/* $OpenBSD: if_spppsubr.c,v 1.132 2015/04/10 13:58:20 dlg Exp $ */ /* * Synchronous PPP/Cisco link level subroutines. * Keepalive protocol implemented in both Cisco and PPP modes. * * Copyright (C) 1994-1996 Cronyx Engineering Ltd. * Author: Serge Vakulenko, * * Heavily revamped to conform to RFC 1661. * Copyright (C) 1997, Joerg Wunsch. * * RFC2472 IPv6CP support. * Copyright (C) 2000, Jun-ichiro itojun Hagino . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * From: Version 2.6, Tue May 12 17:10:39 MSD 1998 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include # define UNTIMEOUT(fun, arg, handle) \ timeout_del(&(handle)) #define LOOPALIVECNT 3 /* loopback detection tries */ #define MAXALIVECNT 3 /* max. missed alive packets */ #define NORECV_TIME 15 /* before we get worried */ /* * Interface flags that can be set in an ifconfig command. * * Setting link0 will make the link passive, i.e. it will be marked * as being administrative openable, but won't be opened to begin * with. Incoming calls will be answered, or subsequent calls with * -link1 will cause the administrative open of the LCP layer. * * Setting link1 will cause the link to auto-dial only as packets * arrive to be sent. * * Setting IFF_DEBUG will syslog the option negotiation and state * transitions at level kern.debug. Note: all logs consistently look * like * * : * * with being something like "bppp0", and * being one of "lcp", "ipcp", "cisco", "chap", "pap", etc. */ #define IFF_PASSIVE IFF_LINK0 /* wait passively for connection */ #define IFF_AUTO IFF_LINK1 /* auto-dial on output */ #define PPP_ALLSTATIONS 0xff /* All-Stations broadcast address */ #define PPP_UI 0x03 /* Unnumbered Information */ #define PPP_IP 0x0021 /* Internet Protocol */ #define PPP_ISO 0x0023 /* ISO OSI Protocol */ #define PPP_XNS 0x0025 /* Xerox NS Protocol */ #define PPP_IPX 0x002b /* Novell IPX Protocol */ #define PPP_IPV6 0x0057 /* Internet Protocol v6 */ #define PPP_LCP 0xc021 /* Link Control Protocol */ #define PPP_PAP 0xc023 /* Password Authentication Protocol */ #define PPP_CHAP 0xc223 /* Challenge-Handshake Auth Protocol */ #define PPP_IPCP 0x8021 /* Internet Protocol Control Protocol */ #define PPP_IPV6CP 0x8057 /* IPv6 Control Protocol */ #define CONF_REQ 1 /* PPP configure request */ #define CONF_ACK 2 /* PPP configure acknowledge */ #define CONF_NAK 3 /* PPP configure negative ack */ #define CONF_REJ 4 /* PPP configure reject */ #define TERM_REQ 5 /* PPP terminate request */ #define TERM_ACK 6 /* PPP terminate acknowledge */ #define CODE_REJ 7 /* PPP code reject */ #define PROTO_REJ 8 /* PPP protocol reject */ #define ECHO_REQ 9 /* PPP echo request */ #define ECHO_REPLY 10 /* PPP echo reply */ #define DISC_REQ 11 /* PPP discard request */ #define LCP_OPT_MRU 1 /* maximum receive unit */ #define LCP_OPT_ASYNC_MAP 2 /* async control character map */ #define LCP_OPT_AUTH_PROTO 3 /* authentication protocol */ #define LCP_OPT_QUAL_PROTO 4 /* quality protocol */ #define LCP_OPT_MAGIC 5 /* magic number */ #define LCP_OPT_RESERVED 6 /* reserved */ #define LCP_OPT_PROTO_COMP 7 /* protocol field compression */ #define LCP_OPT_ADDR_COMP 8 /* address/control field compression */ #define IPCP_OPT_ADDRESSES 1 /* both IP addresses; deprecated */ #define IPCP_OPT_COMPRESSION 2 /* IP compression protocol (VJ) */ #define IPCP_OPT_ADDRESS 3 /* local IP address */ #define IPV6CP_OPT_IFID 1 /* interface identifier */ #define IPV6CP_OPT_COMPRESSION 2 /* IPv6 compression protocol */ #define PAP_REQ 1 /* PAP name/password request */ #define PAP_ACK 2 /* PAP acknowledge */ #define PAP_NAK 3 /* PAP fail */ #define CHAP_CHALLENGE 1 /* CHAP challenge request */ #define CHAP_RESPONSE 2 /* CHAP challenge response */ #define CHAP_SUCCESS 3 /* CHAP response ok */ #define CHAP_FAILURE 4 /* CHAP response failed */ #define CHAP_MD5 5 /* hash algorithm - MD5 */ #define CISCO_MULTICAST 0x8f /* Cisco multicast address */ #define CISCO_UNICAST 0x0f /* Cisco unicast address */ #define CISCO_KEEPALIVE 0x8035 /* Cisco keepalive protocol */ #define CISCO_ADDR_REQ 0 /* Cisco address request */ #define CISCO_ADDR_REPLY 1 /* Cisco address reply */ #define CISCO_KEEPALIVE_REQ 2 /* Cisco keepalive request */ /* states are named and numbered according to RFC 1661 */ #define STATE_INITIAL 0 #define STATE_STARTING 1 #define STATE_CLOSED 2 #define STATE_STOPPED 3 #define STATE_CLOSING 4 #define STATE_STOPPING 5 #define STATE_REQ_SENT 6 #define STATE_ACK_RCVD 7 #define STATE_ACK_SENT 8 #define STATE_OPENED 9 struct ppp_header { u_char address; u_char control; u_short protocol; }; #define PPP_HEADER_LEN sizeof (struct ppp_header) struct lcp_header { u_char type; u_char ident; u_short len; }; #define LCP_HEADER_LEN sizeof (struct lcp_header) struct cisco_packet { u_int32_t type; u_int32_t par1; u_int32_t par2; u_short rel; u_short time0; u_short time1; }; #define CISCO_PACKET_LEN 18 /* * We follow the spelling and capitalization of RFC 1661 here, to make * it easier comparing with the standard. Please refer to this RFC in * case you can't make sense out of these abbreviation; it will also * explain the semantics related to the various events and actions. */ struct cp { u_short proto; /* PPP control protocol number */ u_char protoidx; /* index into state table in struct sppp */ u_char flags; #define CP_LCP 0x01 /* this is the LCP */ #define CP_AUTH 0x02 /* this is an authentication protocol */ #define CP_NCP 0x04 /* this is a NCP */ #define CP_QUAL 0x08 /* this is a quality reporting protocol */ const char *name; /* name of this control protocol */ /* event handlers */ void (*Up)(struct sppp *sp); void (*Down)(struct sppp *sp); void (*Open)(struct sppp *sp); void (*Close)(struct sppp *sp); void (*TO)(void *sp); int (*RCR)(struct sppp *sp, struct lcp_header *h, int len); void (*RCN_rej)(struct sppp *sp, struct lcp_header *h, int len); void (*RCN_nak)(struct sppp *sp, struct lcp_header *h, int len); /* actions */ void (*tlu)(struct sppp *sp); void (*tld)(struct sppp *sp); void (*tls)(struct sppp *sp); void (*tlf)(struct sppp *sp); void (*scr)(struct sppp *sp); }; static struct sppp *spppq; static struct timeout keepalive_ch; #define SPP_FMT "%s: " #define SPP_ARGS(ifp) (ifp)->if_xname /* almost every function needs these */ #define STDDCL \ struct ifnet *ifp = &sp->pp_if; \ int debug = ifp->if_flags & IFF_DEBUG int sppp_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, struct rtentry *rt); void sppp_cisco_send(struct sppp *sp, u_int32_t type, u_int32_t par1, u_int32_t par2); void sppp_cisco_input(struct sppp *sp, struct mbuf *m); void sppp_cp_input(const struct cp *cp, struct sppp *sp, struct mbuf *m); void sppp_cp_send(struct sppp *sp, u_short proto, u_char type, u_char ident, u_short len, void *data); #ifdef notyet void sppp_cp_timeout(void *arg); #endif void sppp_cp_change_state(const struct cp *cp, struct sppp *sp, int newstate); void sppp_auth_send(const struct cp *cp, struct sppp *sp, unsigned int type, u_int id, ...); void sppp_up_event(const struct cp *cp, struct sppp *sp); void sppp_down_event(const struct cp *cp, struct sppp *sp); void sppp_open_event(const struct cp *cp, struct sppp *sp); void sppp_close_event(const struct cp *cp, struct sppp *sp); void sppp_increasing_timeout(const struct cp *cp, struct sppp *sp); void sppp_to_event(const struct cp *cp, struct sppp *sp); void sppp_null(struct sppp *sp); void sppp_lcp_init(struct sppp *sp); void sppp_lcp_up(struct sppp *sp); void sppp_lcp_down(struct sppp *sp); void sppp_lcp_open(struct sppp *sp); void sppp_lcp_close(struct sppp *sp); void sppp_lcp_TO(void *sp); int sppp_lcp_RCR(struct sppp *sp, struct lcp_header *h, int len); void sppp_lcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len); void sppp_lcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len); void sppp_lcp_tlu(struct sppp *sp); void sppp_lcp_tld(struct sppp *sp); void sppp_lcp_tls(struct sppp *sp); void sppp_lcp_tlf(struct sppp *sp); void sppp_lcp_scr(struct sppp *sp); void sppp_lcp_check_and_close(struct sppp *sp); int sppp_ncp_check(struct sppp *sp); void sppp_ipcp_init(struct sppp *sp); void sppp_ipcp_destroy(struct sppp *sp); void sppp_ipcp_up(struct sppp *sp); void sppp_ipcp_down(struct sppp *sp); void sppp_ipcp_open(struct sppp *sp); void sppp_ipcp_close(struct sppp *sp); void sppp_ipcp_TO(void *sp); int sppp_ipcp_RCR(struct sppp *sp, struct lcp_header *h, int len); void sppp_ipcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len); void sppp_ipcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len); void sppp_ipcp_tlu(struct sppp *sp); void sppp_ipcp_tld(struct sppp *sp); void sppp_ipcp_tls(struct sppp *sp); void sppp_ipcp_tlf(struct sppp *sp); void sppp_ipcp_scr(struct sppp *sp); void sppp_ipv6cp_init(struct sppp *sp); void sppp_ipv6cp_destroy(struct sppp *sp); void sppp_ipv6cp_up(struct sppp *sp); void sppp_ipv6cp_down(struct sppp *sp); void sppp_ipv6cp_open(struct sppp *sp); void sppp_ipv6cp_close(struct sppp *sp); void sppp_ipv6cp_TO(void *sp); int sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len); void sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len); void sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len); void sppp_ipv6cp_tlu(struct sppp *sp); void sppp_ipv6cp_tld(struct sppp *sp); void sppp_ipv6cp_tls(struct sppp *sp); void sppp_ipv6cp_tlf(struct sppp *sp); void sppp_ipv6cp_scr(struct sppp *sp); const char *sppp_ipv6cp_opt_name(u_char opt); void sppp_get_ip6_addrs(struct sppp *sp, struct in6_addr *src, struct in6_addr *dst, struct in6_addr *srcmask); void sppp_set_ip6_addr(struct sppp *sp, const struct in6_addr *src, const struct in6_addr *dst); void sppp_update_ip6_addr(void *sp); void sppp_suggest_ip6_addr(struct sppp *sp, struct in6_addr *suggest); void sppp_pap_input(struct sppp *sp, struct mbuf *m); void sppp_pap_init(struct sppp *sp); void sppp_pap_open(struct sppp *sp); void sppp_pap_close(struct sppp *sp); void sppp_pap_TO(void *sp); void sppp_pap_my_TO(void *sp); void sppp_pap_tlu(struct sppp *sp); void sppp_pap_tld(struct sppp *sp); void sppp_pap_scr(struct sppp *sp); void sppp_chap_input(struct sppp *sp, struct mbuf *m); void sppp_chap_init(struct sppp *sp); void sppp_chap_open(struct sppp *sp); void sppp_chap_close(struct sppp *sp); void sppp_chap_TO(void *sp); void sppp_chap_tlu(struct sppp *sp); void sppp_chap_tld(struct sppp *sp); void sppp_chap_scr(struct sppp *sp); const char *sppp_auth_type_name(u_short proto, u_char type); const char *sppp_cp_type_name(u_char type); const char *sppp_dotted_quad(u_int32_t addr); const char *sppp_ipcp_opt_name(u_char opt); const char *sppp_lcp_opt_name(u_char opt); const char *sppp_phase_name(enum ppp_phase phase); const char *sppp_proto_name(u_short proto); const char *sppp_state_name(int state); int sppp_get_params(struct sppp *sp, struct ifreq *data); int sppp_set_params(struct sppp *sp, struct ifreq *data); void sppp_get_ip_addrs(struct sppp *sp, u_int32_t *src, u_int32_t *dst, u_int32_t *srcmask); void sppp_keepalive(void *dummy); void sppp_phase_network(struct sppp *sp); void sppp_print_bytes(const u_char *p, u_short len); void sppp_print_string(const char *p, u_short len); void sppp_qflush(struct ifqueue *ifq); int sppp_update_gw_walker(struct radix_node *rn, void *arg, u_int); void sppp_update_gw(struct ifnet *ifp); void sppp_set_ip_addrs(void *); void sppp_clear_ip_addrs(void *); void sppp_set_phase(struct sppp *sp); /* our control protocol descriptors */ static const struct cp lcp = { PPP_LCP, IDX_LCP, CP_LCP, "lcp", sppp_lcp_up, sppp_lcp_down, sppp_lcp_open, sppp_lcp_close, sppp_lcp_TO, sppp_lcp_RCR, sppp_lcp_RCN_rej, sppp_lcp_RCN_nak, sppp_lcp_tlu, sppp_lcp_tld, sppp_lcp_tls, sppp_lcp_tlf, sppp_lcp_scr }; static const struct cp ipcp = { PPP_IPCP, IDX_IPCP, CP_NCP, "ipcp", sppp_ipcp_up, sppp_ipcp_down, sppp_ipcp_open, sppp_ipcp_close, sppp_ipcp_TO, sppp_ipcp_RCR, sppp_ipcp_RCN_rej, sppp_ipcp_RCN_nak, sppp_ipcp_tlu, sppp_ipcp_tld, sppp_ipcp_tls, sppp_ipcp_tlf, sppp_ipcp_scr }; static const struct cp ipv6cp = { PPP_IPV6CP, IDX_IPV6CP, #ifdef INET6 /*don't run IPv6CP if there's no IPv6 support*/ CP_NCP, #else 0, #endif "ipv6cp", sppp_ipv6cp_up, sppp_ipv6cp_down, sppp_ipv6cp_open, sppp_ipv6cp_close, sppp_ipv6cp_TO, sppp_ipv6cp_RCR, sppp_ipv6cp_RCN_rej, sppp_ipv6cp_RCN_nak, sppp_ipv6cp_tlu, sppp_ipv6cp_tld, sppp_ipv6cp_tls, sppp_ipv6cp_tlf, sppp_ipv6cp_scr }; static const struct cp pap = { PPP_PAP, IDX_PAP, CP_AUTH, "pap", sppp_null, sppp_null, sppp_pap_open, sppp_pap_close, sppp_pap_TO, 0, 0, 0, sppp_pap_tlu, sppp_pap_tld, sppp_null, sppp_null, sppp_pap_scr }; static const struct cp chap = { PPP_CHAP, IDX_CHAP, CP_AUTH, "chap", sppp_null, sppp_null, sppp_chap_open, sppp_chap_close, sppp_chap_TO, 0, 0, 0, sppp_chap_tlu, sppp_chap_tld, sppp_null, sppp_null, sppp_chap_scr }; static const struct cp *cps[IDX_COUNT] = { &lcp, /* IDX_LCP */ &ipcp, /* IDX_IPCP */ &ipv6cp, /* IDX_IPV6CP */ &pap, /* IDX_PAP */ &chap, /* IDX_CHAP */ }; /* * Exported functions, comprising our interface to the lower layer. */ /* Workaround */ void spppattach(struct ifnet *ifp) { } /* * Process the received packet. */ void sppp_input(struct ifnet *ifp, struct mbuf *m) { struct ppp_header ht; struct niqueue *inq = NULL; struct sppp *sp = (struct sppp *)ifp; struct timeval tv; int debug = ifp->if_flags & IFF_DEBUG; if (ifp->if_flags & IFF_UP) { /* Count received bytes, add hardware framing */ ifp->if_ibytes += m->m_pkthdr.len + sp->pp_framebytes; /* Note time of last receive */ getmicrouptime(&tv); sp->pp_last_receive = tv.tv_sec; } if (m->m_pkthdr.len <= PPP_HEADER_LEN) { /* Too small packet, drop it. */ if (debug) log(LOG_DEBUG, SPP_FMT "input packet is too small, %d bytes\n", SPP_ARGS(ifp), m->m_pkthdr.len); drop: m_freem (m); dropped: ++ifp->if_ierrors; ++ifp->if_iqdrops; return; } /* mark incoming routing domain */ m->m_pkthdr.ph_rtableid = ifp->if_rdomain; if (sp->pp_flags & PP_NOFRAMING) { m_copydata(m, 0, sizeof(ht.protocol), (caddr_t)&ht.protocol); m_adj(m, 2); ht.control = PPP_UI; ht.address = PPP_ALLSTATIONS; } else { /* Get PPP header. */ m_copydata(m, 0, sizeof(ht), (caddr_t)&ht); m_adj (m, PPP_HEADER_LEN); } /* preserve the alignment */ if (m->m_len < m->m_pkthdr.len) { m = m_pullup(m, m->m_pkthdr.len); if (m == NULL) { if (debug) log(LOG_DEBUG, SPP_FMT "Failed to align packet!