; /* the kernel lock guarantees serialised modifications to if_idxmap */ KERNEL_ASSERT_LOCKED(); if_map = srp_get_locked(&if_idxmap.map); KASSERT(index < if_map->limit); map = (struct srp *)(if_map + 1); KASSERT(ifp == (struct ifnet *)srp_get_locked(&map[index])); srp_update_locked(&if_ifp_gc, &map[index], NULL); if_idxmap.count--; /* end of if_idxmap modifications */ /* sleep until the last reference is released */ refcnt_finalize(&ifp->if_refcnt, "ifidxrm"); } void if_ifp_dtor(void *null, void *ifp) { if_put(ifp); } void if_map_dtor(void *null, void *m) { struct if_map *if_map = m; struct srp *map = (struct srp *)(if_map + 1); unsigned int i; /* * dont need to serialize the use of update_locked since this is * the last reference to this map. there's nothing to race against. */ for (i = 0; i < if_map->limit; i++) srp_update_locked(&if_ifp_gc, &map[i], NULL); free(if_map, M_IFADDR, sizeof(*if_map) + if_map->limit * sizeof(*map)); } /* * Attach an interface to the * list of "active" interfaces. */ void if_attachsetup(struct ifnet *ifp) { unsigned long ifidx; NET_ASSERT_LOCKED(); TAILQ_INIT(&ifp->if_groups); if_addgroup(ifp, IFG_ALL); if_attachdomain(ifp); #if NPF > 0 pfi_attach_ifnet(ifp); #endif timeout_set(ifp->if_slowtimo, if_slowtimo, ifp); if_slowtimo(ifp); if_idxmap_insert(ifp); KASSERT(if_get(0) == NULL); ifidx = ifp->if_index; mq_init(&ifp->if_inputqueue, 8192, IPL_NET); task_set(ifp->if_inputtask, if_input_process, (void *)ifidx); task_set(ifp->if_watchdogtask, if_watchdog_task, (void *)ifidx); task_set(ifp->if_linkstatetask, if_linkstate_task, (void *)ifidx); /* Announce the interface. */ rtm_ifannounce(ifp, IFAN_ARRIVAL); } /* * Allocate the link level name for the specified interface. This * is an attachment helper. It must be called after ifp->if_addrlen * is initialized, which may not be the case when if_attach() is * called. */ void if_alloc_sadl(struct ifnet *ifp) { unsigned int socksize; int namelen, masklen; struct sockaddr_dl *sdl; /* * If the interface already has a link name, release it * now. This is useful for interfaces that can change * link types, and thus switch link names often. */ if (ifp->if_sadl != NULL) if_free_sadl(ifp); namelen = strlen(ifp->if_xname); masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen; socksize = masklen + ifp->if_addrlen; #define ROUNDUP(a) (1 + (((a) - 1) | (sizeof(long) - 1))) if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = ROUNDUP(socksize); sdl = malloc(socksize, M_IFADDR, M_WAITOK|M_ZERO); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_alen = ifp->if_addrlen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifp->if_sadl = sdl; } /* * Free the link level name for the specified interface. This is * a detach helper. This is called from if_detach() or from * link layer type specific detach functions. */ void if_free_sadl(struct ifnet *ifp) { free(ifp->if_sadl, M_IFADDR, 0); ifp->if_sadl = NULL; } void if_attachdomain(struct ifnet *ifp) { struct domain *dp; int i, s; s = splnet(); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (i = 0; (dp = domains[i]) != NULL; i++) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } splx(s); } void if_attachhead(struct ifnet *ifp) { if_attach_common(ifp); NET_LOCK(); TAILQ_INSERT_HEAD(&ifnet, ifp, if_list); if_attachsetup(ifp); NET_UNLOCK(); } void if_attach(struct ifnet *ifp) { if_attach_common(ifp); NET_LOCK(); TAILQ_INSERT_TAIL(&ifnet, ifp, if_list); if_attachsetup(ifp); NET_UNLOCK(); } void if_attach_queues(struct ifnet *ifp, unsigned int nqs) { struct ifqueue **map; struct ifqueue *ifq; int i; KASSERT(ifp->if_ifqs == ifp->if_snd.ifq_ifqs); KASSERT(nqs != 0); map = mallocarray(sizeof(*map), nqs, M_DEVBUF, M_WAITOK); ifp->if_snd.ifq_softc = NULL; map[0] = &ifp->if_snd; for (i = 1; i < nqs; i++) { ifq = malloc(sizeof(*ifq), M_DEVBUF, M_WAITOK|M_ZERO); ifq_set_maxlen(ifq, ifp->if_snd.ifq_maxlen); ifq_init(ifq, ifp, i); map[i] = ifq; } ifp->if_ifqs = map; ifp->if_nifqs = nqs; } void if_attach_common(struct ifnet *ifp) { TAILQ_INIT(&ifp->if_addrlist); TAILQ_INIT(&ifp->if_maddrlist); if (!ISSET(ifp->if_xflags, IFXF_MPSAFE)) { KASSERTMSG(ifp->if_qstart == NULL, "%s: if_qstart set without MPSAFE set", ifp->if_xname); ifp->if_qstart = if_qstart_compat; } else { KASSERTMSG(ifp->if_start == NULL, "%s: if_start set with MPSAFE set", ifp->if_xname); KASSERTMSG(ifp->if_qstart != NULL, "%s: if_qstart not set with MPSAFE set", ifp->if_xname); } ifq_init(&ifp->if_snd, ifp, 0); ifp->if_snd.ifq_ifqs[0] = &ifp->if_snd; ifp->if_ifqs = ifp->if_snd.ifq_ifqs; ifp->if_nifqs = 1; ifp->if_addrhooks = malloc(sizeof(*ifp->if_addrhooks), M_TEMP, M_WAITOK); TAILQ_INIT(ifp->if_addrhooks); ifp->if_linkstatehooks = malloc(sizeof(*ifp->if_linkstatehooks), M_TEMP, M_WAITOK); TAILQ_INIT(ifp->if_linkstatehooks); ifp->if_detachhooks = malloc(sizeof(*ifp->if_detachhooks), M_TEMP, M_WAITOK); TAILQ_INIT(ifp->if_detachhooks); if (ifp->if_rtrequest == NULL) ifp->if_rtrequest = if_rtrequest_dummy; ifp->if_slowtimo = malloc(sizeof(*ifp->if_slowtimo), M_TEMP, M_WAITOK|M_ZERO); ifp->if_watchdogtask = malloc(sizeof(*ifp->if_watchdogtask), M_TEMP, M_WAITOK|M_ZERO); ifp->if_linkstatetask = malloc(sizeof(*ifp->if_linkstatetask), M_TEMP, M_WAITOK|M_ZERO); ifp->if_inputtask = malloc(sizeof(*ifp->if_inputtask), M_TEMP, M_WAITOK|M_ZERO); ifp->if_llprio = IFQ_DEFPRIO; SRPL_INIT(&ifp->if_inputs); } void if_attach_ifq(struct ifnet *ifp, const struct ifq_ops *newops, void *args) { /* * only switch the ifq_ops on the first ifq on an interface. * * the only ifq_ops we provide priq and hfsc, and hfsc only * works on a single ifq. because the code uses the ifq_ops * on the first ifq (if_snd) to select a queue for an mbuf, * by switching only the first one we change both the algorithm * and force the routing of all new packets to it. */ ifq_attach(&ifp->if_snd, newops, args); } void if_start(struct ifnet *ifp) { KASSERT(ifp->if_qstart == if_qstart_compat); if_qstart_compat(&ifp->if_snd); } void if_qstart_compat(struct ifqueue *ifq) { struct ifnet *ifp = ifq->ifq_if; int s; /* * the