/* $NetBSD: if_tun.c,v 1.19 1995/12/13 23:47:40 pk Exp $ */ /* * Copyright (c) 1988, Julian Onions * Nottingham University 1987. * * This source may be freely distributed, however I would be interested * in any changes that are made. * * This driver takes packets off the IP i/f and hands them up to a * user process to have it's wicked way with. This driver has it's * roots in a similar driver written by Phil Cockcroft (formerly) at * UCL. This driver is based much more on read/write/select mode of * operation though. */ #include "tun.h" #if NTUN > 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #include "bpfilter.h" #if NBPFILTER > 0 #include #include #endif #include #define TUNDEBUG if (tundebug) printf int tundebug = 0; struct tun_softc tunctl[NTUN]; extern int ifqmaxlen; int tunopen __P((dev_t, int, int, struct proc *)); int tunclose __P((dev_t, int)); int tunoutput __P((struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *rt)); int tunread __P((dev_t, struct uio *)); int tunwrite __P((dev_t, struct uio *)); int tuncioctl __P((dev_t, u_long, caddr_t, int, struct proc *)); int tunioctl __P((struct ifnet *, u_long, caddr_t)); int tunselect __P((dev_t, int)); void tunattach __P((int)); static int tuninit __P((int)); void tunattach(unused) int unused; { register int i; struct ifnet *ifp; struct sockaddr_in *sin; for (i = 0; i < NTUN; i++) { tunctl[i].tun_flags = TUN_INITED; ifp = &tunctl[i].tun_if; ifp->if_unit = i; ifp->if_name = "tun"; ifp->if_mtu = TUNMTU; ifp->if_ioctl = tunioctl; ifp->if_output = tunoutput; ifp->if_flags = IFF_POINTOPOINT; ifp->if_snd.ifq_maxlen = ifqmaxlen; ifp->if_collisions = 0; ifp->if_ierrors = 0; ifp->if_oerrors = 0; ifp->if_ipackets = 0; ifp->if_opackets = 0; if_attach(ifp); #if NBPFILTER > 0 bpfattach(&tunctl[i].tun_bpf, ifp, DLT_NULL, sizeof(u_int32_t)); #endif } } /* * tunnel open - must be superuser & the device must be * configured in */ int tunopen(dev, flag, mode, p) dev_t dev; int flag, mode; struct proc *p; { struct ifnet *ifp; struct tun_softc *tp; register int unit, error; if (error = suser(p->p_ucred, &p->p_acflag)) return (error); if ((unit = minor(dev)) >= NTUN) return (ENXIO); tp = &tunctl[unit]; if (tp->tun_flags & TUN_OPEN) return ENXIO; ifp = &tp->tun_if; tp->tun_flags |= TUN_OPEN; TUNDEBUG("%s%d: open\n", ifp->if_name, ifp->if_unit); return (0); } /* * tunclose - close the device - mark i/f down & delete * routing info */ int tunclose(dev, flag) dev_t dev; int flag; { register int unit = minor(dev), s; struct tun_softc *tp = &tunctl[unit]; struct ifnet *ifp = &tp->tun_if; struct mbuf *m; tp->tun_flags &= ~TUN_OPEN; /* * junk all pending output */ do { s = splimp(); IF_DEQUEUE(&ifp->if_snd, m); splx(s); if (m) m_freem(m); } while (m); if (ifp->if_flags & IFF_UP) { s = splimp(); if_down(ifp); if (ifp->if_flags & IFF_RUNNING) { /* find internet addresses and delete routes */ register struct ifaddr *ifa; for (ifa = ifp->if_addrlist.tqh_first; ifa != 0; ifa = ifa->ifa_list.tqe_next) { if (ifa->ifa_addr->sa_family == AF_INET) { rtinit(ifa, (int)RTM_DELETE, tp->tun_flags & TUN_DSTADDR ? RTF_HOST : 0); } } } splx(s); } tp->tun_pgrp = 0; selwakeup(&tp->tun_rsel); TUNDEBUG ("%s%d: closed\n", ifp->if_name, ifp->if_unit); return (0); } static int tuninit(unit) int unit; { struct tun_softc *tp = &tunctl[unit]; struct ifnet *ifp = &tp->tun_if; register struct ifaddr *ifa; TUNDEBUG("%s%d: tuninit\n", ifp->if_name, ifp->if_unit); ifp->if_flags |= IFF_UP | IFF_RUNNING; for (ifa = ifp->if_addrlist.tqh_first; ifa != 0; ifa = ifa->ifa_list.tqe_next) { if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in *sin; sin = satosin(ifa->ifa_addr); if (sin && sin->sin_addr.s_addr) tp->tun_flags |= TUN_IASET; sin = satosin(ifa->ifa_dstaddr); if (sin && sin->sin_addr.s_addr) tp->tun_flags |= TUN_DSTADDR; } } return 0; } /* * Process an ioctl request. */ int tunioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct tun_softc *tp = &tunctl[ifp->if_unit]; int error = 0, s; s = splimp(); switch(cmd) { case SIOCSIFADDR: tuninit(ifp->if_unit); TUNDEBUG("%s%d: address set\n", ifp->if_name, ifp->if_unit); break; case SIOCSIFDSTADDR: tuninit(ifp->if_unit); TUNDEBUG("%s%d: destination address set\n", ifp->if_name, ifp->if_unit); break; default: error = EINVAL; } splx(s); return (error); } /* * tunoutput - queue packets from higher level ready to put out. */ int tunoutput(ifp, m0, dst, rt) struct ifnet *ifp; struct mbuf *m0; struct sockaddr *dst; struct rtentry *rt; { struct tun_softc *tp = &tunctl[ifp->if_unit]; struct proc *p; int s; TUNDEBUG ("%s%d: tunoutput\n", ifp->if_name, ifp->if_unit); if ((tp->tun_flags & TUN_READY) != TUN_READY) { TUNDEBUG ("%s%d: not ready 0%o\n", ifp->if_name, ifp->if_unit, tp->tun_flags); m_freem (m0); return EHOSTDOWN; } #if NBPFILTER > 0 if (tp->tun_bpf) { /* * We need to prepend the address family as * a four byte field. Cons up a dummy header * to pacify bpf. This is safe because bpf * will only read from the mbuf (i.e., it won't * try to free it or keep a pointer to it). */ struct mbuf m; u_int32_t af = dst->sa_family; m.m_next = m0; m.m_len = sizeof(af); m.m_data = (char *)⁡ bpf_mtap(tp->tun_bpf, &m); } #endif switch(dst->sa_family) { #ifdef INET case AF_INET: s = splimp(); if (IF_QFULL(&ifp->if_snd)) { IF_DROP(&ifp->if_snd); m_freem(m0); splx(s); ifp->if_collisions++; return (ENOBUFS); } IF_ENQUEUE(&ifp->if_snd, m0); splx(s); ifp->if_opackets++; break; #endif default: m_freem(m0); return EAFNOSUPPORT; } if (tp->tun_flags & TUN_RWAIT) { tp->tun_flags &= ~TUN_RWAIT; wakeup((caddr_t)tp); } if (tp->tun_flags & TUN_ASYNC && tp->tun_pgrp) { if (tp->tun_pgrp > 0) gsignal(tp->tun_pgrp, SIGIO); else if (p = pfind(-tp->tun_pgrp)) psignal(p, SIGIO); } selwakeup(&tp->tun_rsel); return 0; } /* * the cdevsw interface is now pretty minimal. */ int tuncioctl(dev, cmd, data, flag, p) dev_t dev; u_long cmd; caddr_t data; int flag; struct proc *p; { int unit = minor(dev), s; struct tun_softc *tp = &tunctl[unit]; switch (cmd) { case TUNSDEBUG: tundebug = *(int *)data; break; case TUNGDEBUG: *(int *)data = tundebug; break; case FIONBIO: if (*(int *)data) tp->tun_flags |= TUN_NBIO; else tp->tun_flags &= ~TUN_NBIO; break; case FIOASYNC: if (*(int *)data) tp->tun_flags |= TUN_ASYNC; else tp->tun_flags &= ~TUN_ASYNC; break; case FIONREAD: s = splimp(); if (tp->tun_if.if_snd.ifq_head) *(int *)data = tp->tun_if.if_snd.ifq_head->m_pkthdr.len; else *(int *)data = 0; splx(s); break; case TIOCSPGRP: tp->tun_pgrp = *(int *)data; break; case TIOCGPGRP: *(int *)data = tp->tun_pgrp; break; default: return (ENOTTY); } return (0); } /* * The cdevsw read interface - reads a packet at a time, or at * least as much of