\n", SPP_ARGS(ifp)); ++ifp->if_ierrors; ++ifp->if_iqdrops; return; } } switch (ht.address) { case PPP_ALLSTATIONS: if (ht.control != PPP_UI) goto invalid; if (sp->pp_flags & PP_CISCO) { if (debug) log(LOG_DEBUG, SPP_FMT "PPP packet in Cisco mode " "\n", SPP_ARGS(ifp), ht.address, ht.control, ntohs(ht.protocol)); goto drop; } switch (ntohs (ht.protocol)) { default: if (sp->state[IDX_LCP] == STATE_OPENED) sppp_cp_send (sp, PPP_LCP, PROTO_REJ, ++sp->pp_seq, 2, &ht.protocol); if (debug) log(LOG_DEBUG, SPP_FMT "invalid input protocol " "\n", SPP_ARGS(ifp), ht.address, ht.control, ntohs(ht.protocol)); ++ifp->if_noproto; goto drop; case PPP_LCP: sppp_cp_input(&lcp, sp, m); m_freem (m); return; case PPP_PAP: if (sp->pp_phase >= PHASE_AUTHENTICATE) sppp_pap_input(sp, m); m_freem (m); return; case PPP_CHAP: if (sp->pp_phase >= PHASE_AUTHENTICATE) sppp_chap_input(sp, m); m_freem (m); return; case PPP_IPCP: if (sp->pp_phase == PHASE_NETWORK) sppp_cp_input(&ipcp, sp, m); m_freem (m); return; case PPP_IP: if (sp->state[IDX_IPCP] == STATE_OPENED) { inq = &ipintrq; sp->pp_last_activity = tv.tv_sec; } break; #ifdef INET6 case PPP_IPV6CP: if (sp->pp_phase == PHASE_NETWORK) sppp_cp_input(&ipv6cp, sp, m); m_freem (m); return; case PPP_IPV6: if (sp->state[IDX_IPV6CP] == STATE_OPENED) { inq = &ip6intrq; sp->pp_last_activity = tv.tv_sec; } break; #endif } break; case CISCO_MULTICAST: case CISCO_UNICAST: /* Don't check the control field here (RFC 1547). */ if (! (sp->pp_flags & PP_CISCO)) { if (debug) log(LOG_DEBUG, SPP_FMT "Cisco packet in PPP mode " "\n", SPP_ARGS(ifp), ht.address, ht.control, ntohs(ht.protocol)); goto drop; } switch (ntohs (ht.protocol)) { default: ++ifp->if_noproto; goto invalid; case CISCO_KEEPALIVE: sppp_cisco_input ((struct sppp*) ifp, m); m_freem (m); return; case ETHERTYPE_IP: inq = &ipintrq; break; #ifdef INET6 case ETHERTYPE_IPV6: inq = &ip6intrq; break; #endif } break; default: /* Invalid PPP packet. */ invalid: if (debug) log(LOG_DEBUG, SPP_FMT "invalid input packet " "\n", SPP_ARGS(ifp), ht.address, ht.control, ntohs(ht.protocol)); goto drop; } if (! (ifp->if_flags & IFF_UP) || ! inq) goto drop; if (niq_enqueue(inq, m) != 0) { /* Queue overflow. */ if (debug) log(LOG_DEBUG, SPP_FMT "protocol queue overflow\n", SPP_ARGS(ifp)); goto dropped; } } /* * Enqueue transmit packet. */ int sppp_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst, struct rtentry *rt) { struct sppp *sp = (struct sppp*) ifp; struct ppp_header *h; struct timeval tv; int s, len, rv = 0; u_int16_t protocol; #ifdef DIAGNOSTIC if (ifp->if_rdomain != rtable_l2(m->m_pkthdr.ph_rtableid)) { printf("%s: trying to send packet on wrong domain. " "if %d vs. mbuf %d, AF %d\n", ifp->if_xname, ifp->if_rdomain, rtable_l2(m->m_pkthdr.ph_rtableid), dst->sa_family); } #endif s = splnet(); getmicrouptime(&tv); sp->pp_last_activity = tv.tv_sec; if ((ifp->if_flags & IFF_UP) == 0 || (ifp->if_flags & (IFF_RUNNING | IFF_AUTO)) == 0) { m_freem (m); splx (s); return (ENETDOWN); } if ((ifp->if_flags & (IFF_RUNNING | IFF_AUTO)) == IFF_AUTO) { /* * Interface is not yet running, but auto-dial. Need * to start LCP for it. */ ifp->if_flags |= IFF_RUNNING; splx(s); lcp.Open(sp); s = splnet(); } /* * Put low delay, telnet, rlogin and ftp control packets * in front of the queue. */ if (dst->sa_family == AF_INET) { struct ip *ip = NULL; struct tcphdr *th = NULL; if (m->m_len >= sizeof(struct ip)) { ip = mtod(m, struct ip *); if (ip->ip_p == IPPROTO_TCP && m->m_len >= sizeof(struct ip) + (ip->ip_hl << 2) + sizeof(struct tcphdr)) { th = (struct tcphdr *) ((caddr_t)ip + (ip->ip_hl << 2)); } } /* * When using dynamic local IP address assignment by using * 0.0.0.0 as a local address, the first TCP session will * not connect because the local TCP checksum is computed * using 0.0.0.0 which will later become our real IP address * so the TCP checksum computed at the remote end will * become invalid. So we * - don't let packets with src ip addr 0 thru * - we flag TCP packets with src ip 0 as an error */ if(ip && ip->ip_src.s_addr == INADDR_ANY) { u_int8_t proto = ip->ip_p; m_freem(m); splx(s); if(proto == IPPROTO_TCP) return (EADDRNOTAVAIL); else return (0); } } if (sp->pp_flags & PP_NOFRAMING) goto skip_header; /* * Prepend general data packet PPP header. For now, IP only. */ M_PREPEND (m, PPP_HEADER_LEN, M_DONTWAIT); if (!m) { if (ifp->if_flags & IFF_DEBUG) log(LOG_DEBUG, SPP_FMT "no memory for transmit header\n", SPP_ARGS(ifp)); ++ifp->if_oerrors; splx (s); return (ENOBUFS); } /* * May want to check size of packet * (albeit due to the implementation it's always enough) */ h = mtod (m, struct ppp_header*); if (sp->pp_flags & PP_CISCO) { h->address = CISCO_UNICAST; /* unicast address */ h->control = 0; } else { h->address = PPP_ALLSTATIONS; /* broadcast address */ h->control = PPP_UI; /* Unnumbered Info */ } skip_header: switch (dst->sa_family) { case AF_INET: /* Internet Protocol */ if (sp->pp_flags & PP_CISCO) protocol = htons (ETHERTYPE_IP); else { /* * Don't choke with an ENETDOWN early. It's * possible that we just started dialing out, * so don't drop the packet immediately. If * we notice that we run out of buffer space * below, we will however remember that we are * not ready to carry IP packets, and return * ENETDOWN, as opposed to ENOBUFS. */ protocol = htons(PPP_IP); if (sp->state[IDX_IPCP] != STATE_OPENED) rv = ENETDOWN; } break; #ifdef INET6 case AF_INET6: /* Internet Protocol v6 */ if (sp->pp_flags & PP_CISCO) protocol = htons (ETHERTYPE_IPV6); else { /* * Don't choke with an ENETDOWN early. It's * possible that we just started dialing out, * so don't drop the packet immediately. If * we notice that we run out of buffer space * below, we will however remember that we are * not ready to carry IPv6 packets, and return * ENETDOWN, as opposed to ENOBUFS. */ protocol = htons(PPP_IPV6); if (sp->state[IDX_IPV6CP] != STATE_OPENED) rv = ENETDOWN; } break; #endif default: m_freem(m); ++ifp->if_oerrors; splx(s); return (EAFNOSUPPORT); } if (sp->pp_flags & PP_NOFRAMING) { M_PREPEND(m, 2, M_DONTWAIT); if (m == NULL) { if (ifp->if_flags & IFF_DEBUG) log(LOG_DEBUG, SPP_FMT "no memory for transmit header\n", SPP_ARGS(ifp)); ++ifp->if_oerrors; splx(s); return (ENOBUFS); } *mtod(m, u_int16_t *) = protocol; } else h->protocol = protocol; /* * Queue message on interface, and start output if interface * not yet active. */ len = m->m_pkthdr.len; IFQ_ENQUEUE(&ifp->if_snd, m, NULL, rv); if (rv != 0) { ++ifp->if_oerrors; splx (s); return (rv); } if (!(ifp->if_flags & IFF_OACTIVE)) (*ifp->if_start) (ifp); /* * Count output packets and bytes. * The packet length includes header, FCS and 1 flag, * according to RFC 1333. */ ifp->if_obytes += len + sp->pp_framebytes; splx (s); return (0); } void sppp_attach(struct ifnet *ifp) { struct sppp *sp = (struct sppp*) ifp; int i; /* Initialize keepalive handler. */ if (! spppq) { timeout_set(&keepalive_ch, sppp_keepalive, NULL); timeout_add_sec(&keepalive_ch, 10); } /* Insert new entry into the keepalive list. */ sp->pp_next = spppq; spppq = sp; sp->pp_if.if_type = IFT_PPP; sp->pp_if.if_output = sppp_output; IFQ_SET_MAXLEN(&sp->pp_if.if_snd, 50); IFQ_SET_MAXLEN(&sp->pp_cpq, 50); sp->pp_loopcnt = 0; sp->pp_alivecnt = 0; sp->pp_last_activity = 0; sp->pp_last_receive = 0; sp->pp_seq = 0; sp->pp_rseq = 0; sp->pp_phase = PHASE_DEAD; sp->pp_up = lcp.Up; sp->pp_down = lcp.Down; for (i = 0; i < IDX_COUNT; i++) timeout_set(&sp->ch[i], (cps[i])->TO, (void *)sp); timeout_set(&sp->pap_my_to_ch, sppp_pap_my_TO, (void *)sp); sppp_lcp_init(sp); sppp_ipcp_init(sp); sppp_ipv6cp_init(sp); sppp_pap_init(sp); sppp_chap_init(sp); } void sppp_detach(struct ifnet *ifp) { struct sppp **q, *p, *sp = (struct sppp*) ifp; int i; sppp_ipcp_destroy(sp); sppp_ipv6cp_destroy(sp); /* Remove the entry from the keepalive list. */ for (q = &spppq; (p = *q); q = &p->pp_next) if (p == sp) { *q = p->pp_next; break; } /* Stop keepalive handler. */ if (! spppq) UNTIMEOUT(sppp_keepalive, 0, keepalive_ch); for (i = 0; i < IDX_COUNT; i++) UNTIMEOUT((cps[i])->TO, (void *)sp, sp->ch[i]); UNTIMEOUT(sppp_pap_my_TO, (void *)sp, sp->pap_my_to_ch); /* release authentication data */ if (sp->myauth.name != NULL) free(sp->myauth.name, M_DEVBUF, 0); if (sp->myauth.secret != NULL) free(sp->myauth.secret, M_DEVBUF, 0); if (sp->hisauth.name != NULL) free(sp->hisauth.name, M_DEVBUF, 0); if (sp->hisauth.secret != NULL) free(sp->hisauth.secret, M_DEVBUF, 0); } /* * Flush the interface output queue. */ void sppp_flush(struct ifnet *ifp) { struct sppp *sp = (struct sppp*) ifp; IFQ_PURGE(&sp->pp_if.if_snd); sppp_qflush (&sp->pp_cpq); } /* * Check if the output queue is empty. */ int sppp_isempty(struct ifnet *ifp) { struct sppp *sp = (struct sppp*) ifp; int empty, s; s = splnet(); empty = IF_IS_EMPTY(&sp->pp_cpq) && IFQ_IS_EMPTY(&sp->pp_if.if_snd); splx(s); return (empty); } /* * Get next packet to send. */ struct mbuf * sppp_dequeue(struct ifnet *ifp) { struct sppp *sp = (struct sppp*) ifp; struct mbuf *m; int s; s = splnet(); /* * Process only the control protocol queue until we have at * least one NCP open. * * Do always serve all queues in Cisco mode. */ IF_DEQUEUE(&sp->pp_cpq, m); if (m == NULL && (sppp_ncp_check(sp) || (sp->pp_flags & PP_CISCO) != 0)) { IFQ_DEQUEUE (&sp->pp_if.if_snd, m); } splx(s); return m; } /* * Pick the next packet, do not remove it from the queue. */ struct mbuf * sppp_pick(struct ifnet *ifp) { struct sppp *sp = (struct sppp*)ifp; struct mbuf *m; int s; s = splnet(); IF_POLL(&sp->pp_cpq, m); if (m == NULL && (sp->pp_phase == PHASE_NETWORK || (sp->pp_flags & PP_CISCO) != 0)) { IFQ_POLL(&sp->pp_if.if_snd, m); } splx (s); return (m); } /* * Process an ioctl request. Called on low priority level. */ int sppp_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct ifreq *ifr = data; struct ifaddr *ifa = data; struct sppp *sp = (struct sppp*) ifp; int s, rv, going_up, going_down, newmode; s = splnet(); rv = 0; switch (cmd) { case SIOCAIFADDR: case SIOCSIFDSTADDR: break; case SIOCSIFADDR: if_up(ifp); ifa->ifa_rtrequest = p2p_rtrequest; /* FALLTHROUGH */ case SIOCSIFFLAGS: going_up = (ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING) == 0; going_down = (ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING); newmode = ifp->if_flags & (IFF_AUTO | IFF_PASSIVE); if (newmode == (IFF_AUTO | IFF_PASSIVE)) { /* sanity */ newmode = IFF_PASSIVE; ifp->if_flags &= ~IFF_AUTO; } if (going_up || going_down) if (!(sp->pp_flags & PP_CISCO)) lcp.Close(sp); if (going_up && newmode == 0) { /* neither auto-dial nor passive */ ifp->if_flags |= IFF_RUNNING; if (!(sp->pp_flags & PP_CISCO)) lcp.Open(sp); } else if (going_down) { sppp_flush(ifp); ifp->if_flags &= ~IFF_RUNNING; } break; #ifdef SIOCSIFMTU case SIOCSIFMTU: if (ifr->ifr_mtu < 128 || (sp->lcp.their_mru > 0 && ifr->ifr_mtu > sp->lcp.their_mru)) { splx(s); return (EINVAL); } ifp->if_mtu = ifr->ifr_mtu; break; #endif #ifdef SLIOCSETMTU case SLIOCSETMTU: if (*(short*)data < 128 || (sp->lcp.their_mru > 0 && *(short*)data > sp->lcp.their_mru)) { splx(s); return (EINVAL); } ifp->if_mtu = *(short*)data; break; #endif #ifdef SIOCGIFMTU case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; #endif #ifdef SIOCGIFHARDMTU case SIOCGIFHARDMTU: ifr->ifr_hardmtu = ifp->if_hardmtu; break; #endif #ifdef SLIOCGETMTU case SLIOCGETMTU: *(short*)data = ifp->if_mtu; break; #endif case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCGSPPPPARAMS: rv = sppp_get_params(sp, ifr); break; case SIOCSSPPPPARAMS: rv = sppp_set_params(sp, ifr); break; default: rv = ENOTTY; } splx(s); return rv; } /* * Cisco framing implementation. */ /* * Handle incoming Cisco keepalive protocol packets. */ void sppp_cisco_input(struct sppp *sp, struct mbuf *m) { STDDCL; struct cisco_packet *h; u_int32_t me, mymask; if (m->m_pkthdr.len < CISCO_PACKET_LEN) { if (debug) log(LOG_DEBUG, SPP_FMT "cisco invalid packet length: %d bytes\n", SPP_ARGS(ifp), m->m_pkthdr.len); return; } h = mtod (m, struct cisco_packet*); if (debug) log(LOG_DEBUG, SPP_FMT "cisco input: %d bytes " "<0x%x 0x%x 0x%x 0x%x 0x%x-0x%x>\n", SPP_ARGS(ifp), m->m_pkthdr.len, ntohl(h->type), h->par1, h->par2, (u_int)h->rel, (u_int)h->time0, (u_int)h->time1); switch (ntohl (h->type)) { default: if (debug) addlog(SPP_FMT "cisco unknown packet type: 0x%x\n", SPP_ARGS(ifp), ntohl(h->type)); break; case CISCO_ADDR_REPLY: /* Reply on address request, ignore */ break; case CISCO_KEEPALIVE_REQ: sp->pp_alivecnt = 0; sp->pp_rseq = ntohl (h->par1); if (sp->pp_seq == sp->pp_rseq) { /* Local and remote sequence numbers are equal. * Probably, the line is in loopback mode. */ if (sp->pp_loopcnt >= LOOPALIVECNT) { log(LOG_INFO, SPP_FMT "loopback\n", SPP_ARGS(ifp)); sp->pp_loopcnt = 0; if (ifp->if_flags & IFF_UP) { if_down (ifp); sppp_qflush (&sp->pp_cpq); } } ++sp->pp_loopcnt; /* Generate new local sequence number */ sp->pp_seq = arc4random(); break; } sp->pp_loopcnt = 0; if (! (ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) { if_up(ifp); if (debug) log(LOG_INFO, SPP_FMT "up\n", SPP_ARGS(ifp)); } break; case CISCO_ADDR_REQ: sppp_get_ip_addrs(sp, &me, 0, &mymask); if (me != 0) sppp_cisco_send(sp, CISCO_ADDR_REPLY, me, mymask); break; } } /* * Send Cisco keepalive packet. */ void sppp_cisco_send(struct sppp *sp, u_int32_t type, u_int32_t par1, u_int32_t par2) { STDDCL; struct ppp_header *h; struct cisco_packet *ch; struct mbuf *m; struct timeval tv; getmicrouptime(&tv); MGETHDR (m, M_DONTWAIT, MT_DATA); if (! m) return; m->m_pkthdr.len = m->m_len = PPP_HEADER_LEN + CISCO_PACKET_LEN; m->m_pkthdr.rcvif = 0; h = mtod (m, struct ppp_header*); h->address = CISCO_MULTICAST; h->control = 0; h->protocol = htons (CISCO_KEEPALIVE); ch = (struct cisco_packet*) (h + 1); ch->type = htonl (type); ch->par1 = htonl (par1); ch->par2 = htonl (par2); ch->rel = -1; ch->time0 = htons ((u_short) (tv.tv_sec >> 16)); ch->time1 = htons ((u_short) tv.tv_sec); if (debug) log(LOG_DEBUG, SPP_FMT "cisco output: <0x%x 0x%x 0x%x 0x%x 0x%x-0x%x>\n", SPP_ARGS(ifp), ntohl(ch->type), ch->par1, ch->par2, (u_int)ch->rel, (u_int)ch->time0, (u_int)ch->time1); if (IF_QFULL (&sp->pp_cpq)) { IF_DROP (&ifp->if_snd); m_freem (m); m = NULL; } else IF_ENQUEUE (&sp->pp_cpq, m); if (! (ifp->if_flags & IFF_OACTIVE)) (*ifp->if_start) (ifp); if (m != NULL) ifp->if_obytes += m->m_pkthdr.len + sp->pp_framebytes; } /* * PPP protocol implementation. */ /* * Send PPP control protocol packet. */ void sppp_cp_send(struct sppp *sp, u_short proto, u_char type, u_char ident, u_short len, void *data) { STDDCL; struct ppp_header *h; struct lcp_header *lh; struct mbuf *m; size_t pkthdrlen; pkthdrlen = (sp->pp_flags & PP_NOFRAMING) ? 