stack assumes that an interface can have multiple * transmit rings, but a lot of drivers are still written * so that interfaces and send rings have a 1:1 mapping. * this provides compatability between the stack and the older * drivers by translating from the only queue they have * (ifp->if_snd) back to the interface and calling if_start. */ KERNEL_LOCK(); s = splnet(); (*ifp->if_start)(ifp); splx(s); KERNEL_UNLOCK(); } int if_enqueue(struct ifnet *ifp, struct mbuf *m) { unsigned int idx; struct ifqueue *ifq; int error; #if NBRIDGE > 0 if (ifp->if_bridgeport && (m->m_flags & M_PROTO1) == 0) { KERNEL_LOCK(); error = bridge_output(ifp, m, NULL, NULL); KERNEL_UNLOCK(); return (error); } #endif #if NPF > 0 pf_pkt_unlink_state_key(m); #endif /* NPF > 0 */ /* * use the operations on the first ifq to pick which of the array * gets this mbuf. */ idx = ifq_idx(&ifp->if_snd, ifp->if_nifqs, m); ifq = ifp->if_ifqs[idx]; error = ifq_enqueue(ifq, m); if (error) return (error); ifq_start(ifq); return (0); } void if_input(struct ifnet *ifp, struct mbuf_list *ml) { struct mbuf *m; size_t ibytes = 0; #if NBPFILTER > 0 caddr_t if_bpf; #endif if (ml_empty(ml)) return; MBUF_LIST_FOREACH(ml, m) { m->m_pkthdr.ph_ifidx = ifp->if_index; m->m_pkthdr.ph_rtableid = ifp->if_rdomain; ibytes += m->m_pkthdr.len; } ifp->if_ipackets += ml_len(ml); ifp->if_ibytes += ibytes; #if NBPFILTER > 0 if_bpf = ifp->if_bpf; if (if_bpf) { struct mbuf_list ml0; ml_init(&ml0); ml_enlist(&ml0, ml); ml_init(ml); while ((m = ml_dequeue(&ml0)) != NULL) { if (bpf_mtap_ether(if_bpf, m, BPF_DIRECTION_IN)) m_freem(m); else ml_enqueue(ml, m); } if (ml_empty(ml)) return; } #endif if (mq_enlist(&ifp->if_inputqueue, ml) == 0) task_add(softnettq, ifp->if_inputtask); } int if_input_local(struct ifnet *ifp, struct mbuf *m, sa_family_t af) { #if NBPFILTER > 0 /* * Only send packets to bpf if they are destinated to local * addresses. * * if_input_local() is also called for SIMPLEX interfaces to * duplicate packets for local use. But don't dup them to bpf. */ if (ifp->if_flags & IFF_LOOPBACK) { caddr_t if_bpf = ifp->if_bpf; if (if_bpf) bpf_mtap_af(if_bpf, af, m, BPF_DIRECTION_OUT); } #endif m_resethdr(m); m->m_flags |= M_LOOP; m->m_pkthdr.ph_ifidx = ifp->if_index; m->m_pkthdr.ph_rtableid = ifp->if_rdomain; ifp->if_opackets++; ifp->if_obytes += m->m_pkthdr.len; ifp->if_ipackets++; ifp->if_ibytes += m->m_pkthdr.len; switch (af) { case AF_INET: ipv4_input(ifp, m); break; #ifdef INET6 case AF_INET6: ipv6_input(ifp, m); break; #endif /* INET6 */ #ifdef MPLS case AF_MPLS: mpls_input(m); break; #endif /* MPLS */ default: printf("%s: can't handle af%d\n", ifp->if_xname, af); m_freem(m); return (EAFNOSUPPORT); } return (0); } struct ifih { SRPL_ENTRY(ifih) ifih_next; int (*ifih_input)(struct ifnet *, struct mbuf *, void *); void *ifih_cookie; int ifih_refcnt; struct refcnt ifih_srpcnt; }; void if_ih_ref(void *, void *); void if_ih_unref(void *, void *); struct srpl_rc ifih_rc = SRPL_RC_INITIALIZER(if_ih_ref, if_ih_unref, NULL); void if_ih_insert(struct ifnet *ifp, int (*input)(struct ifnet *, struct mbuf *, void *), void *cookie) { struct ifih *ifih; /* the kernel lock guarantees serialised modifications to if_inputs */ KERNEL_ASSERT_LOCKED(); SRPL_FOREACH_LOCKED(ifih, &ifp->if_inputs, ifih_next) { if (ifih->ifih_input == input && ifih->ifih_cookie == cookie) { ifih->ifih_refcnt++; break; } } if (ifih == NULL) { ifih = malloc(sizeof(*ifih), M_DEVBUF, M_WAITOK); ifih->ifih_input = input; ifih->ifih_cookie = cookie; ifih->ifih_refcnt = 1; refcnt_init(&ifih->ifih_srpcnt); SRPL_INSERT_HEAD_LOCKED(&ifih_rc, &ifp->if_inputs, ifih, ifih_next); } } void if_ih_ref(void *null, void *i) { struct ifih *ifih = i; refcnt_take(&ifih->ifih_srpcnt); } void if_ih_unref(void *null, void *i) { struct ifih *ifih = i; refcnt_rele_wake(&ifih->ifih_srpcnt); } void if_ih_remove(struct ifnet *ifp, int (*input)(struct ifnet *, struct mbuf *, void *), void *cookie) { struct ifih *ifih; /* the kernel lock guarantees serialised modifications to if_inputs */ KERNEL_ASSERT_LOCKED(); SRPL_FOREACH_LOCKED(ifih, &ifp->if_inputs, ifih_next) { if (ifih->ifih_input == input && ifih->ifih_cookie == cookie) break; } KASSERT(ifih != NULL); if (--ifih->ifih_refcnt == 0) { SRPL_REMOVE_LOCKED(&ifih_rc, &ifp->if_inputs, ifih, ifih, ifih_next); refcnt_finalize(&ifih->ifih_srpcnt, "ifihrm"); free(ifih, M_DEVBUF, sizeof(*ifih)); } } void if_input_process(void *xifidx) { unsigned int ifidx = (unsigned long)xifidx; struct mbuf_list ml; struct mbuf *m; struct ifnet *ifp; struct ifih *ifih; struct srp_ref sr; int s; #ifdef IPSEC int locked = 0; #endif /* IPSEC */ ifp = if_get(ifidx); if (ifp == NULL) return; mq_delist(&ifp->if_inputqueue, &ml); if (ml_empty(&ml)) goto out; if (!ISSET(ifp->if_xflags, IFXF_CLONED)) add_net_randomness(ml_len(&ml)); /* * We grab the NET_LOCK() before processing any packet to * ensure there's no contention on the routing table lock. * * Without it we could race with a userland thread to insert * a L2 entry in ip{6,}_output(). Such race would result in * one of the threads sleeping *inside* the IP output path. * * Since we have a NET_LOCK() we also use it to serialize access * to PF globals, pipex globals, unicast and multicast addresses * lists. */ NET_LOCK(); s = splnet(); #ifdef IPSEC /* * IPsec is not ready to run without KERNEL_LOCK(). So all * the traffic on your machine is punished if you have IPsec * enabled. */ extern int ipsec_in_use; if (ipsec_in_use) { NET_UNLOCK(); KERNEL_LOCK(); NET_LOCK(); locked = 1; } #endif /* IPSEC */ while ((m = ml_dequeue(&ml)) != NULL) { /* * Pass this mbuf to all input handlers of its * interface until it is consumed. */ SRPL_FOREACH(ifih, &sr, &ifp->if_inputs, ifih_next) { if ((*ifih->ifih_input)(ifp, m, ifih->ifih_cookie)) break; } SRPL_LEAVE(&sr); if (ifih == NULL) m_freem(m); } splx(s); NET_UNLOCK(); #ifdef IPSEC if (locked) KERNEL_UNLOCK(); #endif /* IPSEC */ out: if_put(ifp); } void if_netisr(void *unused) { int n, t = 0; KERNEL_LOCK(); NET_LOCK(); while ((n = netisr) != 0) { /* Like