/* $OpenBSD: if_vlan.c,v 1.35 2003/03/24 17:59:48 jason Exp $ */ /* * Copyright 1998 Massachusetts Institute of Technology * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby * granted, provided that both the above copyright notice and this * permission notice appear in all copies, that both the above * copyright notice and this permission notice appear in all * supporting documentation, and that the name of M.I.T. not be used * in advertising or publicity pertaining to distribution of the * software without specific, written prior permission. M.I.T. makes * no representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied * warranty. * * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/net/if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp $ */ /* * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. * Might be extended some day to also handle IEEE 802.1p priority * tagging. This is sort of sneaky in the implementation, since * we need to pretend to be enough of an Ethernet implementation * to make arp work. The way we do this is by telling everyone * that we are an Ethernet, and then catch the packets that * ether_output() left on our output queue when it calls * if_start(), rewrite them for use by the real outgoing interface, * and ask it to send them. * * Some devices support 802.1Q tag insertion and extraction in firmware. * The vlan interface behavior changes when the IFCAP_VLAN_HWTAGGING * capability is set on the parent. In this case, vlan_start() will not * modify the ethernet header. On input, the parent can call vlan_input_tag() * directly in order to supply us with an incoming mbuf and the vlan * tag value that goes with it. */ #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include "bpfilter.h" #if NBPFILTER > 0 #include #endif #include #include #include #ifdef INET #include #include #endif #include struct ifaddr **ifnet_addrs; struct ifvlan *ifv_softc; int nifvlan; extern int ifqmaxlen; void vlan_start (struct ifnet *ifp); int vlan_ioctl (struct ifnet *ifp, u_long cmd, caddr_t addr); int vlan_setmulti (struct ifnet *ifp); int vlan_unconfig (struct ifnet *ifp); int vlan_config (struct ifvlan *ifv, struct ifnet *p); void vlanattach (int count); int vlan_set_promisc (struct ifnet *ifp); int vlan_ether_addmulti(struct ifvlan *, struct ifreq *); int vlan_ether_delmulti(struct ifvlan *, struct ifreq *); void vlan_ether_purgemulti(struct ifvlan *); void vlanattach(int count) { struct ifnet *ifp; int i; MALLOC(ifv_softc, struct ifvlan *, count * sizeof(struct ifvlan), M_DEVBUF, M_NOWAIT); if (ifv_softc == NULL) panic("vlanattach: MALLOC failed"); nifvlan = count; bzero(ifv_softc, nifvlan * sizeof(struct ifvlan)); for (i = 0; i < nifvlan; i++) { LIST_INIT(&ifv_softc[i].vlan_mc_listhead); ifp = &ifv_softc[i].ifv_if; ifp->if_softc = &ifv_softc[i]; sprintf(ifp->if_xname, "vlan%d", i); /* NB: flags are not set here */ /* NB: mtu is not set here */ ifp->if_start = vlan_start; ifp->if_ioctl = vlan_ioctl; ifp->if_output = ether_output; IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); IFQ_SET_READY(&ifp->if_snd); if_attach(ifp); ether_ifattach(ifp); /* Now undo some of the damage... */ ifp->if_type = IFT_8021_VLAN; ifp->if_hdrlen = EVL_ENCAPLEN; } } void vlan_start(struct ifnet *ifp) { struct ifvlan *ifv; struct ifnet *p; struct mbuf *m, *m0; int error; ifv = ifp->if_softc; p = ifv->ifv_p; ifp->if_flags |= IFF_OACTIVE; for (;;) { IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if ((p->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) { IF_DROP(&p->if_snd); /* XXX