2 : PPP_HEADER_LEN; if (len > MHLEN - pkthdrlen - LCP_HEADER_LEN) len = MHLEN - pkthdrlen - LCP_HEADER_LEN; MGETHDR (m, M_DONTWAIT, MT_DATA); if (! m) return; m->m_pkthdr.len = m->m_len = pkthdrlen + LCP_HEADER_LEN + len; m->m_pkthdr.rcvif = 0; if (sp->pp_flags & PP_NOFRAMING) { *mtod(m, u_int16_t *) = htons(proto); lh = (struct lcp_header *)(mtod(m, u_int8_t *) + 2); } else { h = mtod (m, struct ppp_header*); h->address = PPP_ALLSTATIONS; /* broadcast address */ h->control = PPP_UI; /* Unnumbered Info */ h->protocol = htons (proto); /* Link Control Protocol */ lh = (struct lcp_header*) (h + 1); } lh->type = type; lh->ident = ident; lh->len = htons (LCP_HEADER_LEN + len); if (len) bcopy (data, lh+1, len); if (debug) { log(LOG_DEBUG, SPP_FMT "%s output <%s id=0x%x len=%d", SPP_ARGS(ifp), sppp_proto_name(proto), sppp_cp_type_name (lh->type), lh->ident, ntohs (lh->len)); if (len) sppp_print_bytes ((u_char*) (lh+1), len); addlog(">\n"); } if (IF_QFULL (&sp->pp_cpq)) { IF_DROP (&ifp->if_snd); m_freem (m); ++ifp->if_oerrors; m = NULL; } else IF_ENQUEUE (&sp->pp_cpq, m); if (!(ifp->if_flags & IFF_OACTIVE)) (*ifp->if_start) (ifp); if (m != NULL) ifp->if_obytes += m->m_pkthdr.len + sp->pp_framebytes; } /* * Handle incoming PPP control protocol packets. */ void sppp_cp_input(const struct cp *cp, struct sppp *sp, struct mbuf *m) { STDDCL; struct lcp_header *h; int len = m->m_pkthdr.len; int rv; u_char *p; u_long nmagic; if (len < 4) { if (debug) log(LOG_DEBUG, SPP_FMT "%s invalid packet length: %d bytes\n", SPP_ARGS(ifp), cp->name, len); return; } h = mtod (m, struct lcp_header*); if (debug) { log(LOG_DEBUG, SPP_FMT "%s input(%s): <%s id=0x%x len=%d", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx]), sppp_cp_type_name (h->type), h->ident, ntohs (h->len)); if (len > 4) sppp_print_bytes ((u_char*) (h+1), len-4); addlog(">\n"); } if (len > ntohs (h->len)) len = ntohs (h->len); p = (u_char *)(h + 1); switch (h->type) { case CONF_REQ: if (len < 4) { if (debug) addlog(SPP_FMT "%s invalid conf-req length %d\n", SPP_ARGS(ifp), cp->name, len); ++ifp->if_ierrors; break; } /* handle states where RCR doesn't get a SCA/SCN */ switch (sp->state[cp->protoidx]) { case STATE_CLOSING: case STATE_STOPPING: return; case STATE_CLOSED: sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0); return; } rv = (cp->RCR)(sp, h, len); /* silently drop illegal packets */ if (rv == -1) return; switch (sp->state[cp->protoidx]) { case STATE_OPENED: sppp_cp_change_state(cp, sp, rv? STATE_ACK_SENT: STATE_REQ_SENT); (cp->tld)(sp); (cp->scr)(sp); break; case STATE_ACK_SENT: case STATE_REQ_SENT: sppp_cp_change_state(cp, sp, rv? STATE_ACK_SENT: STATE_REQ_SENT); break; case STATE_STOPPED: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; sppp_cp_change_state(cp, sp, rv? STATE_ACK_SENT: STATE_REQ_SENT); (cp->scr)(sp); break; case STATE_ACK_RCVD: if (rv) { sppp_cp_change_state(cp, sp, STATE_OPENED); if (debug) log(LOG_DEBUG, SPP_FMT "%s tlu\n", SPP_ARGS(ifp), cp->name); (cp->tlu)(sp); } else sppp_cp_change_state(cp, sp, STATE_ACK_RCVD); break; default: /* printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); */ ++ifp->if_ierrors; } break; case CONF_ACK: if (h->ident != sp->confid[cp->protoidx]) { if (debug) addlog(SPP_FMT "%s id mismatch 0x%x != 0x%x\n", SPP_ARGS(ifp), cp->name, h->ident, sp->confid[cp->protoidx]); ++ifp->if_ierrors; break; } switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0); break; case STATE_CLOSING: case STATE_STOPPING: break; case STATE_REQ_SENT: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; sppp_cp_change_state(cp, sp, STATE_ACK_RCVD); break; case STATE_OPENED: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); (cp->tld)(sp); (cp->scr)(sp); break; case STATE_ACK_RCVD: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); (cp->scr)(sp); break; case STATE_ACK_SENT: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; sppp_cp_change_state(cp, sp, STATE_OPENED); if (debug) log(LOG_DEBUG, SPP_FMT "%s tlu\n", SPP_ARGS(ifp), cp->name); (cp->tlu)(sp); break; default: /* printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); */ ++ifp->if_ierrors; } break; case CONF_NAK: case CONF_REJ: if (h->ident != sp->confid[cp->protoidx]) { if (debug) addlog(SPP_FMT "%s id mismatch 0x%x != 0x%x\n", SPP_ARGS(ifp), cp->name, h->ident, sp->confid[cp->protoidx]); ++ifp->if_ierrors; break; } if (h->type == CONF_NAK) (cp->RCN_nak)(sp, h, len); else /* CONF_REJ */ (cp->RCN_rej)(sp, h, len); switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0); break; case STATE_REQ_SENT: case STATE_ACK_SENT: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; (cp->scr)(sp); break; case STATE_OPENED: sppp_cp_change_state(cp, sp, STATE_ACK_SENT); (cp->tld)(sp); (cp->scr)(sp); break; case STATE_ACK_RCVD: sppp_cp_change_state(cp, sp, STATE_ACK_SENT); (cp->scr)(sp); break; case STATE_CLOSING: case STATE_STOPPING: break; default: /* printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); */ ++ifp->if_ierrors; } break; case TERM_REQ: switch (sp->state[cp->protoidx]) { case STATE_ACK_RCVD: case STATE_ACK_SENT: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); /* FALLTHROUGH */ case STATE_CLOSED: case STATE_STOPPED: case STATE_CLOSING: case STATE_STOPPING: case STATE_REQ_SENT: sta: /* Send Terminate-Ack packet. */ if (debug) log(LOG_DEBUG, SPP_FMT "%s send terminate-ack\n", SPP_ARGS(ifp), cp->name); sppp_cp_send(sp, cp->proto, TERM_ACK, h->ident, 0, 0); break; case STATE_OPENED: sp->rst_counter[cp->protoidx] = 0; sppp_cp_change_state(cp, sp, STATE_STOPPING); (cp->tld)(sp); goto sta; break; default: /* printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); */ ++ifp->if_ierrors; } break; case TERM_ACK: switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: case STATE_REQ_SENT: case STATE_ACK_SENT: break; case STATE_CLOSING: sppp_cp_change_state(cp, sp, STATE_CLOSED); (cp->tlf)(sp); break; case STATE_STOPPING: sppp_cp_change_state(cp, sp, STATE_STOPPED); (cp->tlf)(sp); break; case STATE_ACK_RCVD: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; case STATE_OPENED: sppp_cp_change_state(cp, sp, STATE_ACK_RCVD); (cp->tld)(sp); (cp->scr)(sp); break; default: /* printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); */ ++ifp->if_ierrors; } break; case CODE_REJ: case PROTO_REJ: { int catastrophic = 0; const struct cp *upper = NULL; int i; u_int16_t proto; if (len < 2) { if (debug) log(LOG_DEBUG, SPP_FMT "invalid proto-rej length\n", SPP_ARGS(ifp)); ++ifp->if_ierrors; break; } proto = ntohs(*((u_int16_t *)p)); for (i = 0; i < IDX_COUNT; i++) { if (cps[i]->proto == proto) { upper = cps[i]; break; } } if (upper == NULL) catastrophic++; if (catastrophic || debug) log(catastrophic? LOG_INFO: LOG_DEBUG, SPP_FMT "%s: RXJ%c (%s) for proto 0x%x (%s/%s)\n", SPP_ARGS(ifp), cp->name, catastrophic ? '-' : '+', sppp_cp_type_name(h->type), proto, upper ? upper->name : "unknown", upper ? sppp_state_name(sp->state[upper->protoidx]) : "?"); /* * if we got RXJ+ against conf-req, the peer does not implement * this particular protocol type. terminate the protocol. */ if (upper) { if (sp->state[upper->protoidx] == STATE_REQ_SENT) { upper->Close(sp); break; } } /* XXX catastrophic rejects (RXJ-) aren't handled yet. */ switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_STOPPED: case STATE_REQ_SENT: case STATE_ACK_SENT: case STATE_CLOSING: case STATE_STOPPING: case STATE_OPENED: break; case STATE_ACK_RCVD: sppp_cp_change_state(cp, sp, STATE_REQ_SENT); break; default: /* printf(SPP_FMT "%s illegal %s in state %s\n", SPP_ARGS(ifp), cp->name, sppp_cp_type_name(h->type), sppp_state_name(sp->state[cp->protoidx])); */ ++ifp->if_ierrors; } break; } case DISC_REQ: if (cp->proto != PPP_LCP) goto illegal; /* Discard the packet. */ break; case ECHO_REQ: if (cp->proto != PPP_LCP) goto illegal; if (sp->state[cp->protoidx] != STATE_OPENED) { if (debug) addlog(SPP_FMT "lcp echo req but lcp closed\n", SPP_ARGS(ifp)); ++ifp->if_ierrors; break; } if (len < 8) { if (debug) addlog(SPP_FMT "invalid lcp echo request " "packet length: %d bytes\n", SPP_ARGS(ifp), len); break; } nmagic = (u_long)p[0] << 24 | (u_long)p[1] << 16 | p[2] << 8 | p[3]; if (nmagic == sp->lcp.magic) { /* Line loopback mode detected. */ log(LOG_INFO, SPP_FMT "loopback\n", SPP_ARGS(ifp)); /* Shut down the PPP link. */ lcp.Close(sp); break; } p[0] = sp->lcp.magic >> 24; p[1] = sp->lcp.magic >> 16; p[2] = sp->lcp.magic >> 8; p[3] = sp->lcp.magic; if (debug) addlog(SPP_FMT "got lcp echo req, sending echo rep\n", SPP_ARGS(ifp)); sppp_cp_send (sp, PPP_LCP, ECHO_REPLY, h->ident, len-4, h+1); break; case ECHO_REPLY: if (cp->proto != PPP_LCP) goto illegal; if (h->ident != sp->lcp.echoid) { ++ifp->if_ierrors; break; } if (len < 8) { if (debug) addlog(SPP_FMT "lcp invalid echo reply " "packet length: %d bytes\n", SPP_ARGS(ifp), len); break; } if (debug) addlog(SPP_FMT "lcp got echo rep\n", SPP_ARGS(ifp)); nmagic = (u_long)p[0] << 24 | (u_long)p[1] << 16 | p[2] << 8 | p[3]; if (nmagic != sp->lcp.magic) sp->pp_alivecnt = 0; break; default: /* Unknown packet type -- send Code-Reject packet. */ illegal: if (debug) addlog(SPP_FMT "%s send code-rej for 0x%x\n", SPP_ARGS(ifp), cp->name, h->type); sppp_cp_send(sp, cp->proto, CODE_REJ, ++sp->pp_seq, m->m_pkthdr.len, h); ++ifp->if_ierrors; } } /* * The generic part of all Up/Down/Open/Close/TO event handlers. * Basically, the state transition handling in the automaton. */ void sppp_up_event(const struct cp *cp, struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "%s up(%s)\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); switch (sp->state[cp->protoidx]) { case STATE_INITIAL: sppp_cp_change_state(cp, sp, STATE_CLOSED); break; case STATE_STARTING: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; sppp_cp_change_state(cp, sp, STATE_REQ_SENT); (cp->scr)(sp); break; default: /* printf(SPP_FMT "%s illegal up in state %s\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); */ break; } } void sppp_down_event(const struct cp *cp, struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "%s down(%s)\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); switch (sp->state[cp->protoidx]) { case STATE_CLOSED: case STATE_CLOSING: sppp_cp_change_state(cp, sp, STATE_INITIAL); break; case STATE_STOPPED: sppp_cp_change_state(cp, sp, STATE_STARTING); (cp->tls)(sp); break; case STATE_STOPPING: case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: sppp_cp_change_state(cp, sp, STATE_STARTING); break; case STATE_OPENED: sppp_cp_change_state(cp, sp, STATE_STARTING); (cp->tld)(sp); break; default: /* printf(SPP_FMT "%s illegal down in state %s\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); */ break; } } void sppp_open_event(const struct cp *cp, struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "%s open(%s)\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); switch (sp->state[cp->protoidx]) { case STATE_INITIAL: sppp_cp_change_state(cp, sp, STATE_STARTING); (cp->tls)(sp); break; case STATE_STARTING: break; case STATE_CLOSED: sp->rst_counter[cp->protoidx] = sp->lcp.max_configure; sppp_cp_change_state(cp, sp, STATE_REQ_SENT); (cp->scr)(sp); break; case STATE_STOPPED: case STATE_STOPPING: case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: case STATE_OPENED: break; case STATE_CLOSING: sppp_cp_change_state(cp, sp, STATE_STOPPING); break; } } void sppp_close_event(const struct cp *cp, struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "%s close(%s)\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx])); switch (sp->state[cp->protoidx]) { case STATE_INITIAL: case STATE_CLOSED: case STATE_CLOSING: break; case STATE_STARTING: sppp_cp_change_state(cp, sp, STATE_INITIAL); (cp->tlf)(sp); break; case STATE_STOPPED: sppp_cp_change_state(cp, sp, STATE_CLOSED); break; case STATE_STOPPING: sppp_cp_change_state(cp, sp, STATE_CLOSING); break; case STATE_OPENED: sppp_cp_change_state(cp, sp, STATE_CLOSING); sp->rst_counter[cp->protoidx] = sp->lcp.max_terminate; sppp_cp_send(sp, cp->proto, TERM_REQ, ++sp->pp_seq, 0, 0); (cp->tld)(sp); break; case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: sp->rst_counter[cp->protoidx] = sp->lcp.max_terminate; sppp_cp_send(sp, cp->proto, TERM_REQ, ++sp->pp_seq, 0, 0); sppp_cp_change_state(cp, sp, STATE_CLOSING); break; } } void sppp_increasing_timeout (const struct cp *cp, struct sppp *sp) { int timo; timo = sp->lcp.max_configure - sp->rst_counter[cp->protoidx]; if (timo < 1) timo = 1; timeout_add(&sp->ch[cp->protoidx], timo * sp->lcp.timeout); } void sppp_to_event(const struct cp *cp, struct sppp *sp) { STDDCL; int s; s = splnet(); if (debug) log(LOG_DEBUG, SPP_FMT "%s TO(%s) rst_counter = %d\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx]), sp->rst_counter[cp->protoidx]); if (--sp->rst_counter[cp->protoidx] < 0) /* TO- event */ switch (sp->state[cp->protoidx]) { case STATE_CLOSING: sppp_cp_change_state(cp, sp, STATE_CLOSED); (cp->tlf)(sp); break; case STATE_STOPPING: sppp_cp_change_state(cp, sp, STATE_STOPPED); (cp->tlf)(sp); break; case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: sppp_cp_change_state(cp, sp, STATE_STOPPED); (cp->tlf)(sp); break; } else /* TO+ event */ switch (sp->state[cp->protoidx]) { case STATE_CLOSING: case STATE_STOPPING: sppp_cp_send(sp, cp->proto, TERM_REQ, ++sp->pp_seq, 0, 0); sppp_increasing_timeout (cp, sp); break; case STATE_REQ_SENT: case STATE_ACK_RCVD: /* sppp_cp_change_state() will restart the timer */ sppp_cp_change_state(cp, sp, STATE_REQ_SENT); (cp->scr)(sp); break; case STATE_ACK_SENT: sppp_increasing_timeout (cp, sp); (cp->scr)(sp); break; } splx(s); } /* * Change the state of a control protocol in the state automaton. * Takes care of starting/stopping the restart timer. */ void sppp_cp_change_state(const struct cp *cp, struct sppp *sp, int newstate) { STDDCL; if (debug && sp->state[cp->protoidx] != newstate) log(LOG_DEBUG, SPP_FMT "%s %s->%s\n", SPP_ARGS(ifp), cp->name, sppp_state_name(sp->state[cp->protoidx]), sppp_state_name(newstate)); sp->state[cp->protoidx] = newstate; switch (newstate) { case STATE_INITIAL: case STATE_STARTING: case STATE_CLOSED: case STATE_STOPPED: case STATE_OPENED: UNTIMEOUT(cp->TO, (void *)sp, sp->ch[cp->protoidx]); break; case STATE_CLOSING: case STATE_STOPPING: case STATE_REQ_SENT: case STATE_ACK_RCVD: case STATE_ACK_SENT: if (!timeout_pending(&sp->ch[cp->protoidx])) sppp_increasing_timeout (cp, sp); break; } } /* *--------------------------------------------------------------------------* * * * The LCP implementation. * * * *--------------------------------------------------------------------------* */ void sppp_lcp_init(struct sppp *sp) { sp->lcp.opts = (1 << LCP_OPT_MAGIC); sp->lcp.magic = 0; sp->state[IDX_LCP] = STATE_INITIAL; sp->fail_counter[IDX_LCP] = 0; sp->lcp.protos = 0; sp->lcp.mru = sp->pp_if.if_mtu; sp->lcp.their_mru = 0; /* * Initialize counters and timeout values. Note that we don't * use the 3 seconds suggested in RFC 1661 since we are likely * running on a fast link. XXX We should probably implement * the exponential backoff option. Note that these values are * relevant for all control protocols, not just LCP only. */ sp->lcp.timeout = 1 * hz; sp->lcp.max_terminate = 2; sp->lcp.max_configure = 10; sp->lcp.max_failure = 10; } void sppp_lcp_up(struct sppp *sp) { STDDCL; struct timeval tv; if (sp->pp_flags & PP_CISCO) { int s = splsoftnet(); sp->pp_if.if_link_state = LINK_STATE_UP; if_link_state_change(&sp->pp_if); splx(s); return; } sp->pp_alivecnt = 0; sp->lcp.opts = (1 << LCP_OPT_MAGIC); sp->lcp.magic = 0; sp->lcp.protos = 0; if (sp->pp_if.if_mtu != PP_MTU) { sp->lcp.mru = sp->pp_if.if_mtu; sp->lcp.opts |= (1 << LCP_OPT_MRU); } else sp->lcp.mru = PP_MTU; sp->lcp.their_mru = PP_MTU; getmicrouptime(&tv); sp->pp_last_receive = sp->pp_last_activity = tv.tv_sec; /* * If this interface is passive or dial-on-demand, and we are * still in Initial state, it means we've got an incoming * call. Activate the interface. */ if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) != 0) { if (debug) log(LOG_DEBUG, SPP_FMT "Up event", SPP_ARGS(ifp)); ifp->if_flags |= IFF_RUNNING; if (sp->state[IDX_LCP] == STATE_INITIAL) { if (debug) addlog("(incoming call)\n"); sp->pp_flags |= PP_CALLIN; lcp.Open(sp); } else if (debug) addlog("\n"); } else if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) == 0 && (sp->state[IDX_LCP] == STATE_INITIAL)) { ifp->if_flags |= IFF_RUNNING; lcp.Open(sp); } sppp_up_event(&lcp, sp); } void sppp_lcp_down(struct sppp *sp) { STDDCL; if (sp->pp_flags & PP_CISCO) { int s = splsoftnet(); sp->pp_if.if_link_state = LINK_STATE_DOWN; if_link_state_change(&sp->pp_if); splx(s); return; } sppp_down_event(&lcp, sp); /* * If this is neither a dial-on-demand nor a passive * interface, simulate an ``ifconfig down'' action, so the * administrator can force a redial by another ``ifconfig * up''. XXX For leased line operation, should we immediately * try to reopen the connection here? */ if ((ifp->if_flags & (IFF_AUTO | IFF_PASSIVE)) == 0) { if (debug) log(LOG_DEBUG, SPP_FMT "Down event (carrier loss), " "taking interface down.", SPP_ARGS(ifp)); if_down(ifp); } else { if (debug) log(LOG_DEBUG, SPP_FMT "Down event (carrier loss)\n", SPP_ARGS(ifp)); } if (sp->state[IDX_LCP] != STATE_INITIAL) lcp.Close(sp); sp->lcp.their_mru = 0; sp->pp_flags &= ~PP_CALLIN; ifp->if_flags &= ~IFF_RUNNING; sppp_flush(ifp); } void sppp_lcp_open(struct sppp *sp) { /* * If we are authenticator, negotiate LCP_AUTH */ if (sp->hisauth.proto != 0) sp->lcp.opts |= (1 << LCP_OPT_AUTH_PROTO); else sp->lcp.opts &= ~(1 << LCP_OPT_AUTH_PROTO); sp->pp_flags &= ~PP_NEEDAUTH; sppp_open_event(&lcp, sp); } void sppp_lcp_close(struct sppp *sp) { sppp_close_event(&lcp, sp); } void sppp_lcp_TO(void *cookie) { sppp_to_event(&lcp, (struct sppp *)cookie); } /* * Analyze a configure request. Return true if it was agreeable, and * caused action sca, false if it has been rejected or nak'ed, and * caused action scn. (The return value is used to make the state * transition decision in the state automaton.) */ int sppp_lcp_RCR(struct sppp *sp, struct lcp_header *h, int len) { STDDCL; u_char *buf, *r, *p; int origlen, rlen; u_long nmagic; u_short authproto; len -= 4; origlen = len; buf = r = malloc (len, M_TEMP, M_NOWAIT); if (! buf) return (0); if (debug) log(LOG_DEBUG, SPP_FMT "lcp parse opts: ", SPP_ARGS(ifp)); /* pass 1: check for things that need to be rejected */ p = (void*) (h+1); for (rlen = 0; len > 1; len -= p[1], p += p[1]) { if (p[1] < 2 || p[1] > len) { free(buf, M_TEMP, 0); return (-1); } if (debug) addlog("%s ", sppp_lcp_opt_name(*p)); switch (*p) { case LCP_OPT_MAGIC: /* Magic number. */ /* FALLTHROUGH, both are same length */ case LCP_OPT_ASYNC_MAP: /* Async control character map. */ if (len >= 6 && p[1] == 6) continue; if (debug) addlog("[invalid] "); break; case LCP_OPT_MRU: /* Maximum receive unit. */ if (len >= 4 && p[1] == 4) continue; if (debug) addlog("[invalid] "); break; case LCP_OPT_AUTH_PROTO: if (len < 4) { if (debug) addlog("[invalid] "); break; } authproto = (p[2] << 8) + p[3]; if (authproto == PPP_CHAP && p[1] != 5) { if (debug) addlog("[invalid chap len] "); break; } if (sp->myauth.proto == 0) { /* we are not configured to do auth */ if (debug) addlog("[not configured] "); break; } /* * Remote want us to authenticate, remember this, * so we stay in PHASE_AUTHENTICATE after LCP got * up. */ sp->pp_flags |= PP_NEEDAUTH; continue; default: /* Others not supported. */ if (debug) addlog("[rej] "); break; } /* Add the option to rejected list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen) { if (debug) addlog(" send conf-rej\n"); sppp_cp_send(sp, PPP_LCP, CONF_REJ, h->ident, rlen, buf); goto end; } else if (debug) addlog("\n"); /* * pass 2: check for option values that are unacceptable and * thus require to be nak'ed. */ if (debug) log(LOG_DEBUG, SPP_FMT "lcp parse opt values: ", SPP_ARGS(ifp)); p = (void*) (h+1); len = origlen; for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) { if (debug) addlog("%s ", sppp_lcp_opt_name(*p)); switch (*p) { case LCP_OPT_MAGIC: /* Magic number -- extract. */ nmagic = (u_long)p[2] << 24 | (u_long)p[3] << 16 | p[4] << 8 | p[5]; if (nmagic != sp->lcp.magic) { if (debug) addlog("0x%lx ", nmagic); continue; } if (debug) addlog("[glitch] "); ++sp->pp_loopcnt; /* * We negate our magic here, and NAK it. If * we see it later in an NAK packet, we * suggest a new one. */ nmagic = ~sp->lcp.magic; /* Gonna NAK it. */ p[2] = nmagic >> 24; p[3] = nmagic >> 16; p[4] = nmagic >> 8; p[5] = nmagic; break; case LCP_OPT_ASYNC_MAP: /* Async control character map -- check to be zero. */ if (! p[2] && ! p[3] && ! p[4] && ! p[5]) { if (debug) addlog("[empty] "); continue; } if (debug) addlog("[non-empty] "); /* suggest a zero one */ p[2] = p[3] = p[4] = p[5] = 0; break; case LCP_OPT_MRU: /* * Maximum receive unit. Always agreeable, * but ignored by now. */ sp->lcp.their_mru = p[2] * 256 + p[3]; if (debug) addlog("%lu ", sp->lcp.their_mru); continue; case LCP_OPT_AUTH_PROTO: authproto = (p[2] << 8) + p[3]; if (sp->myauth.proto != authproto) { /* not agreed, nak */ if (debug) addlog("[mine %s != his %s] ", sppp_proto_name(sp->hisauth.proto), sppp_proto_name(authproto)); p[2] = sp->myauth.proto >> 8; p[3] = sp->myauth.proto; break; } if (authproto == PPP_CHAP && p[4] != CHAP_MD5) { if (debug) addlog("[chap not MD5] "); p[4] = CHAP_MD5; break; } continue; } /* Add the option to nak'ed list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen) { if (++sp->fail_counter[IDX_LCP] >= sp->lcp.max_failure) { if (debug) addlog(" max_failure (%d) exceeded, " "send conf-rej\n", sp->lcp.max_failure); sppp_cp_send(sp, PPP_LCP, CONF_REJ, h->ident, rlen, buf); } else { if (debug) addlog(" send conf-nak\n"); sppp_cp_send(sp, PPP_LCP, CONF_NAK, h->ident, rlen, buf); } goto end; } else { if (debug) addlog("send conf-ack\n"); sp->fail_counter[IDX_LCP] = 0; sp->pp_loopcnt = 0; sppp_cp_send (sp, PPP_LCP, CONF_ACK, h->ident, origlen, h+1); } end: free(buf, M_TEMP, 0); return (rlen == 0); } /* * Analyze the LCP Configure-Reject option list, and adjust our * negotiation. */ void sppp_lcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { STDDCL; u_char *p; len -= 4; if (debug) log(LOG_DEBUG, SPP_FMT "lcp rej opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len > 1; len -= p[1], p += p[1]) { if (p[1] < 2 || p[1] > len) return; if (debug) addlog("%s ", sppp_lcp_opt_name(*p)); switch (*p) { case LCP_OPT_MAGIC: /* Magic number -- can't use it, use 0 */ sp->lcp.opts &= ~(1 << LCP_OPT_MAGIC); sp->lcp.magic = 0; break; case LCP_OPT_MRU: /* * Should not be rejected anyway, since we only * negotiate a MRU if explicitly requested by * peer. */ sp->lcp.opts &= ~(1 << LCP_OPT_MRU); break; case LCP_OPT_AUTH_PROTO: /* * Peer doesn't want to authenticate himself, * deny unless this is a dialout call, and * AUTHFLAG_NOCALLOUT is set. */ if ((sp->pp_flags & PP_CALLIN) == 0 && (sp->hisauth.flags & AUTHFLAG_NOCALLOUT) != 0) { if (debug) addlog("[don't insist on auth " "for callout]"); sp->lcp.opts &= ~(1 << LCP_OPT_AUTH_PROTO); break; } if (debug) addlog("[access denied]\n"); lcp.Close(sp); break; } } if (debug) addlog("\n"); } /* * Analyze the LCP Configure-NAK option list, and adjust our * negotiation. */ void sppp_lcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { STDDCL; u_char *p; u_long magic; len -= 4; if (debug) log(LOG_DEBUG, SPP_FMT "lcp nak opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len > 1; len -= p[1], p += p[1]) { if (p[1] < 2 || p[1] > len) return; if (debug) addlog("%s ", sppp_lcp_opt_name(*p)); switch (*p) { case LCP_OPT_MAGIC: /* Magic number -- renegotiate */ if ((sp->lcp.opts & (1 << LCP_OPT_MAGIC)) && len >= 6 && p[1] == 6) { magic = (u_long)p[2] << 24 | (u_long)p[3] << 16 | p[4] << 8 | p[5]; /* * If the remote magic is our negated one, * this looks like a loopback problem. * Suggest a new magic to make sure. */ if (magic == ~sp->lcp.magic) { if (debug) addlog("magic glitch "); sp->lcp.magic = arc4random(); } else { sp->lcp.magic = magic; if (debug) addlog("%lu ", magic); } } break; case LCP_OPT_MRU: /* * Peer wants to advise us to negotiate an MRU. * Agree on it if it's reasonable, or use * default otherwise. */ if (len >= 4 && p[1] == 4) { u_int mru = p[2] * 256 + p[3]; if (debug) addlog("%d ", mru); if (mru < PP_MIN_MRU) mru = PP_MIN_MRU; if (mru > PP_MAX_MRU) mru = PP_MAX_MRU; sp->lcp.mru = mru; sp->lcp.opts |= (1 << LCP_OPT_MRU); } break; case LCP_OPT_AUTH_PROTO: /* * Peer doesn't like our authentication method, * deny. */ if (debug) addlog("[access denied]\n"); lcp.Close(sp); break; } } if (debug) addlog("\n"); } void sppp_lcp_tlu(struct sppp *sp) { struct ifnet *ifp = &sp->pp_if; int i; u_long mask; /* XXX ? */ if (! (ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) { /* Coming out of loopback mode. */ if_up(ifp); if (ifp->if_flags & IFF_DEBUG) log(LOG_INFO, SPP_FMT "up\n", SPP_ARGS(ifp)); } for (i = 0; i < IDX_COUNT; i++) if ((cps[i])->flags & CP_QUAL) (cps[i])->Open(sp); if ((sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0 || (sp->pp_flags & PP_NEEDAUTH) != 0) sp->pp_phase = PHASE_AUTHENTICATE; else sp->pp_phase = PHASE_NETWORK; sppp_set_phase(sp); /* * Open all authentication protocols. This is even required * if we already proceeded to network phase, since it might be * that remote wants us to authenticate, so we might have to * send a PAP request. Undesired authentication protocols * don't do anything when they get an Open event. */ for (i = 0; i < IDX_COUNT; i++) if ((cps[i])->flags & CP_AUTH) (cps[i])->Open(sp); if (sp->pp_phase == PHASE_NETWORK) { /* Notify all NCPs. */ for (i = 0; i < IDX_COUNT; i++) if ((cps[i])->flags & CP_NCP) (cps[i])->Open(sp); } /* Send Up events to all started protos. */ for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1) if (sp->lcp.protos & mask && ((cps[i])->flags & CP_LCP) == 0) (cps[i])->Up(sp); /* notify low-level driver of state change */ if (sp->pp_chg) sp->pp_chg(sp, (int)sp->pp_phase); if (sp->pp_phase == PHASE_NETWORK) /* if no NCP is starting, close down */ sppp_lcp_check_and_close(sp); } void sppp_lcp_tld(struct sppp *sp) { int i; u_long mask; sp->pp_phase = PHASE_TERMINATE; sppp_set_phase(sp); /* * Take upper layers down. We send the Down event first and * the Close second to prevent the upper layers from sending * ``a flurry of terminate-request packets'', as the RFC * describes it. */ for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1) if (sp->lcp.protos & mask && ((cps[i])->flags & CP_LCP) == 0) { (cps[i])->Down(sp); (cps[i])->Close(sp); } } void sppp_lcp_tls(struct sppp *sp) { sp->pp_phase = PHASE_ESTABLISH; sppp_set_phase(sp); /* Notify lower layer if desired. */ if (sp->pp_tls) (sp->pp_tls)(sp); } void sppp_lcp_tlf(struct sppp *sp) { sp->pp_phase = PHASE_DEAD; sppp_set_phase(sp); /* Notify lower layer if desired. */ if (sp->pp_tlf) (sp->pp_tlf)(sp); } void sppp_lcp_scr(struct sppp *sp) { char opt[6 /* magicnum */ + 4 /* mru */ + 5 /* chap */]; int i = 0; u_short authproto; if (sp->lcp.opts & (1 << LCP_OPT_MAGIC)) { if (! sp->lcp.magic) sp->lcp.magic = arc4random(); opt[i++] = LCP_OPT_MAGIC; opt[i++] = 6; opt[i++] = sp->lcp.magic >> 24; opt[i++] = sp->lcp.magic >> 16; opt[i++] = sp->lcp.magic >> 8; opt[i++] = sp->lcp.magic; } if (sp->lcp.opts & (1 << LCP_OPT_MRU)) { opt[i++] = LCP_OPT_MRU; opt[i++] = 4; opt[i++] = sp->lcp.mru >> 8; opt[i++] = sp->lcp.mru; } if (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) { authproto = sp->hisauth.proto; opt[i++] = LCP_OPT_AUTH_PROTO; opt[i++] = authproto == PPP_CHAP? 5: 4; opt[i++] = authproto >> 8; opt[i++] = authproto; if (authproto == PPP_CHAP) opt[i++] = CHAP_MD5; } sp->confid[IDX_LCP] = ++sp->pp_seq; sppp_cp_send (sp, PPP_LCP, CONF_REQ, sp->confid[IDX_LCP], i, opt); } /* * Check the open NCPs, return true if at least one NCP is open. */ int sppp_ncp_check(struct sppp *sp) { int i, mask; for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1) if (sp->lcp.protos & mask && (cps[i])->flags & CP_NCP) return 1; return 0; } /* * Re-check the open NCPs and see if we should terminate the link. * Called by the NCPs during their tlf action handling. */ void sppp_lcp_check_and_close(struct sppp *sp) { if (sp->pp_phase < PHASE_NETWORK) /* don't bother, we are already going down */ return; if (sppp_ncp_check(sp)) return; lcp.Close(sp); } /* *--------------------------------------------------------------------------* * * * The IPCP implementation. * * * *--------------------------------------------------------------------------* */ void sppp_ipcp_init(struct sppp *sp) { sp->ipcp.opts = 0; sp->ipcp.flags = 0; sp->state[IDX_IPCP] = STATE_INITIAL; sp->fail_counter[IDX_IPCP] = 0; task_set(&sp->ipcp.set_addr_task, sppp_set_ip_addrs, sp); task_set(&sp->ipcp.clear_addr_task, sppp_clear_ip_addrs, sp); } void sppp_ipcp_destroy(struct sppp *sp) { task_del(systq, &sp->ipcp.set_addr_task); task_del(systq, &sp->ipcp.clear_addr_task); } void sppp_ipcp_up(struct sppp *sp) { sppp_up_event(&ipcp, sp); } void sppp_ipcp_down(struct sppp *sp) { sppp_down_event(&ipcp, sp); } void sppp_ipcp_open(struct sppp *sp) { sppp_open_event(&ipcp, sp); } void sppp_ipcp_close(struct sppp *sp) { sppp_close_event(&ipcp, sp); } void sppp_ipcp_TO(void *cookie) { sppp_to_event(&ipcp, (struct sppp *)cookie); } /* * Analyze a configure request. Return true if it was agreeable, and * caused action sca, false if it has been rejected or nak'ed, and * caused action scn. (The return value is used to make the state * transition decision in the state automaton.) */ int sppp_ipcp_RCR(struct sppp *sp, struct lcp_header *h, int len) { u_char *buf, *r, *p; struct ifnet *ifp = &sp->pp_if; int rlen, origlen, debug = ifp->if_flags & IFF_DEBUG; u_int32_t hisaddr, desiredaddr; len -= 4; origlen = len; /* * Make sure to allocate a buf that can at least hold a * conf-nak with an `address' option. We might need it below. */ buf = r = malloc ((len < 6? 