a packet as can be read. */ int tunread(dev, uio) dev_t dev; struct uio *uio; { int unit = minor(dev); struct tun_softc *tp = &tunctl[unit]; struct ifnet *ifp = &tp->tun_if; struct mbuf *m, *m0; int error=0, len, s; TUNDEBUG ("%s%d: read\n", ifp->if_name, ifp->if_unit); if ((tp->tun_flags & TUN_READY) != TUN_READY) { TUNDEBUG ("%s%d: not ready 0%o\n", ifp->if_name, ifp->if_unit, tp->tun_flags); return EHOSTDOWN; } tp->tun_flags &= ~TUN_RWAIT; s = splimp(); do { IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == 0) { if (tp->tun_flags & TUN_NBIO) { splx(s); return EWOULDBLOCK; } tp->tun_flags |= TUN_RWAIT; tsleep((caddr_t)tp, PZERO + 1, "tunread", 0); } } while (m0 == 0); splx(s); while (m0 && uio->uio_resid > 0 && error == 0) { len = min(uio->uio_resid, m0->m_len); if (len == 0) break; error = uiomove(mtod(m0, caddr_t), len, uio); MFREE(m0, m); m0 = m; } if (m0) { TUNDEBUG("Dropping mbuf\n"); m_freem(m0); } if (error) ifp->if_ierrors++; return error; } /* * the cdevsw write interface - an atomic write is a packet - or else! */ int tunwrite(dev, uio) dev_t dev; struct uio *uio; { int unit = minor (dev); struct ifnet *ifp = &tunctl[unit].tun_if; struct mbuf *top, **mp, *m; int error=0, s, tlen, mlen; TUNDEBUG("%s%d: tunwrite\n", ifp->if_name, ifp->if_unit); if (uio->uio_resid < 0 || uio->uio_resid > TUNMTU) { TUNDEBUG("%s%d: len=%d!\n", ifp->if_name, ifp->if_unit, uio->uio_resid); return EIO; } tlen = uio->uio_resid; /* get a header mbuf */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; mlen = MHLEN; top = 0; mp = ⊤ while (error == 0 && uio->uio_resid > 0) { m->m_len = min(mlen, uio->uio_resid); error = uiomove(mtod (m, caddr_t), m->m_len, uio); *mp = m; mp = &m->m_next; if (uio->uio_resid > 0) { MGET (m, M_DONTWAIT, MT_DATA); if (m == 0) { error = ENOBUFS; break; } mlen = MLEN; } } if (error) { if (top) m_freem (top); ifp->if_ierrors++; return error; } top->m_pkthdr.len = tlen; top->m_pkthdr.rcvif = ifp; #if NBPFILTER > 0 if (tunctl[unit].tun_bpf) { /* * We need to prepend the address family as * a four byte field. Cons up a dummy header * to pacify bpf. This is safe because bpf * will only read from the mbuf (i.e., it won't * try to free it or keep a pointer to it). */ struct mbuf m; u_int32_t af = AF_INET; m.m_next = top; m.m_len = sizeof(af); m.m_data = (char *)⁡ bpf_mtap(tunctl[unit].tun_bpf, &m); } #endif s = splimp(); if (IF_QFULL (&ipintrq)) { IF_DROP(&ipintrq); splx(s); ifp->if_collisions++; m_freem(top); return ENOBUFS; } IF_ENQUEUE(&ipintrq, top); splx(s); ifp->if_ipackets++; schednetisr(NETISR_IP); return error; } /* * tunselect - the select interface, this is only useful on reads * really. The write detect always returns true, write never blocks * anyway, it either accepts the packet or drops it. */ int tunselect(dev, rw) dev_t dev; int rw; { int unit = minor(dev), s; struct tun_softc *tp = &tunctl[unit]; struct ifnet *ifp = &tp->tun_if; s = splimp(); TUNDEBUG("%s%d: tunselect\n", ifp->if_name, ifp->if_unit); switch (rw) { case FREAD: if (ifp->if_snd.ifq_len > 0) { splx(s); TUNDEBUG("%s%d: tunselect q=%d\n", ifp->if_name, ifp->if_unit, ifp->if_snd.ifq_len); return 1; } selrecord(curproc, &tp->tun_rsel); break; case FWRITE: splx(s); return 1; } splx(s); TUNDEBUG("%s%d: tunselect waiting\n", ifp->if_name, ifp->if_unit); return 0; } #endif /* NTUN */