stats */ ifp->if_oerrors++; m_freem(m); continue; } #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* * If the IFCAP_VLAN_HWTAGGING capability is set on the parent, * it can do VLAN tag insertion itself and doesn't require us * to create a special header for it. In this case, we just pass * the packet along. However, we need some way to tell the * interface where the packet came from so that it knows how * to find the VLAN tag to use, so we set the rcvif in the * mbuf header to our ifnet. * * Note: we also set the M_PROTO1 flag in the mbuf to let * the parent driver know that the rcvif pointer is really * valid. We need to do this because sometimes mbufs will * be allocated by other parts of the system that contain * garbage in the rcvif pointer. Using the M_PROTO1 flag * lets the driver perform a proper sanity check and avoid * following potentially bogus rcvif pointers off into * never-never land. */ if (p->if_capabilities & IFCAP_VLAN_HWTAGGING) { m->m_pkthdr.rcvif = ifp; m->m_flags |= M_PROTO1; } else { struct ether_vlan_header evh; m_copydata(m, 0, sizeof(struct ether_header), (caddr_t)&evh); evh.evl_proto = evh.evl_encap_proto; evh.evl_encap_proto = htons(ETHERTYPE_8021Q); evh.evl_tag = htons(ifv->ifv_tag); m_adj(m, sizeof(struct ether_header)); m0 = m_prepend(m, sizeof(struct ether_vlan_header), M_DONTWAIT); if (m0 == NULL) { ifp->if_ierrors++; continue; } /* m_prepend() doesn't adjust m_pkthdr.len */ if (m0->m_flags & M_PKTHDR) m0->m_pkthdr.len += sizeof(struct ether_vlan_header); m_copyback(m0, 0, sizeof(struct ether_vlan_header), (caddr_t)&evh); m = m0; } /* * Send it, precisely as ether_output() would have. * We are already running at splimp. */ p->if_obytes += m->m_pkthdr.len; if (m->m_flags & M_MCAST) p->if_omcasts++; IFQ_ENQUEUE(&p->if_snd, m, NULL, error); if (error) { /* mbuf is already freed */ ifp->if_oerrors++; continue; } ifp->if_opackets++; if ((p->if_flags & IFF_OACTIVE) == 0) p->if_start(p); } ifp->if_flags &= ~IFF_OACTIVE; return; } int vlan_input_tag(struct mbuf *m, u_int16_t t) { int i; struct ifvlan *ifv; struct ether_vlan_header vh; t = EVL_VLANOFTAG(t); for (i = 0; i < nifvlan; i++) { ifv = &ifv_softc[i]; if (m->m_pkthdr.rcvif == ifv->ifv_p && t == ifv->ifv_tag) break; } if (i >= nifvlan) { if (m->m_pkthdr.len < sizeof(struct ether_header)) { m_freem(m); return (-1); } m_copydata(m, 0, sizeof(struct ether_header), (caddr_t)&vh); vh.evl_proto = vh.evl_encap_proto; vh.evl_tag = htons(t); vh.evl_encap_proto = htons(ETHERTYPE_8021Q); m_adj(m, sizeof(struct ether_header)); m = m_prepend(m, sizeof(struct ether_vlan_header), M_DONTWAIT); if (m == NULL) return (-1); m->m_pkthdr.len += sizeof(struct ether_vlan_header); if (m->m_len < sizeof(struct ether_vlan_header) && (m = m_pullup(m, sizeof(struct ether_vlan_header))) == NULL) return (-1); m_copyback(m, 0, sizeof(struct ether_vlan_header), (caddr_t)&vh); ether_input_mbuf(m->m_pkthdr.rcvif, m); return (-1); } if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) { m_freem(m); return (-1); } /* * Having found a valid vlan interface corresponding to * the given source interface and vlan tag, run the * the real packet through ether_input(). */ m->m_pkthdr.rcvif = &ifv->ifv_if; #if NBPFILTER > 0 if (ifv->ifv_if.if_bpf) { /* * Do the usual BPF fakery. Note that we don't support * promiscuous mode here, since it would require the * drivers to know about VLANs and we're not ready for * that yet. */ bpf_mtap(ifv->ifv_if.if_bpf, m); } #endif ifv->ifv_if.if_ipackets++; ether_input_mbuf(&ifv->ifv_if, m); return 