6: len), M_TEMP, M_NOWAIT); if (! buf) return (0); /* pass 1: see if we can recognize them */ if (debug) log(LOG_DEBUG, SPP_FMT "ipcp parse opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (rlen = 0; len > 1; len -= p[1], p += p[1]) { if (p[1] < 2 || p[1] > len) { free(buf, M_TEMP, 0); return (-1); } if (debug) addlog("%s ", sppp_ipcp_opt_name(*p)); switch (*p) { #ifdef notyet case IPCP_OPT_COMPRESSION: if (len >= 6 && p[1] >= 6) { /* correctly formed compress option */ continue; } if (debug) addlog("[invalid] "); break; #endif case IPCP_OPT_ADDRESS: if (len >= 6 && p[1] == 6) { /* correctly formed address option */ continue; } if (debug) addlog("[invalid] "); break; default: /* Others not supported. */ if (debug) addlog("[rej] "); break; } /* Add the option to rejected list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen) { if (debug) addlog(" send conf-rej\n"); sppp_cp_send(sp, PPP_IPCP, CONF_REJ, h->ident, rlen, buf); goto end; } else if (debug) addlog("\n"); /* pass 2: parse option values */ if (sp->ipcp.flags & IPCP_HISADDR_SEEN) hisaddr = sp->ipcp.req_hisaddr; /* we already agreed on that */ else sppp_get_ip_addrs(sp, 0, &hisaddr, 0); /* user configuration */ if (debug) log(LOG_DEBUG, SPP_FMT "ipcp parse opt values: ", SPP_ARGS(ifp)); p = (void*) (h+1); len = origlen; for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) { if (debug) addlog(" %s ", sppp_ipcp_opt_name(*p)); switch (*p) { #ifdef notyet case IPCP_OPT_COMPRESSION: continue; #endif case IPCP_OPT_ADDRESS: desiredaddr = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5]; if (desiredaddr == hisaddr || ((sp->ipcp.flags & IPCP_HISADDR_DYN) && desiredaddr != 0)) { /* * Peer's address is same as our value, * or we have set it to 0.0.0.1 to * indicate that we do not really care, * this is agreeable. Gonna conf-ack * it. */ if (debug) addlog("%s [ack] ", sppp_dotted_quad(desiredaddr)); /* record that we've seen it already */ sp->ipcp.flags |= IPCP_HISADDR_SEEN; sp->ipcp.req_hisaddr = desiredaddr; hisaddr = desiredaddr; continue; } /* * The address wasn't agreeable. This is either * he sent us 0.0.0.0, asking to assign him an * address, or he send us another address not * matching our value. Either case, we gonna * conf-nak it with our value. */ if (debug) { if (desiredaddr == 0) addlog("[addr requested] "); else addlog("%s [not agreed] ", sppp_dotted_quad(desiredaddr)); } p[2] = hisaddr >> 24; p[3] = hisaddr >> 16; p[4] = hisaddr >> 8; p[5] = hisaddr; break; } /* Add the option to nak'ed list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } /* * If we are about to conf-ack the request, but haven't seen * his address so far, gonna conf-nak it instead, with the * `address' option present and our idea of his address being * filled in there, to request negotiation of both addresses. * * XXX This can result in an endless req - nak loop if peer * doesn't want to send us his address. Q: What should we do * about it? XXX A: implement the max-failure counter. */ if (rlen == 0 && !(sp->ipcp.flags & IPCP_HISADDR_SEEN)) { buf[0] = IPCP_OPT_ADDRESS; buf[1] = 6; buf[2] = hisaddr >> 24; buf[3] = hisaddr >> 16; buf[4] = hisaddr >> 8; buf[5] = hisaddr; rlen = 6; if (debug) addlog("still need hisaddr "); } if (rlen) { if (debug) addlog(" send conf-nak\n"); sppp_cp_send (sp, PPP_IPCP, CONF_NAK, h->ident, rlen, buf); } else { if (debug) addlog(" send conf-ack\n"); sppp_cp_send (sp, PPP_IPCP, CONF_ACK, h->ident, origlen, h+1); } end: free(buf, M_TEMP, 0); return (rlen == 0); } /* * Analyze the IPCP Configure-Reject option list, and adjust our * negotiation. */ void sppp_ipcp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { u_char *p; struct ifnet *ifp = &sp->pp_if; int debug = ifp->if_flags & IFF_DEBUG; len -= 4; if (debug) log(LOG_DEBUG, SPP_FMT "ipcp rej opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len > 1; len -= p[1], p += p[1]) { if (p[1] < 2 || p[1] > len) return; if (debug) addlog("%s ", sppp_ipcp_opt_name(*p)); switch (*p) { case IPCP_OPT_ADDRESS: /* * Peer doesn't grok address option. This is * bad. XXX Should we better give up here? */ sp->ipcp.opts &= ~(1 << IPCP_OPT_ADDRESS); break; #ifdef notyet case IPCP_OPT_COMPRESS: sp->ipcp.opts &= ~(1 << IPCP_OPT_COMPRESS); break; #endif } } if (debug) addlog("\n"); } /* * Analyze the IPCP Configure-NAK option list, and adjust our * negotiation. */ void sppp_ipcp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { u_char *p; struct ifnet *ifp = &sp->pp_if; int debug = ifp->if_flags & IFF_DEBUG; u_int32_t wantaddr; len -= 4; if (debug) log(LOG_DEBUG, SPP_FMT "ipcp nak opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len > 1; len -= p[1], p += p[1]) { if (p[1] < 2 || p[1] > len) return; if (debug) addlog("%s ", sppp_ipcp_opt_name(*p)); switch (*p) { case IPCP_OPT_ADDRESS: /* * Peer doesn't like our local IP address. See * if we can do something for him. We'll drop * him our address then. */ if (len >= 6 && p[1] == 6) { wantaddr = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5]; sp->ipcp.opts |= (1 << IPCP_OPT_ADDRESS); if (debug) addlog("[wantaddr %s] ", sppp_dotted_quad(wantaddr)); /* * When doing dynamic address assignment, * we accept his offer. Otherwise, we * ignore it and thus continue to negotiate * our already existing value. */ if (sp->ipcp.flags & IPCP_MYADDR_DYN) { if (debug) addlog("[agree] "); sp->ipcp.flags |= IPCP_MYADDR_SEEN; sp->ipcp.req_myaddr = wantaddr; } } break; #ifdef notyet case IPCP_OPT_COMPRESS: /* * Peer wants different compression parameters. */ break; #endif } } if (debug) addlog("\n"); } void sppp_ipcp_tlu(struct sppp *sp) { if (sp->ipcp.req_myaddr != 0 || sp->ipcp.req_hisaddr != 0) task_add(systq, &sp->ipcp.set_addr_task); } void sppp_ipcp_tld(struct sppp *sp) { } void sppp_ipcp_tls(struct sppp *sp) { STDDCL; u_int32_t myaddr, hisaddr; sp->ipcp.flags &= ~(IPCP_HISADDR_SEEN|IPCP_MYADDR_SEEN| IPCP_MYADDR_DYN|IPCP_HISADDR_DYN); sp->ipcp.req_myaddr = 0; sp->ipcp.req_hisaddr = 0; sppp_get_ip_addrs(sp, &myaddr, &hisaddr, 0); /* * If we don't have his address, this probably means our * interface doesn't want to talk IP at all. (This could * be the case if somebody wants to speak only IPX, for * example.) Don't open IPCP in this case. */ if (hisaddr == 0) { /* XXX this message should go away */ if (debug) log(LOG_DEBUG, SPP_FMT "ipcp_open(): no IP interface\n", SPP_ARGS(ifp)); return; } if (myaddr == 0) { /* * I don't have an assigned address, so i need to * negotiate my address. */ sp->ipcp.flags |= IPCP_MYADDR_DYN; sp->ipcp.opts |= (1 << IPCP_OPT_ADDRESS); } if (hisaddr == 1) { /* * XXX - remove this hack! * remote has no valid address, we need to get one assigned. */ sp->ipcp.flags |= IPCP_HISADDR_DYN; } /* indicate to LCP that it must stay alive */ sp->lcp.protos |= (1 << IDX_IPCP); } void sppp_ipcp_tlf(struct sppp *sp) { if (sp->ipcp.flags & (IPCP_MYADDR_DYN|IPCP_HISADDR_DYN)) /* Some address was dynamic, clear it again. */ task_add(systq, &sp->ipcp.clear_addr_task); /* we no longer need LCP */ sp->lcp.protos &= ~(1 << IDX_IPCP); sppp_lcp_check_and_close(sp); } void sppp_ipcp_scr(struct sppp *sp) { char opt[6 /* compression */ + 6 /* address */]; u_int32_t ouraddr; int i = 0; #ifdef notyet if (sp->ipcp.opts & (1 << IPCP_OPT_COMPRESSION)) { opt[i++] = IPCP_OPT_COMPRESSION; opt[i++] = 6; opt[i++] = 0; /* VJ header compression */ opt[i++] = 0x2d; /* VJ header compression */ opt[i++] = max_slot_id; opt[i++] = comp_slot_id; } #endif if (sp->ipcp.opts & (1 << IPCP_OPT_ADDRESS)) { if (sp->ipcp.flags & IPCP_MYADDR_SEEN) /* not sure if this can ever happen */ ouraddr = sp->ipcp.req_myaddr; else sppp_get_ip_addrs(sp, &ouraddr, 0, 0); opt[i++] = IPCP_OPT_ADDRESS; opt[i++] = 6; opt[i++] = ouraddr >> 24; opt[i++] = ouraddr >> 16; opt[i++] = ouraddr >> 8; opt[i++] = ouraddr; } sp->confid[IDX_IPCP] = ++sp->pp_seq; sppp_cp_send(sp, PPP_IPCP, CONF_REQ, sp->confid[IDX_IPCP], i, opt); } /* *--------------------------------------------------------------------------* * * * The IPv6CP implementation. * * * *--------------------------------------------------------------------------* */ #ifdef INET6 void sppp_ipv6cp_init(struct sppp *sp) { sp->ipv6cp.opts = 0; sp->ipv6cp.flags = 0; sp->state[IDX_IPV6CP] = STATE_INITIAL; sp->fail_counter[IDX_IPV6CP] = 0; task_set(&sp->ipv6cp.set_addr_task, sppp_update_ip6_addr, sp); } void sppp_ipv6cp_destroy(struct sppp *sp) { task_del(systq, &sp->ipv6cp.set_addr_task); } void sppp_ipv6cp_up(struct sppp *sp) { sppp_up_event(&ipv6cp, sp); } void sppp_ipv6cp_down(struct sppp *sp) { sppp_down_event(&ipv6cp, sp); } void sppp_ipv6cp_open(struct sppp *sp) { STDDCL; struct in6_addr myaddr, hisaddr; sp->ipv6cp.flags &= ~(IPV6CP_MYIFID_SEEN|IPV6CP_MYIFID_DYN); sppp_get_ip6_addrs(sp, &myaddr, &hisaddr, NULL); /* * If we don't have our address, this probably means our * interface doesn't want to talk IPv6 at all. (This could * be the case if the IFXF_NOINET6 flag is set, for * example.) Don't open IPv6CP in this case. */ if (IN6_IS_ADDR_UNSPECIFIED(&myaddr)) { /* XXX this message should go away */ if (debug) log(LOG_DEBUG, SPP_FMT "ipv6cp_open(): no IPv6 interface\n", SPP_ARGS(ifp)); return; } sp->ipv6cp.opts |= (1 << IPV6CP_OPT_IFID); sppp_open_event(&ipv6cp, sp); } void sppp_ipv6cp_close(struct sppp *sp) { sppp_close_event(&ipv6cp, sp); } void sppp_ipv6cp_TO(void *cookie) { sppp_to_event(&ipv6cp, (struct sppp *)cookie); } int sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len) { u_char *buf, *r, *p; struct ifnet *ifp = &sp->pp_if; int rlen, origlen, debug = ifp->if_flags & IFF_DEBUG; struct in6_addr myaddr, desiredaddr, suggestaddr; int ifidcount; int type; int collision, nohisaddr; char addr[INET6_ADDRSTRLEN]; len -= 4; origlen = len; /* * Make sure to allocate a buf that can at least hold a * conf-nak with an `address' option. We might need it below. */ buf = r = malloc ((len < 6? 6: len), M_TEMP, M_NOWAIT); if (! buf) return (0); /* pass 1: see if we can recognize them */ if (debug) log(LOG_DEBUG, "%s: ipv6cp parse opts:", SPP_ARGS(ifp)); p = (void *)(h + 1); ifidcount = 0; for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) { /* Sanity check option length */ if (p[1] < 2 || p[1] > len) { free(buf, M_TEMP, 0); return (-1); } if (debug) addlog(" %s", sppp_ipv6cp_opt_name(*p)); switch (*p) { case IPV6CP_OPT_IFID: if (len >= 10 && p[1] == 10 && ifidcount == 0) { /* correctly formed address option */ ifidcount++; continue; } if (debug) addlog(" [invalid]"); break; #ifdef notyet case IPV6CP_OPT_COMPRESSION: if (len >= 4 && p[1] >= 4) { /* correctly formed compress option */ continue; } if (debug) addlog(" [invalid]"); break; #endif default: /* Others not supported. */ if (debug) addlog(" [rej]"); break; } /* Add the option to rejected list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen) { if (debug) addlog(" send conf-rej\n"); sppp_cp_send(sp, PPP_IPV6CP, CONF_REJ, h->ident, rlen, buf); goto end; } else if (debug) addlog("\n"); /* pass 2: parse option values */ if (sp->ipv6cp.flags & IPV6CP_MYIFID_DYN) myaddr = sp->ipv6cp.req_ifid.ifra_addr.sin6_addr; else sppp_get_ip6_addrs(sp, &myaddr, NULL, NULL); if (debug) log(LOG_DEBUG, "%s: ipv6cp parse opt values: ", SPP_ARGS(ifp)); p = (void *)(h + 1); len = origlen; type = CONF_ACK; for (rlen=0; len>1 && p[1]; len-=p[1], p+=p[1]) { if (debug) addlog(" %s", sppp_ipv6cp_opt_name(*p)); switch (*p) { #ifdef notyet case IPV6CP_OPT_COMPRESSION: continue; #endif case IPV6CP_OPT_IFID: memset(&desiredaddr, 0, sizeof(desiredaddr)); bcopy(&p[2], &desiredaddr.s6_addr[8], 8); collision = (memcmp(&desiredaddr.s6_addr[8], &myaddr.s6_addr[8], 8) == 0); nohisaddr = IN6_IS_ADDR_UNSPECIFIED(&desiredaddr); desiredaddr.s6_addr16[0] = htons(0xfe80); if (!collision && !nohisaddr) { /* no collision, hisaddr known - Conf-Ack */ type = CONF_ACK; if (debug) { addlog(" %s [%s]", inet_ntop(AF_INET6, &desiredaddr, addr, sizeof(addr)), sppp_cp_type_name(type)); } sppp_set_ip6_addr(sp, &myaddr, &desiredaddr); continue; } memset(&suggestaddr, 0, sizeof(suggestaddr)); if (collision && nohisaddr) { /* collision, hisaddr unknown - Conf-Rej */ type = CONF_REJ; memset(&p[2], 0, 8); } else { /* * - no collision, hisaddr unknown, or * - collision, hisaddr known * Conf-Nak, suggest hisaddr */ type = CONF_NAK; sppp_suggest_ip6_addr(sp, &suggestaddr); bcopy(&suggestaddr.s6_addr[8], &p[2], 8); } if (debug) addlog(" %s [%s]", inet_ntop(AF_INET6, &desiredaddr, addr, sizeof(addr)), sppp_cp_type_name(type)); break; } /* Add the option to nak'ed list. */ bcopy (p, r, p[1]); r += p[1]; rlen += p[1]; } if (rlen == 0 && type == CONF_ACK) { if (debug) addlog(" send %s\n", sppp_cp_type_name(type)); sppp_cp_send(sp, PPP_IPV6CP, type, h->ident, origlen, h + 1); } else { #ifdef notdef if (type == CONF_ACK) panic("IPv6CP RCR: CONF_ACK with non-zero rlen"); #endif if (debug) { addlog(" send %s suggest %s\n", sppp_cp_type_name(type), inet_ntop(AF_INET6, &suggestaddr, addr, sizeof(addr))); } sppp_cp_send(sp, PPP_IPV6CP, type, h->ident, rlen, buf); } end: free(buf, M_TEMP, 0); return (rlen == 0); } void sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { u_char *p; struct ifnet *ifp = &sp->pp_if; int debug = ifp->if_flags & IFF_DEBUG; len -= 4; if (debug) log(LOG_DEBUG, "%s: ipv6cp rej opts:", SPP_ARGS(ifp)); p = (void *)(h + 1); for (; len > 1 && p[1]; len -= p[1], p += p[1]) { if (p[1] < 2 || p[1] > len) return; if (debug) addlog(" %s", sppp_ipv6cp_opt_name(*p)); switch (*p) { case IPV6CP_OPT_IFID: /* * Peer doesn't grok address option. This is * bad. XXX Should we better give up here? */ sp->ipv6cp.opts &= ~(1 << IPV6CP_OPT_IFID); break; #ifdef notyet case IPV6CP_OPT_COMPRESS: sp->ipv6cp.opts &= ~(1 << IPV6CP_OPT_COMPRESS); break; #endif } } if (debug) addlog("\n"); return; } void sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { u_char *p; struct ifnet *ifp = &sp->pp_if; int debug = ifp->if_flags & IFF_DEBUG; struct in6_addr suggestaddr; char addr[INET6_ADDRSTRLEN]; len -= 4; if (debug) log(LOG_DEBUG, SPP_FMT "ipv6cp nak opts: ", SPP_ARGS(ifp)); p = (void*) (h+1); for (; len > 1; len -= p[1], p += p[1]) { if (p[1] < 2 || p[1] > len) return; if (debug) addlog("%s ", sppp_ipv6cp_opt_name(*p)); switch (*p) { case IPV6CP_OPT_IFID: /* * Peer doesn't like our local ifid. See * if we can do something for him. We'll drop * him our address then. */ if (len < 10 || p[1] != 10) break; sp->ipv6cp.flags |= IPV6CP_MYIFID_DYN; memset(&suggestaddr, 0, sizeof(suggestaddr)); bcopy(&p[2], &suggestaddr.s6_addr[8], 8); if (IN6_IS_ADDR_UNSPECIFIED(&suggestaddr) || (sp->ipv6cp.flags & IPV6CP_MYIFID_SEEN)) { /* * The peer didn't suggest anything, * or wants us to change a previously * suggested address. * Configure a new address for us. */ sppp_suggest_ip6_addr(sp, &suggestaddr); sppp_set_ip6_addr(sp, &suggestaddr, NULL); sp->ipv6cp.flags &= ~IPV6CP_MYIFID_SEEN; } else { /* Configure address suggested by peer. */ suggestaddr.s6_addr16[0] = htons(0xfe80); sp->ipv6cp.opts |= (1 << IPV6CP_OPT_IFID); if (debug) addlog(" [suggestaddr %s]", inet_ntop(AF_INET6, &suggestaddr, addr, sizeof(addr))); sppp_set_ip6_addr(sp, &suggestaddr, NULL); if (debug) addlog(" [agree]"); sp->ipv6cp.flags |= IPV6CP_MYIFID_SEEN; } break; #ifdef notyet case IPV6CP_OPT_COMPRESS: /* * Peer wants different compression parameters. */ break; #endif } } if (debug) addlog("\n"); } void sppp_ipv6cp_tlu(struct sppp *sp) { } void sppp_ipv6cp_tld(struct sppp *sp) { } void sppp_ipv6cp_tls(struct sppp *sp) { /* indicate to LCP that it must stay alive */ sp->lcp.protos |= (1 << IDX_IPV6CP); } void sppp_ipv6cp_tlf(struct sppp *sp) { /* we no longer need LCP */ sp->lcp.protos &= ~(1 << IDX_IPV6CP); sppp_lcp_check_and_close(sp); } void sppp_ipv6cp_scr(struct sppp *sp) { char opt[10 /* ifid */ + 4 /* compression, minimum */]; struct in6_addr ouraddr; int i = 0; if (sp->ipv6cp.opts & (1 << IPV6CP_OPT_IFID)) { if (sp->ipv6cp.flags & IPV6CP_MYIFID_DYN) ouraddr = sp->ipv6cp.req_ifid.ifra_addr.sin6_addr; else sppp_get_ip6_addrs(sp, &ouraddr, NULL, NULL); opt[i++] = IPV6CP_OPT_IFID; opt[i++] = 10; bcopy(&ouraddr.s6_addr[8], &opt[i], 8); i += 8; } #ifdef notyet if (sp->ipv6cp.opts & (1 << IPV6CP_OPT_COMPRESSION)) { opt[i++] = IPV6CP_OPT_COMPRESSION; opt[i++] = 4; p opt[i++] = 0; /* TBD */ opt[i++] = 0; /* TBD */ /* variable length data may follow */ } #endif sp->confid[IDX_IPV6CP] = ++sp->pp_seq; sppp_cp_send(sp, PPP_IPV6CP, CONF_REQ, sp->confid[IDX_IPV6CP], i, opt); } #else /*INET6*/ void sppp_ipv6cp_init(struct sppp *sp) { } void sppp_ipv6cp_destroy(struct sppp *sp) { } void sppp_ipv6cp_up(struct sppp *sp) { } void sppp_ipv6cp_down(struct sppp *sp) { } void sppp_ipv6cp_open(struct sppp *sp) { } void sppp_ipv6cp_close(struct sppp *sp) { } void sppp_ipv6cp_TO(void *sp) { } int sppp_ipv6cp_RCR(struct sppp *sp, struct lcp_header *h, int len) { return 0; } void sppp_ipv6cp_RCN_rej(struct sppp *sp, struct lcp_header *h, int len) { } void sppp_ipv6cp_RCN_nak(struct sppp *sp, struct lcp_header *h, int len) { } void sppp_ipv6cp_tlu(struct sppp *sp) { } void sppp_ipv6cp_tld(struct sppp *sp) { } void sppp_ipv6cp_tls(struct sppp *sp) { } void sppp_ipv6cp_tlf(struct sppp *sp) { } void sppp_ipv6cp_scr(struct sppp *sp) { } #endif /*INET6*/ /* *--------------------------------------------------------------------------* * * * The CHAP implementation. * * * *--------------------------------------------------------------------------* */ /* * The authentication protocols don't employ a full-fledged state machine as * the control protocols do, since they do have Open and Close events, but * not Up and Down, nor are they explicitly terminated. Also, use of the * authentication protocols may be different in both directions (this makes * sense, think of a machine that never accepts incoming calls but only * calls out, it doesn't require the called party to authenticate itself). * * Our state machine for the local authentication protocol (we are requesting * the peer to authenticate) looks like: * * RCA- * +--------------------------------------------+ * V scn,tld| * +--------+ Close +---------+ RCA+ * | |<----------------------------------| |------+ * +--->| Closed | TO* | Opened | sca | * | | |-----+ +-------| |<-----+ * | +--------+ irc | | +---------+ * | ^ | | ^ * | | | | | * | | | | | * | TO-| | | | * | |tld TO+ V | | * | | +------->+ | | * | | | | | | * | +--------+ V | | * | | |<----+<--------------------+ | * | | Req- | scr | * | | Sent | | * | | | | * | +--------+ | * | RCA- | | RCA+ | * +------+ +------------------------------------------+ * scn,tld sca,irc,ict,tlu * * * with: * * Open: LCP reached authentication phase * Close: LCP reached terminate phase * * RCA+: received reply (pap-req, chap-response), acceptable * RCN: received reply (pap-req, chap-response), not acceptable * TO+: timeout with restart counter >= 0 * TO-: timeout with restart counter < 0 * TO*: reschedule timeout for CHAP * * scr: send request packet (none for PAP, chap-challenge) * sca: send ack packet (pap-ack, chap-success) * scn: send nak packet (pap-nak, chap-failure) * ict: initialize re-challenge timer (CHAP only) * * tlu: this-layer-up, LCP reaches network phase * tld: this-layer-down, LCP enters terminate phase * * Note that in CHAP mode, after sending a new challenge, while the state * automaton falls back into Req-Sent state, it doesn't signal a tld * event to LCP, so LCP remains in network phase. Only after not getting * any response (or after getting an unacceptable response), CHAP closes, * causing LCP to enter terminate phase. * * With PAP, there is no initial request that can be sent. The peer is * expected to send one based on the successful negotiation of PAP as * the authentication protocol during the LCP option negotiation. * * Incoming authentication protocol requests (remote requests * authentication, we are peer) don't employ a state machine at all, * they are simply answered. Some peers [Ascend P50 firmware rev * 4.50] react allergically when sending IPCP requests while they are * still in authentication phase (thereby violating the standard that * demands that these NCP packets are to be discarded), so we keep * track of the peer demanding us to authenticate, and only proceed to * phase network once we've seen a positive acknowledge for the * authentication. */ /* * Handle incoming CHAP packets. */ void sppp_chap_input(struct sppp *sp, struct mbuf *m) { STDDCL; struct lcp_header *h; int len, x; u_char *value, *name, digest[AUTHCHALEN], dsize; int value_len, name_len; MD5_CTX ctx; len = m->m_pkthdr.len; if (len < 4) { if (debug) log(LOG_DEBUG, SPP_FMT "chap invalid packet length: %d bytes\n", SPP_ARGS(ifp), len); return; } h = mtod (m, struct lcp_header*); if (len > ntohs (h->len)) len = ntohs (h->len); switch (h->type) { /* challenge, failure and success are his authproto */ case CHAP_CHALLENGE: value = 1 + (u_char*)(h+1); value_len = value[-1]; name = value + value_len; name_len = len - value_len - 5; if (name_len < 0) { if (debug) { log(LOG_DEBUG, SPP_FMT "chap corrupted challenge " "<%s id=0x%x len=%d", SPP_ARGS(ifp), sppp_auth_type_name(PPP_CHAP, h->type), h->ident, ntohs(h->len)); if (len > 4) sppp_print_bytes((u_char*) (h+1), len-4); addlog(">\n"); } break; } if (debug) { log(LOG_DEBUG, SPP_FMT "chap input <%s id=0x%x len=%d name=", SPP_ARGS(ifp), sppp_auth_type_name(PPP_CHAP, h->type), h->ident, ntohs(h->len)); sppp_print_string((char*) name, name_len); addlog(" value-size=%d value=", value_len); sppp_print_bytes(value, value_len); addlog(">\n"); } /* Compute reply value. */ MD5Init(&ctx); MD5Update(&ctx, &h->ident, 1); MD5Update(&ctx, sp->myauth.secret, strlen(sp->myauth.secret)); MD5Update(&ctx, value, value_len); MD5Final(digest, &ctx); dsize = sizeof digest; sppp_auth_send(&chap, sp, CHAP_RESPONSE, h->ident, sizeof dsize, (const char *)&dsize, sizeof digest, digest, strlen(sp->myauth.name), sp->myauth.name, 0); break; case CHAP_SUCCESS: if (debug) { log(LOG_DEBUG, SPP_FMT "chap success", SPP_ARGS(ifp)); if (len > 4) { addlog(": "); sppp_print_string((char*)(h + 1), len - 4); } addlog("\n"); } x = splnet(); sp->pp_flags &= ~PP_NEEDAUTH; if (sp->myauth.proto == PPP_CHAP && (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) && (sp->lcp.protos & (1 << IDX_CHAP)) == 0) { /* * We are authenticator for CHAP but didn't * complete yet. Leave it to tlu to proceed * to network phase. */ splx(x); break; } splx(x); sppp_phase_network(sp); break; case CHAP_FAILURE: if (debug) { log(LOG_INFO, SPP_FMT "chap failure", SPP_ARGS(ifp)); if (len > 4) { addlog(": "); sppp_print_string((char*)(h + 1), len - 4); } addlog("\n"); } else log(LOG_INFO, SPP_FMT "chap failure\n", SPP_ARGS(ifp)); /* await LCP shutdown by authenticator */ break; /* response is my authproto */ case CHAP_RESPONSE: value = 1 + (u_char*)(h+1); value_len = value[-1]; name = value + value_len; name_len = len - value_len - 5; if (name_len < 0) { if (debug) { log(LOG_DEBUG, SPP_FMT "chap corrupted response " "<%s id=0x%x len=%d", SPP_ARGS(ifp), sppp_auth_type_name(PPP_CHAP, h->type), h->ident, ntohs(h->len)); if (len > 4) sppp_print_bytes((u_char*)(h+1), len-4); addlog(">\n"); } break; } if (h->ident != sp->confid[IDX_CHAP]) { if (debug) log(LOG_DEBUG, SPP_FMT "chap dropping response for old ID " "(got %d, expected %d)\n", SPP_ARGS(ifp), h->ident, sp->confid[IDX_CHAP]); break; } if (name_len != strlen(sp->hisauth.name) || bcmp(name, sp->hisauth.name, name_len) != 0) { log(LOG_INFO, SPP_FMT "chap response, his name ", SPP_ARGS(ifp)); sppp_print_string(name, name_len); addlog(" != expected "); sppp_print_string(sp->hisauth.name, strlen(sp->hisauth.name)); addlog("\n"); } if (debug) { log(LOG_DEBUG, SPP_FMT "chap input(%s) " "<%s id=0x%x len=%d name=", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_CHAP]), sppp_auth_type_name(PPP_CHAP, h->type), h->ident, ntohs (h->len)); sppp_print_string((char*)name, name_len); addlog(" value-size=%d value=", value_len); sppp_print_bytes(value, value_len); addlog(">\n"); } if (value_len != AUTHCHALEN) { if (debug) log(LOG_DEBUG, SPP_FMT "chap bad hash value length: " "%d bytes, should be %d\n", SPP_ARGS(ifp), value_len, AUTHCHALEN); break; } MD5Init(&ctx); MD5Update(&ctx, &h->ident, 1); MD5Update(&ctx, sp->hisauth.secret, strlen(sp->hisauth.secret)); MD5Update(&ctx, sp->chap_challenge, AUTHCHALEN); MD5Final(digest, &ctx); #define FAILMSG "Failed..." #define SUCCMSG "Welcome!" if (value_len != sizeof digest || timingsafe_bcmp(digest, value, value_len) != 0) { /* action scn, tld */ sppp_auth_send(&chap, sp, CHAP_FAILURE, h->ident, sizeof(FAILMSG) - 1, (u_char *)FAILMSG, 0); chap.tld(sp); break; } /* action sca, perhaps tlu */ if (sp->state[IDX_CHAP] == STATE_REQ_SENT || sp->state[IDX_CHAP] == STATE_OPENED) sppp_auth_send(&chap, sp, CHAP_SUCCESS, h->ident, sizeof(SUCCMSG) - 1, (u_char *)SUCCMSG, 0); if (sp->state[IDX_CHAP] == STATE_REQ_SENT) { sppp_cp_change_state(&chap, sp, STATE_OPENED); chap.tlu(sp); } break; default: /* Unknown CHAP packet type -- ignore. */ if (debug) { log(LOG_DEBUG, SPP_FMT "chap unknown input(%s) " "<0x%x id=0x%xh len=%d", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_CHAP]), h->type, h->ident, ntohs(h->len)); if (len > 4) sppp_print_bytes((u_char*)(h+1), len-4); addlog(">\n"); } break; } } void sppp_chap_init(struct sppp *sp) { /* Chap doesn't have STATE_INITIAL at all. */ sp->state[IDX_CHAP] = STATE_CLOSED; sp->fail_counter[IDX_CHAP] = 0; } void sppp_chap_open(struct sppp *sp) { if (sp->myauth.proto == PPP_CHAP && (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0) { /* we are authenticator for CHAP, start it */ chap.scr(sp); sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure; sppp_cp_change_state(&chap, sp, STATE_REQ_SENT); } /* nothing to be done if we are peer, await a challenge */ } void sppp_chap_close(struct sppp *sp) { if (sp->state[IDX_CHAP] != STATE_CLOSED) sppp_cp_change_state(&chap, sp, STATE_CLOSED); } void sppp_chap_TO(void *cookie) { struct sppp *sp = (struct sppp *)cookie; STDDCL; int s; s = splnet(); if (debug) log(LOG_DEBUG, SPP_FMT "chap TO(%s) rst_counter = %d\n", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_CHAP]), sp->rst_counter[IDX_CHAP]); if (--sp->rst_counter[IDX_CHAP] < 0) /* TO- event */ switch (sp->state[IDX_CHAP]) { case STATE_REQ_SENT: chap.tld(sp); sppp_cp_change_state(&chap, sp, STATE_CLOSED); break; } else /* TO+ (or TO*) event */ switch (sp->state[IDX_CHAP]) { case STATE_OPENED: /* TO* event */ sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure; /* FALLTHROUGH */ case STATE_REQ_SENT: chap.scr(sp); /* sppp_cp_change_state() will restart the timer */ sppp_cp_change_state(&chap, sp, STATE_REQ_SENT); break; } splx(s); } void sppp_chap_tlu(struct sppp *sp) { STDDCL; int i = 0, x; i = 0; sp->rst_counter[IDX_CHAP] = sp->lcp.max_configure; /* * Some broken CHAP