sched_pause() but with a rwlock dance. */ if (curcpu()->ci_schedstate.spc_schedflags & SPCF_SHOULDYIELD) { NET_UNLOCK(); yield(); NET_LOCK(); } atomic_clearbits_int(&netisr, n); #if NETHER > 0 if (n & (1 << NETISR_ARP)) arpintr(); #endif if (n & (1 << NETISR_IP)) ipintr(); #ifdef INET6 if (n & (1 << NETISR_IPV6)) ip6intr(); #endif #if NPPP > 0 if (n & (1 << NETISR_PPP)) pppintr(); #endif #if NBRIDGE > 0 if (n & (1 << NETISR_BRIDGE)) bridgeintr(); #endif #if NSWITCH > 0 if (n & (1 << NETISR_SWITCH)) switchintr(); #endif #if NPPPOE > 0 if (n & (1 << NETISR_PPPOE)) pppoeintr(); #endif #ifdef PIPEX if (n & (1 << NETISR_PIPEX)) pipexintr(); #endif t |= n; } #if NPFSYNC > 0 if (t & (1 << NETISR_PFSYNC)) pfsyncintr(); #endif NET_UNLOCK(); KERNEL_UNLOCK(); } void if_deactivate(struct ifnet *ifp) { NET_LOCK(); /* * Call detach hooks from head to tail. To make sure detach * hooks are executed in the reverse order they were added, all * the hooks have to be added to the head! */ dohooks(ifp->if_detachhooks, HOOK_REMOVE | HOOK_FREE); #if NCARP > 0 /* Remove the interface from any carp group it is a part of. */ if (ifp->if_carp && ifp->if_type != IFT_CARP) carp_ifdetach(ifp); #endif NET_UNLOCK(); } /* * Detach an interface from everything in the kernel. Also deallocate * private resources. */ void if_detach(struct ifnet *ifp) { struct ifaddr *ifa; struct ifg_list *ifg; struct domain *dp; int i, s; /* Undo pseudo-driver changes. */ if_deactivate(ifp); ifq_clr_oactive(&ifp->if_snd); /* Other CPUs must not have a reference before we start destroying. */ if_idxmap_remove(ifp); NET_LOCK(); s = splnet(); ifp->if_qstart = if_detached_qstart; ifp->if_ioctl = if_detached_ioctl; ifp->if_watchdog = NULL; /* Remove the input task */ task_del(softnettq, ifp->if_inputtask); mq_purge(&ifp->if_inputqueue); /* Remove the watchdog timeout & task */ timeout_del(ifp->if_slowtimo); task_del(softnettq, ifp->if_watchdogtask); /* Remove the link state task */ task_del(softnettq, ifp->if_linkstatetask); #if NBPFILTER > 0 bpfdetach(ifp); #endif rti_delete(ifp); #if NETHER > 0 && defined(NFSCLIENT) if (ifp->if_index == revarp_ifidx) revarp_ifidx = 0; #endif #ifdef MROUTING vif_delete(ifp); #endif in_ifdetach(ifp); #ifdef INET6 in6_ifdetach(ifp); #endif #if NPF > 0 pfi_detach_ifnet(ifp); #endif /* Remove the interface from the list of all interfaces. */ TAILQ_REMOVE(&ifnet, ifp, if_list); while ((ifg = TAILQ_FIRST(&ifp->if_groups)) != NULL) if_delgroup(ifp, ifg->ifgl_group->ifg_group); if_free_sadl(ifp); /* We should not have any address left at this point. */ if (!TAILQ_EMPTY(&ifp->if_addrlist)) { #ifdef DIAGNOSTIC printf("%s: address list non empty\n", ifp->if_xname); #endif while ((ifa = TAILQ_FIRST(&ifp->if_addrlist)) != NULL) { ifa_del(ifp, ifa); ifa->ifa_ifp = NULL; ifafree(ifa); } } free(ifp->if_addrhooks, M_TEMP, 0); free(ifp->if_linkstatehooks, M_TEMP, 0); free(ifp->if_detachhooks, M_TEMP, 0); free(ifp->if_slowtimo, M_TEMP, sizeof(*ifp->if_slowtimo)); free(ifp->if_watchdogtask, M_TEMP, sizeof(*ifp->if_watchdogtask)); free(ifp->if_linkstatetask, M_TEMP, sizeof(*ifp->if_linkstatetask)); free(ifp->if_inputtask, M_TEMP, sizeof(*ifp->if_inputtask)); for (i = 0; (dp = domains[i]) != NULL; i++) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); } /* Announce that the interface is gone. */ rtm_ifannounce(ifp, IFAN_DEPARTURE); splx(s); NET_UNLOCK(); for (i = 0; i < ifp->if_nifqs; i++) ifq_destroy(ifp->if_ifqs[i]); if (ifp->if_ifqs != ifp->if_snd.ifq_ifqs) { for (i = 1; i < ifp->if_nifqs; i++) { free(ifp->if_ifqs[i], M_DEVBUF, sizeof(struct ifqueue)); } free(ifp->if_ifqs, M_DEVBUF, sizeof(struct ifqueue *) * ifp->if_nifqs); } } /* * Returns true if ``ifp0'' is connected to the interface with index ``ifidx''. */ int if_isconnected(const struct ifnet *ifp0, unsigned int ifidx) { struct ifnet *ifp; int connected = 0; ifp = if_get(ifidx); if (ifp == NULL) return (0); if (ifp0->if_index == ifp->if_index) connected = 1; #if NBRIDGE > 0 if (SAME_BRIDGE(ifp0->if_bridgeport, ifp->if_bridgeport)) connected = 1; #endif #if NCARP > 0 if ((ifp0->if_type == IFT_CARP && ifp0->if_carpdev == ifp) || (ifp->if_type == IFT_CARP && ifp->if_carpdev == ifp0)) connected = 1; #endif if_put(ifp); return (connected); } /* * Create a clone network interface. */ int if_clone_create(const char *name, int rdomain) { struct if_clone *ifc; struct ifnet *ifp; int unit, ret; NET_ASSERT_LOCKED(); ifc = if_clone_lookup(name, &unit); if (ifc == NULL) return (EINVAL); if (ifunit(name) != NULL) return (EEXIST); /* XXXSMP breaks atomicity */ NET_UNLOCK(); ret = (*ifc->ifc_create)(ifc, unit); NET_LOCK(); if (ret != 0 || (ifp = ifunit(name)) == NULL) return (ret); if_addgroup(ifp, ifc->ifc_name); if (rdomain != 0) if_setrdomain(ifp, rdomain); return (ret); } /* * Destroy a clone network interface. */ int if_clone_destroy(const char *name) { struct if_clone *ifc; struct ifnet *ifp; int ret; NET_ASSERT_LOCKED(); ifc = if_clone_lookup(name, NULL); if (ifc == NULL) return (EINVAL); ifp = ifunit(name); if (ifp == NULL) return (ENXIO); if (ifc->ifc_destroy == NULL) return (EOPNOTSUPP); if (ifp->if_flags & IFF_UP) { int s; s = splnet(); if_down(ifp); splx(s); } /* XXXSMP breaks atomicity */ NET_UNLOCK(); ret = (*ifc->ifc_destroy)(ifp); NET_LOCK(); return (ret); } /* * Look up a network interface cloner. */ struct if_clone * if_clone_lookup(const char *name, int *unitp) { struct if_clone *ifc; const char *cp; int unit; /* separate interface name from unit */ for (cp = name; cp - name < IFNAMSIZ && *cp && (*cp < '0' || *cp > '9'); cp++) continue; if (cp == name || cp - name == IFNAMSIZ || !