implementations (Conware CoNet, firmware * 4.0.?) don't want to re-authenticate their CHAP once the * initial challenge-response exchange has taken place. * Provide for an option to avoid rechallenges. */ if ((sp->hisauth.flags & AUTHFLAG_NORECHALLENGE) == 0) { /* * Compute the re-challenge timeout. This will yield * a number between 300 and 810 seconds. */ i = 300 + (arc4random() & 0x01fe); timeout_add_sec(&sp->ch[IDX_CHAP], i); } if (debug) { log(LOG_DEBUG, SPP_FMT "chap %s, ", SPP_ARGS(ifp), sp->pp_phase == PHASE_NETWORK? "reconfirmed": "tlu"); if ((sp->hisauth.flags & AUTHFLAG_NORECHALLENGE) == 0) addlog("next re-challenge in %d seconds\n", i); else addlog("re-challenging suppressed\n"); } x = splnet(); /* indicate to LCP that we need to be closed down */ sp->lcp.protos |= (1 << IDX_CHAP); if (sp->pp_flags & PP_NEEDAUTH) { /* * Remote is authenticator, but his auth proto didn't * complete yet. Defer the transition to network * phase. */ splx(x); return; } splx(x); /* * If we are already in phase network, we are done here. This * is the case if this is a dummy tlu event after a re-challenge. */ if (sp->pp_phase != PHASE_NETWORK) sppp_phase_network(sp); } void sppp_chap_tld(struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "chap tld\n", SPP_ARGS(ifp)); UNTIMEOUT(chap.TO, (void *)sp, sp->ch[IDX_CHAP]); sp->lcp.protos &= ~(1 << IDX_CHAP); lcp.Close(sp); } void sppp_chap_scr(struct sppp *sp) { u_char clen; /* Compute random challenge. */ arc4random_buf(sp->chap_challenge, sizeof(sp->chap_challenge)); clen = AUTHCHALEN; sp->confid[IDX_CHAP] = ++sp->pp_seq; sppp_auth_send(&chap, sp, CHAP_CHALLENGE, sp->confid[IDX_CHAP], sizeof clen, (const char *)&clen, (size_t)AUTHCHALEN, sp->chap_challenge, strlen(sp->myauth.name), sp->myauth.name, 0); } /* *--------------------------------------------------------------------------* * * * The PAP implementation. * * * *--------------------------------------------------------------------------* */ /* * For PAP, we need to keep a little state also if we are the peer, not the * authenticator. This is since we don't get a request to authenticate, but * have to repeatedly authenticate ourself until we got a response (or the * retry counter is expired). */ /* * Handle incoming PAP packets. */ void sppp_pap_input(struct sppp *sp, struct mbuf *m) { STDDCL; struct lcp_header *h; int len, x; u_char *name, *passwd, mlen; int name_len, passwd_len; len = m->m_pkthdr.len; if (len < 5) { if (debug) log(LOG_DEBUG, SPP_FMT "pap invalid packet length: %d bytes\n", SPP_ARGS(ifp), len); return; } h = mtod (m, struct lcp_header*); if (len > ntohs (h->len)) len = ntohs (h->len); switch (h->type) { /* PAP request is my authproto */ case PAP_REQ: name = 1 + (u_char*)(h+1); name_len = name[-1]; passwd = name + name_len + 1; if (name_len > len - 6 || (passwd_len = passwd[-1]) > len - 6 - name_len) { if (debug) { log(LOG_DEBUG, SPP_FMT "pap corrupted input " "<%s id=0x%x len=%d", SPP_ARGS(ifp), sppp_auth_type_name(PPP_PAP, h->type), h->ident, ntohs(h->len)); if (len > 4) sppp_print_bytes((u_char*)(h+1), len-4); addlog(">\n"); } break; } if (debug) { log(LOG_DEBUG, SPP_FMT "pap input(%s) " "<%s id=0x%x len=%d name=", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_PAP]), sppp_auth_type_name(PPP_PAP, h->type), h->ident, ntohs(h->len)); sppp_print_string((char*)name, name_len); addlog(" passwd="); sppp_print_string((char*)passwd, passwd_len); addlog(">\n"); } if (name_len > AUTHMAXLEN || passwd_len > AUTHMAXLEN || bcmp(name, sp->hisauth.name, name_len) != 0 || bcmp(passwd, sp->hisauth.secret, passwd_len) != 0) { /* action scn, tld */ mlen = sizeof(FAILMSG) - 1; sppp_auth_send(&pap, sp, PAP_NAK, h->ident, sizeof mlen, (const char *)&mlen, sizeof(FAILMSG) - 1, (u_char *)FAILMSG, 0); pap.tld(sp); break; } /* action sca, perhaps tlu */ if (sp->state[IDX_PAP] == STATE_REQ_SENT || sp->state[IDX_PAP] == STATE_OPENED) { mlen = sizeof(SUCCMSG) - 1; sppp_auth_send(&pap, sp, PAP_ACK, h->ident, sizeof mlen, (const char *)&mlen, sizeof(SUCCMSG) - 1, (u_char *)SUCCMSG, 0); } if (sp->state[IDX_PAP] == STATE_REQ_SENT) { sppp_cp_change_state(&pap, sp, STATE_OPENED); pap.tlu(sp); } break; /* ack and nak are his authproto */ case PAP_ACK: UNTIMEOUT(sppp_pap_my_TO, (void *)sp, sp->pap_my_to_ch); if (debug) { log(LOG_DEBUG, SPP_FMT "pap success", SPP_ARGS(ifp)); name_len = *((char *)h); if (len > 5 && name_len) { addlog(": "); sppp_print_string((char*)(h+1), name_len); } addlog("\n"); } x = splnet(); sp->pp_flags &= ~PP_NEEDAUTH; if (sp->myauth.proto == PPP_PAP && (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) && (sp->lcp.protos & (1 << IDX_PAP)) == 0) { /* * We are authenticator for PAP but didn't * complete yet. Leave it to tlu to proceed * to network phase. */ splx(x); break; } splx(x); sppp_phase_network(sp); break; case PAP_NAK: UNTIMEOUT(sppp_pap_my_TO, (void *)sp, sp->pap_my_to_ch); if (debug) { log(LOG_INFO, SPP_FMT "pap failure", SPP_ARGS(ifp)); name_len = *((char *)h); if (len > 5 && name_len) { addlog(": "); sppp_print_string((char*)(h+1), name_len); } addlog("\n"); } else log(LOG_INFO, SPP_FMT "pap failure\n", SPP_ARGS(ifp)); /* await LCP shutdown by authenticator */ break; default: /* Unknown PAP packet type -- ignore. */ if (debug) { log(LOG_DEBUG, SPP_FMT "pap corrupted input " "<0x%x id=0x%x len=%d", SPP_ARGS(ifp), h->type, h->ident, ntohs(h->len)); if (len > 4) sppp_print_bytes((u_char*)(h+1), len-4); addlog(">\n"); } break; } } void sppp_pap_init(struct sppp *sp) { /* PAP doesn't have STATE_INITIAL at all. */ sp->state[IDX_PAP] = STATE_CLOSED; sp->fail_counter[IDX_PAP] = 0; } void sppp_pap_open(struct sppp *sp) { if (sp->hisauth.proto == PPP_PAP && (sp->lcp.opts & (1 << LCP_OPT_AUTH_PROTO)) != 0) { /* we are authenticator for PAP, start our timer */ sp->rst_counter[IDX_PAP] = sp->lcp.max_configure; sppp_cp_change_state(&pap, sp, STATE_REQ_SENT); } if (sp->myauth.proto == PPP_PAP) { /* we are peer, send a request, and start a timer */ pap.scr(sp); timeout_add(&sp->pap_my_to_ch, sp->lcp.timeout); } } void sppp_pap_close(struct sppp *sp) { if (sp->state[IDX_PAP] != STATE_CLOSED) sppp_cp_change_state(&pap, sp, STATE_CLOSED); } /* * That's the timeout routine if we are authenticator. Since the * authenticator is basically passive in PAP, we can't do much here. */ void sppp_pap_TO(void *cookie) { struct sppp *sp = (struct sppp *)cookie; STDDCL; int s; s = splnet(); if (debug) log(LOG_DEBUG, SPP_FMT "pap TO(%s) rst_counter = %d\n", SPP_ARGS(ifp), sppp_state_name(sp->state[IDX_PAP]), sp->rst_counter[IDX_PAP]); if (--sp->rst_counter[IDX_PAP] < 0) /* TO- event */ switch (sp->state[IDX_PAP]) { case STATE_REQ_SENT: pap.tld(sp); sppp_cp_change_state(&pap, sp, STATE_CLOSED); break; } else /* TO+ event, not very much we could do */ switch (sp->state[IDX_PAP]) { case STATE_REQ_SENT: /* sppp_cp_change_state() will restart the timer */ sppp_cp_change_state(&pap, sp, STATE_REQ_SENT); break; } splx(s); } /* * That's the timeout handler if we are peer. Since the peer is active, * we need to retransmit our PAP request since it is apparently lost. * XXX We should impose a max counter. */ void sppp_pap_my_TO(void *cookie) { struct sppp *sp = (struct sppp *)cookie; STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "pap peer TO\n", SPP_ARGS(ifp)); pap.scr(sp); } void sppp_pap_tlu(struct sppp *sp) { STDDCL; int x; sp->rst_counter[IDX_PAP] = sp->lcp.max_configure; if (debug) log(LOG_DEBUG, SPP_FMT "%s tlu\n", SPP_ARGS(ifp), pap.name); x = splnet(); /* indicate to LCP that we need to be closed down */ sp->lcp.protos |= (1 << IDX_PAP); if (sp->pp_flags & PP_NEEDAUTH) { /* * Remote is authenticator, but his auth proto didn't * complete yet. Defer the transition to network * phase. */ splx(x); return; } splx(x); sppp_phase_network(sp); } void sppp_pap_tld(struct sppp *sp) { STDDCL; if (debug) log(LOG_DEBUG, SPP_FMT "pap tld\n", SPP_ARGS(ifp)); UNTIMEOUT(pap.TO, (void *)sp, sp->ch[IDX_PAP]); UNTIMEOUT(sppp_pap_my_TO, (void *)sp, sp->pap_my_to_ch); sp->lcp.protos &= ~(1 << IDX_PAP); lcp.Close(sp); } void sppp_pap_scr(struct sppp *sp) { u_char idlen, pwdlen; sp->confid[IDX_PAP] = ++sp->pp_seq; pwdlen = strlen(sp->myauth.secret); idlen = strlen(sp->myauth.name); sppp_auth_send(&pap, sp, PAP_REQ, sp->confid[IDX_PAP], sizeof idlen, (const char *)&idlen, (size_t)idlen, sp->myauth.name, sizeof pwdlen, (const char *)&pwdlen, (size_t)pwdlen, sp->myauth.secret, 0); } /* * Random miscellaneous functions. */ /* * Send a PAP or CHAP proto packet. * * Varadic function, each of the elements for the ellipsis is of type * ``size_t mlen, const u_char *msg''. Processing will stop iff * mlen == 0. */ void sppp_auth_send(const struct cp *cp, struct sppp *sp, unsigned int type, u_int id, ...) { STDDCL; struct ppp_header *h; struct lcp_header *lh; struct mbuf *m; u_char *p; int len; size_t pkthdrlen; unsigned int mlen; const char *msg; va_list ap; MGETHDR (m, M_DONTWAIT, MT_DATA); if (! m) return; m->m_pkthdr.rcvif = 0; if (sp->pp_flags & PP_NOFRAMING) { *mtod(m, u_int16_t *) = htons(cp->proto); pkthdrlen = 2; lh = (struct lcp_header *)(mtod(m, u_int8_t *) + 2); } else { h = mtod (m, struct ppp_header*); h->address = PPP_ALLSTATIONS; /* broadcast address */ h->control = PPP_UI; /* Unnumbered Info */ h->protocol = htons(cp->proto); pkthdrlen = PPP_HEADER_LEN; lh = (struct lcp_header*)(h + 1); } lh->type = type; lh->ident = id; p = (u_char*) (lh+1); va_start(ap, id); len = 0; while ((mlen = (unsigned int)va_arg(ap, size_t)) != 0) { msg = va_arg(ap, const char *); len += mlen; if (len > MHLEN - pkthdrlen - LCP_HEADER_LEN) { va_end(ap); m_freem(m); return; } bcopy(msg, p, mlen); p += mlen; } va_end(ap); m->m_pkthdr.len = m->m_len = pkthdrlen + LCP_HEADER_LEN + len; lh->len = htons (LCP_HEADER_LEN + len); if (debug) { log(LOG_DEBUG, SPP_FMT "%s output <%s id=0x%x len=%d", SPP_ARGS(ifp), cp->name, sppp_auth_type_name(cp->proto, lh->type), lh->ident, ntohs(lh->len)); if (len) sppp_print_bytes((u_char*) (lh+1), len); addlog(">\n"); } if (IF_QFULL (&sp->pp_cpq)) { IF_DROP (&ifp->if_snd); m_freem (m); ++ifp->if_oerrors; m = NULL; } else IF_ENQUEUE (&sp->pp_cpq, m); if (! (ifp->if_flags & IFF_OACTIVE)) (*ifp->if_start) (ifp); if (m != NULL) ifp->if_obytes += m->m_pkthdr.len + sp->pp_framebytes; } /* * Flush interface queue. */ void sppp_qflush(struct ifqueue *ifq) { IF_PURGE(ifq); } /* * Send keepalive packets, every 10 seconds. */ void sppp_keepalive(void *dummy) { struct sppp *sp; int s; struct timeval tv; s = splnet(); getmicrouptime(&tv); for (sp=spppq; sp; sp=sp->pp_next) { struct ifnet *ifp = &sp->pp_if; /* Keepalive mode disabled or channel down? */ if (! (sp->pp_flags & PP_KEEPALIVE) || ! (ifp->if_flags & IFF_RUNNING)) continue; /* No keepalive in PPP mode if LCP not opened yet. */ if (! (sp->pp_flags & PP_CISCO) && sp->pp_phase < PHASE_AUTHENTICATE) continue; /* No echo reply, but maybe user data passed through? */ if (!(sp->pp_flags & PP_CISCO) && (tv.tv_sec - sp->pp_last_receive) < NORECV_TIME) { sp->pp_alivecnt = 0; continue; } if (sp->pp_alivecnt >= MAXALIVECNT) { /* No keepalive packets got. Stop the interface. */ if_down (ifp); sppp_qflush (&sp->pp_cpq); if (! (sp->pp_flags & PP_CISCO)) { log(LOG_INFO, SPP_FMT "LCP keepalive timeout\n", SPP_ARGS(ifp)); sp->pp_alivecnt = 0; /* we are down, close all open protocols */ lcp.Close(sp); /* And now prepare LCP to reestablish the link, if configured to do so. */ sppp_cp_change_state(&lcp, sp, STATE_STOPPED); /* Close connection immediately, completition of this * will summon the magic needed to reestablish it. */ if (sp->pp_tlf) sp->pp_tlf(sp); continue; } } if (sp->pp_alivecnt < MAXALIVECNT) ++sp->pp_alivecnt; if (sp->pp_flags & PP_CISCO) sppp_cisco_send (sp, CISCO_KEEPALIVE_REQ, ++sp->pp_seq, sp->pp_rseq); else if (sp->pp_phase >= PHASE_AUTHENTICATE) { u_int32_t nmagic = htonl(sp->lcp.magic); sp->lcp.echoid = ++sp->pp_seq; sppp_cp_send (sp, PPP_LCP, ECHO_REQ, sp->lcp.echoid, 4, &nmagic); } } splx(s); timeout_add_sec(&keepalive_ch, 10); } /* * Get both IP addresses. */ void sppp_get_ip_addrs(struct sppp *sp, u_int32_t *src, u_int32_t *dst, u_int32_t *srcmask) { struct ifnet *ifp = &sp->pp_if; struct ifaddr *ifa; struct sockaddr_in *si, *sm = 0; u_int32_t ssrc, ddst; sm = NULL; ssrc = ddst = 0; /* * Pick the first AF_INET address from the list, * aliases don't make any sense on a p2p link anyway. */ si = 0; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family == AF_INET) { si = (struct sockaddr_in *)ifa->ifa_addr; sm = (struct sockaddr_in *)ifa->ifa_netmask; if (si) break; } } if (ifa) { if (si && si->sin_addr.s_addr) { ssrc = si->sin_addr.s_addr; if (srcmask) *srcmask = ntohl(sm->sin_addr.s_addr); } si = (struct sockaddr_in *)ifa->ifa_dstaddr; if (si && si->sin_addr.s_addr) ddst = si->sin_addr.s_addr; } if (dst) *dst = ntohl(ddst); if (src) *src = ntohl(ssrc); } int sppp_update_gw_walker(struct radix_node *rn, void *arg, u_int id) { struct ifnet *ifp = arg; struct rtentry *rt = (struct rtentry *)rn; if (rt->rt_ifp == ifp) { if (rt->rt_ifa->ifa_dstaddr->sa_family != rt->rt_gateway->sa_family || (rt->rt_flags & RTF_GATEWAY) == 0) return (0); /* do not modify non-gateway routes */ bcopy(rt->rt_ifa->ifa_dstaddr, rt->rt_gateway, rt->rt_ifa->ifa_dstaddr->sa_len); } return (0); } void sppp_update_gw(struct ifnet *ifp) { struct radix_node_head *rnh; u_int tid; /* update routing table */ for (tid = 0; tid <= RT_TABLEID_MAX; tid++) { if ((rnh = rtable_get(tid, AF_INET)) != NULL) { while ((*rnh->rnh_walktree)(rnh, sppp_update_gw_walker, ifp) == EAGAIN) ; /* nothing */ } } } /* * Task adding addresses from process context. * If an address is 0, leave it the way it is. */ void sppp_set_ip_addrs(void *arg1) { struct sppp *sp = arg1; u_int32_t myaddr; u_int32_t hisaddr; struct ifnet *ifp = &sp->pp_if; int debug = ifp->if_flags & IFF_DEBUG; struct ifaddr *ifa; struct sockaddr_in *si; struct sockaddr_in *dest; int s; sppp_get_ip_addrs(sp, &myaddr, &hisaddr, NULL); if ((sp->ipcp.flags & IPCP_MYADDR_DYN) && (sp->ipcp.flags & IPCP_MYADDR_SEEN)) myaddr = sp->ipcp.req_myaddr; if ((sp->ipcp.flags & IPCP_HISADDR_DYN) && (sp->ipcp.flags & IPCP_HISADDR_SEEN)) hisaddr = sp->ipcp.req_hisaddr; s = splsoftnet(); /* * Pick the first AF_INET address from the list, * aliases don't make any sense on a p2p link anyway. */ si = 0; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family == AF_INET) { si = (struct sockaddr_in *)ifa->ifa_addr; dest = (struct sockaddr_in *)ifa->ifa_dstaddr; if (si) break; } } if (ifa && si) { int error; struct sockaddr_in new_sin = *si; struct sockaddr_in new_dst = *dest; in_ifscrub(ifp, ifatoia(ifa)); if (myaddr != 0) new_sin.sin_addr.s_addr = htonl(myaddr); if (hisaddr != 0) { new_dst.sin_addr.s_addr = htonl(hisaddr); if (new_dst.sin_addr.s_addr != dest->sin_addr.s_addr) { sp->ipcp.saved_hisaddr = dest->sin_addr.s_addr; *dest = new_dst; /* fix dstaddr in place */ } } if (!(error = in_ifinit(ifp, ifatoia(ifa), &new_sin, 0))) dohooks(ifp->if_addrhooks, 0); if (debug && error) { log(LOG_DEBUG, SPP_FMT "sppp_set_ip_addrs: in_ifinit " " failed, error=%d\n", SPP_ARGS(ifp), error); splx(s); return; } sppp_update_gw(ifp); } splx(s); } /* * Task clearing addresses from process context. * Clear IP addresses. */ void sppp_clear_ip_addrs(void *arg1) { struct sppp *sp = (struct sppp *)arg1; struct ifnet *ifp = &sp->pp_if; int debug = ifp->if_flags & IFF_DEBUG; struct ifaddr *ifa; struct sockaddr_in *si; struct sockaddr_in *dest; u_int32_t remote; int s; s = splsoftnet(); if (sp->ipcp.flags & IPCP_HISADDR_DYN) remote = sp->ipcp.saved_hisaddr; else sppp_get_ip_addrs(sp, 0, &remote, 0); /* * Pick the first AF_INET address from the list, * aliases don't make any sense on a p2p link anyway. */ si = 0; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family == AF_INET) { si = (struct sockaddr_in *)ifa->ifa_addr; dest = (struct sockaddr_in *)ifa->ifa_dstaddr; if (si) break; } } if (ifa && si) { int error; struct sockaddr_in new_sin = *si; in_ifscrub(ifp, ifatoia(ifa)); if (sp->ipcp.flags & IPCP_MYADDR_DYN) new_sin.sin_addr.s_addr = 0; if (sp->ipcp.flags & IPCP_HISADDR_DYN) /* replace peer addr in place */ dest->sin_addr.s_addr = sp->ipcp.saved_hisaddr; if (!(error = in_ifinit(ifp, ifatoia(ifa), &new_sin, 0))) dohooks(ifp->if_addrhooks, 0); if (debug && error) { log(LOG_DEBUG, SPP_FMT "sppp_clear_ip_addrs: in_ifinit " " failed, error=%d\n", SPP_ARGS(ifp), error); splx(s); return; } sppp_update_gw(ifp); } splx(s); } #ifdef INET6 /* * Get both IPv6 addresses. */ void sppp_get_ip6_addrs(struct sppp *sp, struct in6_addr *src, struct in6_addr *dst, struct in6_addr *srcmask) { struct ifnet *ifp = &sp->pp_if; struct in6_ifaddr *ia6; struct in6_addr ssrc, ddst; bzero(&ssrc, sizeof(ssrc)); bzero(&ddst, sizeof(ddst)); /* * Pick the first link-local AF_INET6 address from the list, * aliases don't make any sense on a p2p link anyway. */ ia6 = in6ifa_ifpforlinklocal(ifp, 0); if (ia6) { if (!IN6_IS_ADDR_UNSPECIFIED(&ia6->ia_addr.sin6_addr)) { bcopy(&ia6->ia_addr.sin6_addr, &ssrc, sizeof(ssrc)); if (srcmask) { bcopy(&ia6->ia_prefixmask.sin6_addr, srcmask, sizeof(*srcmask)); } } if (!IN6_IS_ADDR_UNSPECIFIED(&ia6->ia_dstaddr.sin6_addr)) bcopy(&ia6->ia_dstaddr.sin6_addr, &ddst, sizeof(ddst)); } if (dst) bcopy(&ddst, dst, sizeof(*dst)); if (src) bcopy(&ssrc, src, sizeof(*src)); } /* Task to update my IPv6 address from process context. */ void sppp_update_ip6_addr(void *arg) { struct sppp *sp = arg; struct ifnet *ifp = &sp->pp_if; struct in6_aliasreq *ifra = &sp->ipv6cp.req_ifid; struct in6_addr mask = in6mask128; struct in6_ifaddr *ia6; int s, error; s = splnet(); ia6 = in6ifa_ifpforlinklocal(ifp, 0); if (ia6 == NULL) { /* IPv6 disabled? */ splx(s); return; } /* * Changing the link-local address requires purging all * existing addresses and routes for the interface first. */ if (sp->ipv6cp.flags & IPV6CP_MYIFID_DYN) { in6_ifdetach(ifp); error = in6_ifattach_linklocal(ifp, &ifra->ifra_addr.sin6_addr); if (error) log(LOG_ERR, SPP_FMT "could not update IPv6 address (error %d)\n", SPP_ARGS(ifp), error); splx(s); return; } /* * Code below changes address parameters only, not the address itself. */ /* Destination address can only be set for /128. */ if (!in6_are_prefix_equal(&ia6->ia_prefixmask.sin6_addr, &mask, 128)) { ifra->ifra_dstaddr.sin6_len = 0; ifra->ifra_dstaddr.sin6_family = AF_UNSPEC; } ifra->ifra_lifetime = ia6->ia6_lifetime; error = in6_update_ifa(ifp, ifra, ia6); if (error) { log(LOG_ERR, SPP_FMT "could not update IPv6 address (error %d)\n", SPP_ARGS(ifp), error); } splx(s); } /* * Configure my link-local address. */ void sppp_set_ip6_addr(struct sppp *sp, const struct in6_addr *src, const struct in6_addr *dst) { struct ifnet *ifp = &sp->pp_if; struct in6_aliasreq *ifra = &sp->ipv6cp.req_ifid; bzero(ifra, sizeof(*ifra)); bcopy(ifp->if_xname, ifra->ifra_name, sizeof(ifra->ifra_name)); ifra->ifra_addr.sin6_len = sizeof(struct sockaddr_in6); ifra->ifra_addr.sin6_family = AF_INET6; ifra->ifra_addr.sin6_addr = *src; if (dst) { ifra->ifra_dstaddr.sin6_len = sizeof(struct sockaddr_in6); ifra->ifra_dstaddr.sin6_family = AF_INET6; ifra->ifra_dstaddr.sin6_addr = *dst; } else ifra->ifra_dstaddr.sin6_family = AF_UNSPEC; /* * Don't change the existing prefixlen. * It is common to use a /64 for IPv6 over point-to-point links * to allow e.g. neighbour discovery and autoconf to work. * But it is legal to use other values. */ ifra->ifra_prefixmask.sin6_family = AF_UNSPEC; /* DAD is redundant after an IPv6CP exchange. */ ifra->ifra_flags |= IN6_IFF_NODAD; task_add(systq, &sp->ipv6cp.set_addr_task); } /* * Generate an address that differs from our existing address. */ void sppp_suggest_ip6_addr(struct sppp *sp, struct in6_addr *suggest) { struct in6_addr myaddr; u_int32_t random; sppp_get_ip6_addrs(sp, &myaddr, NULL, NULL); myaddr.s6_addr[8] &= ~0x02; /* u bit to "local" */ random = arc4random(); if ((random & 0xff) == 0 && (random & 0xff00) == 0) { myaddr.s6_addr[14] ^= 0xff; myaddr.s6_addr[15] ^= 0xff; } else { myaddr.s6_addr[14] ^= (random & 0xff); myaddr.s6_addr[15] ^= ((random & 0xff00) >> 8); } myaddr.s6_addr16[1] = 0; /* KAME hack: clear ifindex */ bcopy(&myaddr, suggest, sizeof(myaddr)); } #endif /*INET6*/ int sppp_get_params(struct sppp *sp, struct ifreq *ifr) { int cmd; if (copyin((caddr_t)ifr->ifr_data, &cmd, sizeof cmd) != 0) return EFAULT; switch (cmd) { case SPPPIOGDEFS: { struct spppreq *spr; spr = malloc(sizeof(*spr), M_DEVBUF, M_WAITOK); spr->cmd = cmd; spr->phase = sp->pp_phase; if (copyout(spr, (caddr_t)ifr->ifr_data, sizeof(*spr)) != 0) { free(spr, M_DEVBUF, 0); return EFAULT; } free(spr, M_DEVBUF, 0); break; } case SPPPIOGMAUTH: case SPPPIOGHAUTH: { struct sauthreq *spa; struct sauth *auth; spa = malloc(sizeof(*spa), M_DEVBUF, M_WAITOK); auth = (cmd == SPPPIOGMAUTH) ? &sp->myauth : &sp->hisauth; bzero(spa, sizeof(*spa)); spa->proto = auth->proto; spa->flags = auth->flags; /* do not copy the secret, and only let root know the name */ if (auth->name != NULL && suser(curproc, 0) == 0) strlcpy(spa->name, auth->name, sizeof(spa->name)); if (copyout(spa, (caddr_t)ifr->ifr_data, sizeof(*spa)) != 0) { free(spa, M_DEVBUF, 0); return EFAULT; } free(spa, M_DEVBUF, 0); break; } default: return EINVAL; } return 0; } int sppp_set_params(struct sppp *sp, struct ifreq *ifr) { int cmd; if (copyin((caddr_t)ifr->ifr_data, &cmd, sizeof cmd) != 0) return EFAULT; /* * We have a very specific idea of which fields we allow * being passed back from userland, so to not clobber our * current state. For one, we only allow setting * anything if LCP is in dead phase. Once the LCP * negotiations started, the authentication settings must * not be changed again. (The administrator can force an * ifconfig down in order to get LCP back into dead * phase.) */ if (sp->pp_phase != PHASE_DEAD) return EBUSY; switch (cmd) { case SPPPIOSDEFS: { struct spppreq *spr; spr = malloc(sizeof(*spr), M_DEVBUF, M_WAITOK); if (copyin((caddr_t)ifr->ifr_data, spr, sizeof(*spr)) != 0) { free(spr, M_DEVBUF, 0); return EFAULT; } /* * Also, we only allow for authentication parameters to be * specified. * * XXX Should allow to set or clear pp_flags. */ free(spr, M_DEVBUF, 0); break; } case SPPPIOSMAUTH: case SPPPIOSHAUTH: { /* * Finally, if the respective authentication protocol to * be used is set differently than 0, but the secret is * passed as all zeros, we don't trash the existing secret. * This allows an administrator to change the system name * only without clobbering the secret (which he didn't get * back in a previous SPPPIOGXAUTH call). However, the * secrets are cleared if the authentication protocol is * reset to 0. */ struct sauthreq *spa; struct sauth *auth; char *p; int len; spa = malloc(sizeof(*spa), M_DEVBUF, M_WAITOK); auth = (cmd == SPPPIOSMAUTH) ? &sp->myauth : &sp->hisauth; if (copyin((caddr_t)ifr->ifr_data, spa, sizeof(*spa)) != 0) { free(spa, M_DEVBUF, 0); return EFAULT; } if (spa->proto != 0 && spa->proto != PPP_PAP && spa->proto != PPP_CHAP) { free(spa, M_DEVBUF, 0); return EINVAL; } if (spa->proto == 0) { /* resetting auth */ if (auth->name != NULL) free(auth->name, M_DEVBUF, 0); if (auth->secret != NULL) free(auth->secret, M_DEVBUF, 0); bzero(auth, sizeof *auth); explicit_bzero(sp->chap_challenge, sizeof sp->chap_challenge); } else { /* setting/changing auth */ auth->proto = spa->proto; auth->flags = spa->flags; spa->name[AUTHMAXLEN - 1] = '\0'; len = strlen(spa->name) + 1; p = malloc(len, M_DEVBUF, M_WAITOK); strlcpy(p, spa->name, len); if (auth->name != NULL) free(auth->name, M_DEVBUF, 0); auth->name = p; if (spa->secret[0] != '\0') { spa->secret[AUTHMAXLEN - 1] = '\0'; len = strlen(spa->secret) + 1; p = malloc(len, M_DEVBUF, M_WAITOK); strlcpy(p, spa->secret, len); if (auth->secret != NULL) free(auth->secret, M_DEVBUF, 0); auth->secret = p; } else if (!auth->secret) { p = malloc(1, M_DEVBUF, M_WAITOK); p[0] = '\0'; auth->secret = p; } } free(spa, M_DEVBUF, 0); break; } default: return EINVAL; } return 0; } void sppp_phase_network(struct sppp *sp) { int i; u_long mask; sp->pp_phase = PHASE_NETWORK; sppp_set_phase(sp); /* Notify NCPs now. */ for (i = 0; i < IDX_COUNT; i++) if ((cps[i])->flags & CP_NCP) (cps[i])->Open(sp); /* Send Up events to all NCPs. */ for (i = 0, mask = 1; i < IDX_COUNT; i++, mask <<= 1) if (sp->lcp.protos & mask && ((cps[i])->flags & CP_NCP)) (cps[i])->Up(sp); /* if no NCP is starting, all this was in vain, close down */ sppp_lcp_check_and_close(sp); } const char * sppp_cp_type_name(u_char type) { static char buf[12]; switch (type) { case CONF_REQ: return "conf-req"; case CONF_ACK: return "conf-ack"; case CONF_NAK: return "conf-nak"; case CONF_REJ: return "conf-rej"; case TERM_REQ: return "term-req"; case TERM_ACK: return "term-ack"; case CODE_REJ: return "code-rej"; case PROTO_REJ: return "proto-rej"; case ECHO_REQ: return "echo-req"; case ECHO_REPLY: return "echo-reply"; case DISC_REQ: return "discard-req"; } snprintf (buf, sizeof buf, "0x%x", type); return buf; } const char * sppp_auth_type_name(u_short proto, u_char type) { static char buf[12]; switch (proto) { case PPP_CHAP: switch (type) { case CHAP_CHALLENGE: return "challenge"; case CHAP_RESPONSE: return "response"; case CHAP_SUCCESS: return "success"; case CHAP_FAILURE: return "failure"; } case PPP_PAP: switch (type) { case PAP_REQ: return "req"; case PAP_ACK: return "ack"; case PAP_NAK: return "nak"; } } snprintf (buf, sizeof buf, "0x%x", type); return buf; } const char * sppp_lcp_opt_name(u_char opt) { static char buf[12]; switch (opt) { case LCP_OPT_MRU: return "mru"; case LCP_OPT_ASYNC_MAP: return "async-map"; case LCP_OPT_AUTH_PROTO: return "auth-proto"; case LCP_OPT_QUAL_PROTO: return "qual-proto"; case LCP_OPT_MAGIC: return "magic"; case LCP_OPT_PROTO_COMP: return "proto-comp"; case LCP_OPT_ADDR_COMP: return "addr-comp"; } snprintf (buf, sizeof buf, "0x%x", opt); return buf; } const char * sppp_ipcp_opt_name(u_char opt) { static char buf[12]; switch (opt) { case IPCP_OPT_ADDRESSES: return "addresses"; case IPCP_OPT_COMPRESSION: return "compression"; case IPCP_OPT_ADDRESS: return "address"; } snprintf (buf, sizeof buf, "0x%x", opt); return buf; } #ifdef INET6 const char * sppp_ipv6cp_opt_name(u_char opt) { static char buf[12]; switch (opt) { case IPV6CP_OPT_IFID: return "ifid"; case IPV6CP_OPT_COMPRESSION: return "compression"; } snprintf (buf, sizeof buf, "0x%x", opt); return buf; } #endif const char * sppp_state_name(int state) { switch (state) { case STATE_INITIAL: return "initial"; case STATE_STARTING: return "starting"; case STATE_CLOSED: return "closed"; case STATE_STOPPED: return "stopped"; case STATE_CLOSING: return "closing"; case STATE_STOPPING: return "stopping"; case STATE_REQ_SENT: return "req-sent"; case STATE_ACK_RCVD: return "ack-rcvd"; case STATE_ACK_SENT: return "ack-sent"; case STATE_OPENED: return "opened"; } return "illegal"; } const char * sppp_phase_name(enum ppp_phase phase) { switch (phase) { case PHASE_DEAD: return "dead"; case PHASE_ESTABLISH: return "establish"; case PHASE_TERMINATE: return "terminate"; case PHASE_AUTHENTICATE: return "authenticate"; case PHASE_NETWORK: return "network"; } return "illegal"; } const char * sppp_proto_name(u_short proto) { static char buf[12]; switch (proto) { case PPP_LCP: return "lcp"; case PPP_IPCP: return "ipcp"; case PPP_IPV6CP: return "ipv6cp"; case PPP_PAP: return "pap"; case PPP_CHAP: return "chap"; } snprintf(buf, sizeof buf, "0x%x", (unsigned)proto); return buf; } void sppp_print_bytes(const u_char *p, u_short len) { addlog(" %02x", *p++); while (--len > 0) addlog("-%02x", *p++); } void sppp_print_string(const char *p, u_short len) { u_char c; while (len-- > 0) { c = *p++; /* * Print only ASCII chars directly. RFC 1994 recommends * using only them, but we don't rely on it. */ if (c < ' ' || c > '~') addlog("\\x%x", c); else addlog("%c", c); } } const char * sppp_dotted_quad(u_int32_t addr) { static char s[16]; snprintf(s, sizeof s, "%d.%d.%d.%d", (int)((addr >> 24) & 0xff), (int)((addr >> 16) & 0xff), (int)((addr >> 8) & 0xff), (int)(addr & 0xff)); return s; } /* a dummy, used to drop uninteresting events */ void sppp_null(struct sppp *unused) { /* do just nothing */ } void sppp_set_phase(struct sppp *sp) { STDDCL; int lstate, s; if (debug) log(LOG_INFO, SPP_FMT "phase %s\n", SPP_ARGS(ifp), sppp_phase_name(sp->pp_phase)); /* set link state */ if (sp->pp_phase == PHASE_NETWORK) lstate = LINK_STATE_UP; else lstate = LINK_STATE_DOWN; if (ifp->if_link_state != lstate) { ifp->if_link_state = lstate; s = splsoftnet(); if_link_state_change(ifp); splx(s); } }