*cp) return (NULL); /* No name or unit number */ if (cp - name < IFNAMSIZ-1 && *cp == '0' && cp[1] != '\0') return (NULL); /* unit number 0 padded */ LIST_FOREACH(ifc, &if_cloners, ifc_list) { if (strlen(ifc->ifc_name) == cp - name && !strncmp(name, ifc->ifc_name, cp - name)) break; } if (ifc == NULL) return (NULL); unit = 0; while (cp - name < IFNAMSIZ && *cp) { if (*cp < '0' || *cp > '9' || unit > (INT_MAX - (*cp - '0')) / 10) { /* Bogus unit number. */ return (NULL); } unit = (unit * 10) + (*cp++ - '0'); } if (unitp != NULL) *unitp = unit; return (ifc); } /* * Register a network interface cloner. */ void if_clone_attach(struct if_clone *ifc) { LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list); if_cloners_count++; } /* * Unregister a network interface cloner. */ void if_clone_detach(struct if_clone *ifc) { LIST_REMOVE(ifc, ifc_list); if_cloners_count--; } /* * Provide list of interface cloners to userspace. */ int if_clone_list(struct if_clonereq *ifcr) { char outbuf[IFNAMSIZ], *dst; struct if_clone *ifc; int count, error = 0; ifcr->ifcr_total = if_cloners_count; if ((dst = ifcr->ifcr_buffer) == NULL) { /* Just asking how many there are. */ return (0); } if (ifcr->ifcr_count < 0) return (EINVAL); count = (if_cloners_count < ifcr->ifcr_count) ? if_cloners_count : ifcr->ifcr_count; LIST_FOREACH(ifc, &if_cloners, ifc_list) { if (count == 0) break; bzero(outbuf, sizeof outbuf); strlcpy(outbuf, ifc->ifc_name, IFNAMSIZ); error = copyout(outbuf, dst, IFNAMSIZ); if (error) break; count--; dst += IFNAMSIZ; } return (error); } /* * set queue congestion marker */ void if_congestion(void) { extern int ticks; ifq_congestion = ticks; } int if_congested(void) { extern int ticks; int diff; diff = ticks - ifq_congestion; if (diff < 0) { ifq_congestion = ticks - hz; return (0); } return (diff <= (hz / 100)); } #define equal(a1, a2) \ (bcmp((caddr_t)(a1), (caddr_t)(a2), \ (a1)->sa_len) == 0) /* * Locate an interface based on a complete address. */ struct ifaddr * ifa_ifwithaddr(struct sockaddr *addr, u_int rtableid) { struct ifnet *ifp; struct ifaddr *ifa; u_int rdomain; KERNEL_ASSERT_LOCKED(); rdomain = rtable_l2(rtableid); TAILQ_FOREACH(ifp, &ifnet, if_list) { if (ifp->if_rdomain != rdomain) continue; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (equal(addr, ifa->ifa_addr)) return (ifa); } } return (NULL); } /* * Locate the point to point interface with a given destination address. */ struct ifaddr * ifa_ifwithdstaddr(struct sockaddr *addr, u_int rdomain) { struct ifnet *ifp; struct ifaddr *ifa; KERNEL_ASSERT_LOCKED(); rdomain = rtable_l2(rdomain); TAILQ_FOREACH(ifp, &ifnet, if_list) { if (ifp->if_rdomain != rdomain) continue; if (ifp->if_flags & IFF_POINTOPOINT) { TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != addr->sa_family || ifa->ifa_dstaddr == NULL) continue; if (equal(addr, ifa->ifa_dstaddr)) return (ifa); } } } return (NULL); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; if (af >= AF_MAX) return (NULL); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == NULL) ifa_maybe = ifa; if (ifa->ifa_netmask == 0 || ifp->if_flags & IFF_POINTOPOINT) { if (equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && equal(addr, ifa->ifa_dstaddr))) return (ifa); continue; } cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) return (ifa); } return (ifa_maybe); } void if_rtrequest_dummy(struct ifnet *ifp, int req, struct rtentry *rt) { } /* * Default action when installing a local route on a point-to-point * interface. */ void p2p_rtrequest(struct ifnet *ifp, int req, struct rtentry *rt) { struct ifnet *lo0ifp; struct ifaddr *ifa, *lo0ifa; switch (req) { case RTM_ADD: if (!ISSET(rt->rt_flags, RTF_LOCAL)) break; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (memcmp(rt_key(rt), ifa->ifa_addr, rt_key(rt)->sa_len) == 0) break; } if (ifa == NULL) break; KASSERT(ifa == rt->rt_ifa); lo0ifp = if_get(rtable_loindex(ifp->if_rdomain)); KASSERT(lo0ifp != NULL); TAILQ_FOREACH(lo0ifa, &lo0ifp->if_addrlist, ifa_list) { if (lo0ifa->ifa_addr->sa_family == ifa->ifa_addr->sa_family) break; } if_put(lo0ifp); if (lo0ifa == NULL) break; rt->rt_flags &= ~RTF_LLINFO; break; case RTM_DELETE: case RTM_RESOLVE: default: break; } } /* * Bring down all interfaces */ void if_downall(void) { struct ifreq ifrq; /* XXX only partly built */ struct ifnet *ifp; NET_LOCK(); TAILQ_FOREACH(ifp, &ifnet, if_list) { if ((ifp->if_flags & IFF_UP) == 0) continue; if_down(ifp); if (ifp->if_ioctl) { ifrq.ifr_flags = ifp->if_flags; (void) (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifrq); } } NET_UNLOCK(); } /* * Mark an interface down and notify protocols of * the transition. */ void if_down(struct ifnet *ifp) { NET_ASSERT_LOCKED(); ifp->if_flags &= ~IFF_UP; getmicrotime(&ifp->if_lastchange); IFQ_PURGE(&ifp->if_snd); if_linkstate(ifp); } /* * Mark an interface up and notify protocols of * the transition. */ void if_up(struct ifnet *ifp) { NET_ASSERT_LOCKED(); ifp->if_flags |= IFF_UP; getmicrotime(&ifp->if_lastchange); #ifdef INET6 /* Userland expects the kernel to set ::1 on default lo(4). */ if (ifp->if_index == rtable_loindex(ifp->if_rdomain)) in6_ifattach(ifp); #endif if_linkstate(ifp); } /* * Notify userland, the routing table and hooks owner of * a link-state transition. */ void if_linkstate_task(void *xifidx) { unsigned int ifidx = (unsigned long)xifidx; struct ifnet *ifp; KERNEL_LOCK(); NET_LOCK(); ifp = if_get(ifidx); if (ifp != NULL) if_linkstate(ifp); if_put(ifp); NET_UNLOCK(); KERNEL_UNLOCK(); } void if_linkstate(struct ifnet *ifp) { NET_ASSERT_LOCKED(); rtm_ifchg(ifp); rt_if_track(ifp); dohooks(ifp->if_linkstatehooks, 0); } /* * Schedule a link state change task. */ void if_link_state_change(struct ifnet *ifp) { task_add(softnettq, ifp->if_linkstatetask); } /* * Handle interface watchdog timer routine. Called * from softclock, we decrement timer (if set) and * call the appropriate interface routine on expiration. */ void if_slowtimo(void *arg) { struct ifnet *ifp = arg; int s = splnet(); if (ifp->if_watchdog) { if (ifp->if_timer > 0 && --ifp->if_timer == 0) task_add(softnettq, ifp->if_watchdogtask); timeout_add(ifp->if_slowtimo, hz / IFNET_SLOWHZ); } splx(s); } void if_watchdog_task(void *xifidx) { unsigned int ifidx = (unsigned long)xifidx; struct ifnet *ifp; int s; ifp = if_get(ifidx); if (ifp == NULL) return; KERNEL_LOCK(); s = splnet(); if (ifp->if_watchdog) (*ifp->if_watchdog)(ifp); splx(s); KERNEL_UNLOCK(); if_put(ifp); } /* * Map interface name to interface structure pointer. */ struct ifnet * ifunit(const char *name) { struct ifnet *ifp; TAILQ_FOREACH(ifp, &ifnet, if_list) { if (strcmp(ifp->if_xname, name) == 0) return (ifp); } return (NULL); } /* * Map interface index to interface structure pointer. */ struct ifnet * if_get(unsigned int index) { struct srp_ref sr; struct if_map *if_map; struct srp *map; struct ifnet *ifp = NULL; if_map = srp_enter(&sr, &if_idxmap.map); if (index < if_map->limit) { map = (struct srp *)(if_map + 1); ifp = srp_follow(&sr, &map[index]); if (ifp != NULL) { KASSERT(ifp->if_index == index); if_ref(ifp); } } srp_leave(&sr); return (ifp); } struct ifnet * if_ref(struct ifnet *ifp) { refcnt_take(&ifp->if_refcnt); return (ifp); } void if_put(struct ifnet *ifp) { if (ifp == NULL) return; refcnt_rele_wake(&ifp->if_refcnt); } int if_setlladdr(struct ifnet *ifp, const uint8_t *lladdr) { if (ifp->if_sadl == NULL) return (EINVAL); memcpy(((struct arpcom *)ifp)->ac_enaddr, lladdr, ETHER_ADDR_LEN); memcpy(LLADDR(ifp->if_sadl), lladdr, ETHER_ADDR_LEN); return (0); } int if_setrdomain(struct ifnet *ifp, int rdomain) { struct ifreq ifr; int error, up = 0, s; if (rdomain < 0 || rdomain > RT_TABLEID_MAX) return (EINVAL); /* * Create the routing table if it does not exist, including its * loopback interface with unit == rdomain. */ if (!rtable_exists(rdomain)) { struct ifnet *loifp; char loifname[IFNAMSIZ]; unsigned int unit = rdomain; snprintf(loifname, sizeof(loifname), "lo%u", unit); error = if_clone_create(loifname, 0); if ((loifp = ifunit(loifname)) == NULL) return (ENXIO); /* Do not error out if creating the default lo(4) interface */ if (error && (ifp != loifp || error != EEXIST)) return (error); if ((error = rtable_add(rdomain)) == 0) rtable_l2set(rdomain, rdomain, loifp->if_index); if (error) { if_clone_destroy(loifname); return (error); } loifp->if_rdomain = rdomain; } /* make sure that the routing table is a real rdomain */ if (rdomain != rtable_l2(rdomain)) return (EINVAL); /* remove all routing entries when switching domains */ /* XXX this is a bit ugly */ if (rdomain != ifp->if_rdomain) { s = splnet(); /* * We are tearing down the world. * Take down the IF so: * 1. everything that cares gets a message * 2. the automagic IPv6 bits are recreated */ if (ifp->if_flags & IFF_UP) { up = 1; if_down(ifp); } rti_delete(ifp); #ifdef MROUTING vif_delete(ifp); #endif in_ifdetach(ifp); #ifdef INET6 in6_ifdetach(ifp); #endif splx(s); } /* Let devices like enc(4) or mpe(4) know about the change */ ifr.ifr_rdomainid = rdomain; if ((error = (*ifp->if_ioctl)(ifp, SIOCSIFRDOMAIN, (caddr_t)&ifr)) != ENOTTY) return (error); error = 0; /* Add interface to the specified rdomain */ ifp->if_rdomain = rdomain; /* If we took down the IF, bring it back */ if (up) { s = splnet(); if_up(ifp); splx(s); } return (0); } /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct proc *p) { struct ifnet *ifp; struct ifreq *ifr; struct sockaddr_dl *sdl; struct ifgroupreq *ifgr; struct if_afreq *ifar; char ifdescrbuf[IFDESCRSIZE]; char ifrtlabelbuf[RTLABEL_LEN]; int s, error = 0, oif_xflags; size_t bytesdone; short oif_flags; const char *label; switch (cmd) { case SIOCGIFCONF: return (ifconf(cmd, data)); } ifr = (struct ifreq *)data; switch (cmd) { case SIOCIFCREATE: case SIOCIFDESTROY: if ((error = suser(p, 0)) != 0) return (error); return ((cmd == SIOCIFCREATE) ? if_clone_create(ifr->ifr_name, 0) : if_clone_destroy(ifr->ifr_name)); case SIOCIFGCLONERS: return (if_clone_list((struct if_clonereq *)data)); case SIOCGIFGMEMB: return (if_getgroupmembers(data)); case SIOCGIFGATTR: return (if_getgroupattribs(data)); case SIOCSIFGATTR: if ((error = suser(p, 0)) != 0) return (error); return (if_setgroupattribs(data)); case SIOCIFAFATTACH: case SIOCIFAFDETACH: if ((error = suser(p, 0)) != 0) return (error); ifar = (struct if_afreq *)data; if ((ifp = ifunit(ifar->ifar_name)) == NULL) return (ENXIO); oif_flags = ifp->if_flags; oif_xflags = ifp->if_xflags; switch (ifar->ifar_af) { case AF_INET: /* attach is a noop for AF_INET */ if (cmd == SIOCIFAFDETACH) in_ifdetach(ifp); break; #ifdef INET6 case AF_INET6: if (cmd == SIOCIFAFATTACH) error = in6_ifattach(ifp); else in6_ifdetach(ifp); break; #endif /* INET6 */ default: return (EAFNOSUPPORT); } if (oif_flags != ifp->if_flags || oif_xflags != ifp->if_xflags) rtm_ifchg(ifp); return (error); } ifp = ifunit(ifr->ifr_name); if (ifp == 0) return (ENXIO); oif_flags = ifp->if_flags; switch (cmd) { case SIOCGIFFLAGS: ifr->ifr_flags = ifp->if_flags; if (ifq_is_oactive(&ifp->if_snd)) ifr->ifr_flags |= IFF_OACTIVE; break; case SIOCGIFXFLAGS: ifr->ifr_flags = ifp->if_xflags & ~(IFXF_MPSAFE|IFXF_CLONED); break; case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFHARDMTU: ifr->ifr_hardmtu = ifp->if_hardmtu; break; case SIOCGIFDATA: { struct if_data ifdata; if_getdata(ifp, &ifdata); error = copyout(&ifdata, ifr->ifr_data, sizeof(ifdata)); break; } case SIOCSIFFLAGS: if ((error = suser(p, 0)) != 0) return (error); ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (ifr->ifr_flags & ~IFF_CANTCHANGE); if (ifp->if_ioctl != NULL) { error = (*ifp->if_ioctl)(ifp, cmd, data); if (error != 0) { ifp->if_flags = oif_flags; break; } } if (ISSET(oif_flags ^ ifp->if_flags, IFF_UP)) { s = splnet(); if (ISSET(ifp->if_flags, IFF_UP)) if_up(ifp); else if_down(ifp); splx(s); } break; case SIOCSIFXFLAGS: if ((error = suser(p, 0)) != 0) return (error); #ifdef INET6 if (ISSET(ifr->ifr_flags, IFXF_AUTOCONF6)) { error = in6_ifattach(ifp); if (error != 0) return (error); } #endif /* INET6 */ #ifdef MPLS if (ISSET(ifr->ifr_flags, IFXF_MPLS) && !ISSET(ifp->if_xflags, IFXF_MPLS)) { s = splnet(); ifp->if_xflags |= IFXF_MPLS; ifp->if_ll_output = ifp->if_output; ifp->if_output = mpls_output; splx(s); } if (ISSET(ifp->if_xflags, IFXF_MPLS) && !ISSET(ifr->ifr_flags, IFXF_MPLS)) { s = splnet(); ifp->if_xflags &= ~IFXF_MPLS; ifp->if_output = ifp->if_ll_output; ifp->if_ll_output = NULL; splx(s); } #endif /* MPLS */ #ifndef SMALL_KERNEL if (ifp->if_capabilities & IFCAP_WOL) { if (ISSET(ifr->ifr_flags, IFXF_WOL) && !ISSET(ifp->if_xflags, IFXF_WOL)) { s = splnet(); ifp->if_xflags |= IFXF_WOL; error = ifp->if_wol(ifp, 1); splx(s); if (error) return (error); } if (ISSET(ifp->if_xflags, IFXF_WOL) && !ISSET(ifr->ifr_flags, IFXF_WOL)) { s = splnet(); ifp->if_xflags &= ~IFXF_WOL; error = ifp->if_wol(ifp, 0); splx(s); if (error) return (error); } } else if (ISSET(ifr->ifr_flags, IFXF_WOL)) { ifr->ifr_flags &= ~IFXF_WOL; error = ENOTSUP; } #endif ifp->if_xflags = (ifp->if_xflags & IFXF_CANTCHANGE) | (ifr->ifr_flags & ~IFXF_CANTCHANGE); rtm_ifchg(ifp); break; case SIOCSIFMETRIC: if ((error = suser(p, 0)) != 0) return (error); ifp->if_metric = ifr->ifr_metric; break; case SIOCSIFMTU: if ((error = suser(p, 0)) != 0) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (!error) rtm_ifchg(ifp); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSLIFPHYADDR: case SIOCSLIFPHYRTABLE: case SIOCSLIFPHYTTL: case SIOCADDMULTI: case SIOCDELMULTI: case SIOCSIFMEDIA: case SIOCSVNETID: case SIOCSIFPAIR: case SIOCSIFPARENT: case SIOCDIFPARENT: if ((error = suser(p, 0)) != 0) return (error); /* FALLTHROUGH */ case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGLIFPHYADDR: case SIOCGLIFPHYRTABLE: case SIOCGLIFPHYTTL: case SIOCGIFMEDIA: case SIOCGVNETID: case SIOCGIFPAIR: case SIOCGIFPARENT: if (ifp->if_ioctl == 0) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCGIFDESCR: strlcpy(ifdescrbuf, ifp->if_description, IFDESCRSIZE); error = copyoutstr(ifdescrbuf, ifr->ifr_data, IFDESCRSIZE, &bytesdone); break; case SIOCSIFDESCR: if ((error = suser(p, 0)) != 0) return (error); error = copyinstr(ifr->ifr_data, ifdescrbuf, IFDESCRSIZE, &bytesdone); if (error == 0) { (void)memset(ifp->if_description, 0, IFDESCRSIZE); strlcpy(ifp->if_description, ifdescrbuf, IFDESCRSIZE); } break; case SIOCGIFRTLABEL: if (ifp->if_rtlabelid && (label = rtlabel_id2name(ifp->if_rtlabelid)) != NULL) { strlcpy(ifrtlabelbuf, label, RTLABEL_LEN); error = copyoutstr(ifrtlabelbuf, ifr->ifr_data, RTLABEL_LEN, &bytesdone); } else error = ENOENT; break; case SIOCSIFRTLABEL: if ((error = suser(p, 0)) != 0) return (error); error = copyinstr(ifr->ifr_data, ifrtlabelbuf, RTLABEL_LEN, &bytesdone); if (error == 0) { rtlabel_unref(ifp->if_rtlabelid); ifp->if_rtlabelid = rtlabel_name2id(ifrtlabelbuf); } break; case SIOCGIFPRIORITY: ifr->ifr_metric = ifp->if_priority; break; case SIOCSIFPRIORITY: if ((error = suser(p, 0)) != 0) return (error); if (ifr->ifr_metric < 0 || ifr->ifr_metric > 15) return (EINVAL); ifp->if_priority = ifr->ifr_metric; break; case SIOCGIFRDOMAIN: ifr->ifr_rdomainid = ifp->if_rdomain; break; case SIOCSIFRDOMAIN: if ((error = suser(p, 0)) != 0) return (error); if ((error = if_setrdomain(ifp, ifr->ifr_rdomainid)) != 0) return (error); break; case SIOCAIFGROUP: if ((error = suser(p, 0))) return (error); ifgr = (struct ifgroupreq *)data; if ((error = if_addgroup(ifp, ifgr->ifgr_group))) return (error); (*ifp->if_ioctl)(ifp, cmd, data); /* XXX error check */ break; case SIOCGIFGROUP: if ((error = if_getgroup(data, ifp))) return (error); break; case SIOCDIFGROUP: if ((error = suser(p, 0))) return (error); (*ifp->if_ioctl)(ifp, cmd, data); /* XXX error check */ ifgr = (struct ifgroupreq *)data; if ((error = if_delgroup(ifp, ifgr->ifgr_group))) return (error); break; case SIOCSIFLLADDR: if ((error = suser(p, 0))) return (error); sdl = ifp->if_sadl; if (sdl == NULL) return (EINVAL); if (ifr->ifr_addr.sa_len != ETHER_ADDR_LEN) return (EINVAL); if (ETHER_IS_MULTICAST(ifr->ifr_addr.sa_data)) return (EINVAL); switch (ifp->if_type) { case IFT_ETHER: case IFT_CARP: case IFT_XETHER: case IFT_ISO88025: if_setlladdr(ifp, ifr->ifr_addr.sa_data); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == ENOTTY) error = 0; break; default: return (ENODEV); } ifnewlladdr(ifp); break; case SIOCGIFLLPRIO: ifr->ifr_llprio = ifp->if_llprio; break; case SIOCSIFLLPRIO: if ((error = suser(p, 0))) return (error); if (ifr->ifr_llprio > UCHAR_MAX) return (EINVAL); ifp->if_llprio = ifr->ifr_llprio; break; default: error = ((*so->so_proto->pr_usrreq)(so, PRU_CONTROL, (struct mbuf *) cmd, (struct mbuf *) data, (struct mbuf *) ifp, p)); break; } if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) getmicrotime(&ifp->if_lastchange); return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ int ifconf(u_long cmd, caddr_t data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr, *ifrp; int space = ifc->ifc_len, error = 0; /* If ifc->ifc_len is 0, fill it in with the needed size and return. */ if (space == 0) { TAILQ_FOREACH(ifp, &ifnet, if_list) { struct sockaddr *sa; if (TAILQ_EMPTY(&ifp->if_addrlist)) space += sizeof (ifr); else TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { sa = ifa->ifa_addr; if (sa->sa_len > sizeof(*sa)) space += sa->sa_len - sizeof(*sa); space += sizeof(ifr); } } ifc->ifc_len = space; return (0); } ifrp = ifc->ifc_req; TAILQ_FOREACH(ifp, &ifnet, if_list) { if (space < sizeof(ifr)) break; bcopy(ifp->if_xname, ifr.ifr_name, IFNAMSIZ); if (TAILQ_EMPTY(&ifp->if_addrlist)) { bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr)); error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof(ifr)); if (error) break; space -= sizeof (ifr), ifrp++; } else TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { struct sockaddr *sa = ifa->ifa_addr; if (space < sizeof(ifr)) break; if (sa->sa_len <= sizeof(*sa)) { ifr.ifr_addr = *sa; error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof (ifr)); ifrp++; } else { space -= sa->sa_len - sizeof(*sa); if (space < sizeof (ifr)) break; error = copyout((caddr_t)&ifr, (caddr_t)ifrp, sizeof(ifr.ifr_name)); if (error == 0) error = copyout((caddr_t)sa, (caddr_t)&ifrp->ifr_addr, sa->sa_len); ifrp = (struct ifreq *)(sa->sa_len + (caddr_t)&ifrp->ifr_addr); } if (error) break; space -= sizeof (ifr); } } ifc->ifc_len -= space; return (error); } void if_getdata(struct ifnet *ifp, struct if_data *data) { unsigned int i; struct ifqueue *ifq; uint64_t opackets = 0; uint64_t obytes = 0; uint64_t omcasts = 0; uint64_t oqdrops = 0; for (i = 0; i < ifp->if_nifqs; i++) { ifq = ifp->if_ifqs[i]; mtx_enter(&ifq->ifq_mtx); opackets += ifq->ifq_packets; obytes += ifq->ifq_bytes; oqdrops += ifq->ifq_qdrops; omcasts += ifq->ifq_mcasts; mtx_leave(&ifq->ifq_mtx); /* ifq->ifq_errors */ } *data = ifp->if_data; data->ifi_opackets += opackets; data->ifi_obytes += obytes; data->ifi_oqdrops += oqdrops; data->ifi_omcasts += omcasts; /* ifp->if_data.ifi_oerrors */ } /* * Dummy functions replaced in ifnet during detach (if protocols decide to * fiddle with the if during detach. */ void if_detached_qstart(struct ifqueue *ifq) { ifq_purge(ifq); } int if_detached_ioctl(struct ifnet *ifp, u_long a, caddr_t b) { return ENODEV; } /* * Create interface group without members */ struct ifg_group * if_creategroup(const char *groupname) { struct ifg_group *ifg; if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) return (NULL); strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; ifg->ifg_carp_demoted = 0; TAILQ_INIT(&ifg->ifg_members); #if NPF > 0 pfi_attach_ifgroup(ifg); #endif TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next); return (ifg); } /* * Add a group to an interface */ int if_addgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_group *ifg = NULL; struct ifg_member *ifgm; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) return (EEXIST); if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) return (ENOMEM); if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP, sizeof(*ifgl)); return (ENOMEM); } TAILQ_FOREACH(ifg, &ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, groupname)) break; if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) { free(ifgl, M_TEMP, sizeof(*ifgl)); free(ifgm, M_TEMP, sizeof(*ifgm)); return (ENOMEM); } ifg->ifg_refcnt++; ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); #if NPF > 0 pfi_group_change(groupname); #endif return (0); } /* * Remove a group from an interface */ int if_delgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_member *ifgm; TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) break; if (ifgl == NULL) return (ENOENT); TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next); TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) if (ifgm->ifgm_ifp == ifp) break; if (ifgm != NULL) { TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next); free(ifgm, M_TEMP, sizeof(*ifgm)); } if (--ifgl->ifgl_group->ifg_refcnt == 0) { TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next); #if NPF > 0 pfi_detach_ifgroup(ifgl->ifgl_group); #endif free(ifgl->ifgl_group, M_TEMP, 0); } free(ifgl, M_TEMP, sizeof(*ifgl)); #if NPF > 0 pfi_group_change(groupname); #endif return (0); } /* * Stores all groups from an interface in memory pointed * to by data */ int if_getgroup(caddr_t data, struct ifnet *ifp) { int len, error; struct ifg_list *ifgl; struct ifg_req ifgrq, *ifgp; struct ifgroupreq *ifgr = (struct ifgroupreq *)data; if (ifgr->ifgr_len == 0) { TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) ifgr->ifgr_len += sizeof(struct ifg_req); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(ifgrq)) return (EINVAL); bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq.ifgrq_group)); if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, sizeof(struct ifg_req)))) return (error); len -= sizeof(ifgrq); ifgp++; } return (0); } /* * Stores all members of a group in memory pointed to by data */ int if_getgroupmembers(caddr_t data) { struct ifgroupreq *ifgr = (struct ifgroupreq *)data; struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req ifgrq, *ifgp; int len, error; TAILQ_FOREACH(ifg, &ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) break; if (ifg == NULL) return (ENOENT); if (ifgr->ifgr_len == 0) { TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) ifgr->ifgr_len += sizeof(ifgrq); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(ifgrq)) return (EINVAL); bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(ifgrq.ifgrq_member)); if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp, sizeof(struct ifg_req)))) return (error); len -= sizeof(ifgrq); ifgp++; } return (0); } int if_getgroupattribs(caddr_t data) { struct ifgroupreq *ifgr = (struct ifgroupreq *)data; struct ifg_group *ifg; TAILQ_FOREACH(ifg, &ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) break; if (ifg == NULL) return (ENOENT); ifgr->ifgr_attrib.ifg_carp_demoted = ifg->ifg_carp_demoted; return (0); } int if_setgroupattribs(caddr_t data) { struct ifgroupreq *ifgr = (struct ifgroupreq *)data; struct ifg_group *ifg; struct ifg_member *ifgm; int demote; TAILQ_FOREACH(ifg, &ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, ifgr->ifgr_name)) break; if (ifg == NULL) return (ENOENT); demote = ifgr->ifgr_attrib.ifg_carp_demoted; if (demote + ifg->ifg_carp_demoted > 0xff || demote + ifg->ifg_carp_demoted < 0) return (EINVAL); ifg->ifg_carp_demoted += demote; TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) if (ifgm->ifgm_ifp->if_ioctl) ifgm->ifgm_ifp->if_ioctl(ifgm->ifgm_ifp, SIOCSIFGATTR, data); return (0); } void if_group_routechange(struct sockaddr *dst, struct sockaddr *mask) { switch (dst->sa_family) { case AF_INET: if (satosin(dst)->sin_addr.s_addr == INADDR_ANY && mask && (mask->sa_len == 0 || satosin(mask)->sin_addr.s_addr == INADDR_ANY)) if_group_egress_build(); break; #ifdef INET6 case AF_INET6: if (IN6_ARE_ADDR_EQUAL(&(satosin6(dst))->sin6_addr, &in6addr_any) && mask && (mask->sa_len == 0 || IN6_ARE_ADDR_EQUAL(&(satosin6(mask))->sin6_addr, &in6addr_any))) if_group_egress_build(); break; #endif } } int if_group_egress_build(void) { struct ifnet *ifp; struct ifg_group *ifg; struct ifg_member *ifgm, *next; struct sockaddr_in sa_in; #ifdef INET6 struct sockaddr_in6 sa_in6; #endif struct rtentry *rt; TAILQ_FOREACH(ifg, &ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, IFG_EGRESS)) break; if (ifg != NULL) TAILQ_FOREACH_SAFE(ifgm, &ifg->ifg_members, ifgm_next, next) if_delgroup(ifgm->ifgm_ifp, IFG_EGRESS); bzero(&sa_in, sizeof(sa_in)); sa_in.sin_len = sizeof(sa_in); sa_in.sin_family = AF_INET; rt = rtable_lookup(0, sintosa(&sa_in), sintosa(&sa_in), NULL, RTP_ANY); while (rt != NULL) { ifp = if_get(rt->rt_ifidx); if (ifp != NULL) { if_addgroup(ifp, IFG_EGRESS); if_put(ifp); } rt = rtable_iterate(rt); } #ifdef INET6 bcopy(&sa6_any, &sa_in6, sizeof(sa_in6)); rt = rtable_lookup(0, sin6tosa(&sa_in6), sin6tosa(&sa_in6), NULL, RTP_ANY); while (rt != NULL) { ifp = if_get(rt->rt_ifidx); if (ifp != NULL) { if_addgroup(ifp, IFG_EGRESS); if_put(ifp); } rt = rtable_iterate(rt); } #endif /* INET6 */ return (0); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { struct ifreq ifr; if (pswitch) { /* * If the device is not configured up, we cannot put it in * promiscuous mode. */ if ((ifp->if_flags & IFF_UP) == 0) return (ENETDOWN); if (ifp->if_pcount++ != 0) return (0); ifp->if_flags |= IFF_PROMISC; } else { if (--ifp->if_pcount > 0) return (0); ifp->if_flags &= ~IFF_PROMISC; /* * If the device is not configured up, we should not need to * turn off promiscuous mode (device should have turned it * off when interface went down; and will look at IFF_PROMISC * again next time interface comes up). */ if ((ifp->if_flags & IFF_UP) == 0) return (0); } ifr.ifr_flags = ifp->if_flags; return ((*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr)); } int sysctl_mq(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen, struct mbuf_queue *mq) { /* All sysctl names at this level are terminal. */ if (namelen != 1) return (ENOTDIR); switch (name[0]) { case IFQCTL_LEN: return (sysctl_rdint(oldp, oldlenp, newp, mq_len(mq))); case IFQCTL_MAXLEN: return (sysctl_int(oldp, oldlenp, newp, newlen, &mq->mq_maxlen)); /* XXX directly accessing maxlen */ case IFQCTL_DROPS: return (sysctl_rdint(oldp, oldlenp, newp, mq_drops(mq))); default: return (EOPNOTSUPP); } /* NOTREACHED */ } void ifa_add(struct ifnet *ifp, struct ifaddr *ifa) { TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list); } void ifa_del(struct ifnet *ifp, struct ifaddr *ifa) { TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list); } void ifa_update_broadaddr(struct ifnet *ifp, struct ifaddr *ifa, struct sockaddr *sa) { if (ifa->ifa_broadaddr->sa_len != sa->sa_len) panic("ifa_update_broadaddr does not support dynamic length"); bcopy(sa, ifa->ifa_broadaddr, sa->sa_len); } #ifdef DDB /* debug function, can be called from ddb> */ void ifa_print_all(void) { struct ifnet *ifp; struct ifaddr *ifa; TAILQ_FOREACH(ifp, &ifnet, if_list) { TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { char addr[INET6_ADDRSTRLEN]; switch (ifa->ifa_addr->sa_family) { case AF_INET: printf("%s", inet_ntop(AF_INET, &satosin(ifa->ifa_addr)->sin_addr, addr, sizeof(addr))); break; #ifdef INET6 case AF_INET6: printf("%s", inet_ntop(AF_INET6, &(satosin6(ifa->ifa_addr))->sin6_addr, addr, sizeof(addr))); break; #endif } printf(" on %s\n", ifp->if_xname); } } } #endif /* DDB */ void ifnewlladdr(struct ifnet *ifp) { #ifdef INET6 struct ifaddr *ifa; #endif struct ifreq ifrq; short up; int s; s = splnet(); up = ifp->if_flags & IFF_UP; if (up) { /* go down for a moment... */ ifp->if_flags &= ~IFF_UP; ifrq.ifr_flags = ifp->if_flags; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifrq); } ifp->if_flags |= IFF_UP; ifrq.ifr_flags = ifp->if_flags; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifrq); #ifdef INET6 /* * Update the link-local address. Don't do it if we're * a router to avoid confusing hosts on the network. */ if (!ip6_forwarding) { ifa = &in6ifa_ifpforlinklocal(ifp, 0)->ia_ifa; if (ifa) { in6_purgeaddr(ifa); dohooks(ifp->if_addrhooks, 0); in6_ifattach(ifp); } } #endif if (!up) { /* go back down */ ifp->if_flags &= ~IFF_UP; ifrq.ifr_flags = ifp->if_flags; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifrq); } splx(s); } int net_ticks; u_int net_livelocks; void net_tick(void *null) { extern int ticks; if (ticks - net_ticks > 1) net_livelocks++; net_ticks = ticks; timeout_add(&net_tick_to, 1); } int net_livelocked(void) { extern int ticks; return (ticks - net_ticks > 1); } void if_rxr_init(struct if_rxring *rxr, u_int lwm, u_int hwm) { extern int ticks; memset(rxr, 0, sizeof(*rxr)); rxr->rxr_adjusted = ticks; rxr->rxr_cwm = rxr->rxr_lwm = lwm; rxr->rxr_hwm = hwm; } static inline void if_rxr_adjust_cwm(struct if_rxring *rxr) { extern int ticks; if (net_livelocked()) { if (rxr->rxr_cwm > rxr->rxr_lwm) rxr->rxr_cwm--; else return; } else if (rxr->rxr_alive >= rxr->rxr_lwm) return; else if (rxr->rxr_cwm < rxr->rxr_hwm) rxr->rxr_cwm++; rxr->rxr_adjusted = ticks; } u_int if_rxr_get(struct if_rxring *rxr, u_int max) { extern int ticks; u_int diff; if (ticks - rxr->rxr_adjusted >= 1) { /* we're free to try for an adjustment */ if_rxr_adjust_cwm(rxr); } if (rxr->rxr_alive >= rxr->rxr_cwm) return (0); diff = min(rxr->rxr_cwm - rxr->rxr_alive, max); rxr->rxr_alive += diff; return (diff); } int if_rxr_info_ioctl(struct if_rxrinfo *uifri, u_int t, struct if_rxring_info *e) { struct if_rxrinfo kifri; int error; u_int n; error = copyin(uifri, &kifri, sizeof(kifri)); if (error) return (error); n = min(t, kifri.ifri_total); kifri.ifri_total = t; if (n > 0) { error = copyout(e, kifri.ifri_entries, sizeof(*e) * n); if (error) return (error); } return (copyout(&kifri, uifri, sizeof(kifri))); } int if_rxr_ioctl(struct if_rxrinfo *ifri, const char *name, u_int size, struct if_rxring *rxr) { struct if_rxring_info ifr; memset(&ifr, 0, sizeof(ifr)); if (name != NULL) strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name)); ifr.ifr_size = size; ifr.ifr_info = *rxr; return (if_rxr_info_ioctl(ifri, 1, &ifr)); } /* * Network stack input queues. */ void niq_init(struct niqueue *niq, u_int maxlen, u_int isr) { mq_init(&niq->ni_q, maxlen, IPL_NET); niq->ni_isr = isr; } int niq_enqueue(struct niqueue *niq, struct mbuf *m) { int rv; rv = mq_enqueue(&niq->ni_q, m); if (rv == 0) schednetisr(niq->ni_isr); else if_congestion(); return (rv); } int niq_enlist(struct niqueue *niq, struct mbuf_list *ml) { int rv; rv = mq_enlist(&niq->ni_q, ml); if (rv == 0) schednetisr(niq->ni_isr); else if_congestion(); return (rv); } __dead void unhandled_af(int af) { panic("unhandled af %d", af); }