0; } int vlan_input(eh, m) struct ether_header *eh; struct mbuf *m; { int i; struct ifvlan *ifv; u_int tag; struct ifnet *ifp = m->m_pkthdr.rcvif; if (m->m_len < EVL_ENCAPLEN && (m = m_pullup(m, EVL_ENCAPLEN)) == NULL) { ifp->if_ierrors++; return (0); } tag = EVL_VLANOFTAG(ntohs(*mtod(m, u_int16_t *))); for (i = 0; i < nifvlan; i++) { ifv = &ifv_softc[i]; if (m->m_pkthdr.rcvif == ifv->ifv_p && tag == ifv->ifv_tag) break; } if (i >= nifvlan || (ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) { m_freem(m); return -1; /* so ether_input can take note */ } /* * Having found a valid vlan interface corresponding to * the given source interface and vlan tag, remove the * encapsulation, and run the real packet through * ether_input() a second time (it had better be * reentrant!). */ m->m_pkthdr.rcvif = &ifv->ifv_if; eh->ether_type = mtod(m, u_int16_t *)[1]; m->m_len -= EVL_ENCAPLEN; m->m_data += EVL_ENCAPLEN; m->m_pkthdr.len -= EVL_ENCAPLEN; #if NBPFILTER > 0 if (ifv->ifv_if.if_bpf) { /* * Do the usual BPF fakery. Note that we don't support * promiscuous mode here, since it would require the * drivers to know about VLANs and we're not ready for * that yet. */ struct mbuf m0; m0.m_next = m; m0.m_len = sizeof(struct ether_header); m0.m_data = (char *)eh; bpf_mtap(ifv->ifv_if.if_bpf, &m0); } #endif ifv->ifv_if.if_ipackets++; ether_input(&ifv->ifv_if, eh, m); return 0; } int vlan_config(struct ifvlan *ifv, struct ifnet *p) { struct ifaddr *ifa1, *ifa2; struct sockaddr_dl *sdl1, *sdl2; if (p->if_type != IFT_ETHER) return EPROTONOSUPPORT; if (ifv->ifv_p) return EBUSY; ifv->ifv_p = p; if (p->if_capabilities & IFCAP_VLAN_MTU) ifv->ifv_if.if_mtu = p->if_mtu; else { /* * This will be incompatible with strict * 802.1Q implementations */ ifv->ifv_if.if_mtu = p->if_mtu - EVL_ENCAPLEN; #ifdef DIAGNOSTIC printf("%s: initialized with non-standard mtu %d (parent %s)\n", ifv->ifv_if.if_xname, ifv->ifv_if.if_mtu, ifv->ifv_p->if_xname); #endif } ifv->ifv_if.if_flags = p->if_flags & (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); /* * Inherit the if_type from the parent. This allows us to * participate in bridges of that type. */ ifv->ifv_if.if_type = p->if_type; /* * Inherit baudrate from the parent. An SNMP agent would use this * information. */ ifv->ifv_if.if_baudrate = p->if_baudrate; /* * If the parent interface can do hardware-assisted * VLAN encapsulation, then propagate its hardware- * assisted checksumming flags. * * If the card cannot handle hardware tagging, it cannot * possibly compute the correct checksums for tagged packets. * * This brings up another possibility, do cards exist which * have all of these capabilities but cannot utilize them together? */ if (p->if_capabilities & IFCAP_VLAN_HWTAGGING) ifv->ifv_if.if_capabilities = p->if_capabilities & (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4| IFCAP_CSUM_UDPv4); /* (IFCAP_CSUM_TCPv6|IFCAP_CSUM_UDPv6); */ /* * Set up our ``Ethernet address'' to reflect the underlying * physical interface's. */ ifa1 = ifnet_addrs[ifv->ifv_if.if_index]; ifa2 = ifnet_addrs[p->if_index]; sdl1 = (struct sockaddr_dl *)ifa1->ifa_addr; sdl2 = (struct sockaddr_dl *)ifa2->ifa_addr; sdl1->sdl_type = IFT_ETHER; sdl1->sdl_alen = ETHER_ADDR_LEN; bcopy(LLADDR(sdl2), LLADDR(sdl1), ETHER_ADDR_LEN); bcopy(LLADDR(sdl2), ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN); return 0; } int vlan_unconfig(struct ifnet *ifp) { struct ifaddr *ifa; struct sockaddr_dl *sdl; struct ifvlan *ifv; struct ifnet *p; struct ifreq *ifr, *ifr_p; ifv = ifp->if_softc; p = ifv->ifv_p; ifr = (struct ifreq *)&ifp->if_data; ifr_p = (struct ifreq *)&ifv->ifv_p->if_data; if (p == NULL) return 0; /* * Since the interface is being unconfigured, we need to * empty the list of multicast groups that we may have joined * while we were alive and remove them from the parent's list * as well. */ vlan_ether_purgemulti(ifv); /* Disconnect from parent. */ ifv->ifv_p = NULL; ifv->ifv_if.if_mtu = ETHERMTU; /* Clear our MAC address. */ ifa = ifnet_addrs[ifv->ifv_if.if_index]; sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ETHER_ADDR_LEN; bzero(LLADDR(sdl), ETHER_ADDR_LEN); bzero(ifv->ifv_ac.ac_enaddr, ETHER_ADDR_LEN); return 0; } int vlan_set_promisc(struct ifnet *ifp) { struct ifvlan *ifv = ifp->if_softc; int error = 0; if ((ifp->if_flags & IFF_PROMISC) != 0) { if ((ifv->ifv_flags & IFVF_PROMISC) == 0) { error = ifpromisc(ifv->ifv_p, 1); if (error == 0) ifv->ifv_flags |= IFVF_PROMISC; } } else { if ((ifv->ifv_flags & IFVF_PROMISC) != 0) { error = ifpromisc(ifv->ifv_p, 0); if (error == 0) ifv->ifv_flags &= ~IFVF_PROMISC; } } return (0); } int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct proc *p = curproc; /* XXX */ struct ifaddr *ifa; struct ifnet *pr; struct ifreq *ifr; struct ifvlan *ifv; struct vlanreq vlr; int error = 0, p_mtu = 0; ifr = (struct ifreq *)data; ifa = (struct ifaddr *)data; ifv = ifp->if_softc; switch (cmd) { case SIOCSIFADDR: if (ifv->ifv_p != NULL) { ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(&ifv->ifv_ac, ifa); break; #endif default: break; } } else { error = EINVAL; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) &ifr->ifr_data; bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, (caddr_t) sa->sa_data, ETHER_ADDR_LEN); } break; case SIOCSIFMTU: if (ifv->ifv_p != NULL) { if (ifv->ifv_p->if_capabilities & IFCAP_VLAN_MTU) p_mtu = ifv->ifv_p->if_mtu; else p_mtu = ifv->ifv_p->if_mtu - EVL_ENCAPLEN; if (ifr->ifr_mtu > p_mtu || ifr->ifr_mtu < ETHERMIN) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; } else error = EINVAL; break; case SIOCSETVLAN: if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) break; if ((error = copyin(ifr->ifr_data, &vlr, sizeof vlr))) break; if (vlr.vlr_parent[0] == '\0') { vlan_unconfig(ifp); if_down(ifp); ifp->if_flags &= ~(IFF_UP|IFF_RUNNING); break; } if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) { error = EINVAL; /* check for valid tag */ break; } pr = ifunit(vlr.vlr_parent); if (pr == NULL) { error = ENOENT; break; } error = vlan_config(ifv, pr); if (error) break; ifv->ifv_tag = vlr.vlr_tag; ifp->if_flags |= IFF_RUNNING; /* Update promiscuous mode, if necessary. */ vlan_set_promisc(ifp); break; case SIOCGETVLAN: bzero(&vlr, sizeof vlr); if (ifv->ifv_p) { snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s", ifv->ifv_p->if_xname); vlr.vlr_tag = ifv->ifv_tag; } error = copyout(&vlr, ifr->ifr_data, sizeof vlr); break; case SIOCSIFFLAGS: /* * For promiscuous mode, we enable promiscuous mode on * the parent if we need promiscuous on the VLAN interface. */ if (ifv->ifv_p != NULL) error = vlan_set_promisc(ifp); break; case SIOCADDMULTI: error = (ifv->ifv_p != NULL) ? vlan_ether_addmulti(ifv, ifr) : EINVAL; break; case SIOCDELMULTI: error = (ifv->ifv_p != NULL) ? vlan_ether_delmulti(ifv, ifr) : EINVAL; break; default: error = EINVAL; } return error; } int vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr) { struct ifnet *ifp = ifv->ifv_p; /* Parent. */ struct vlan_mc_entry *mc; u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; int error; if (ifr->ifr_addr.sa_len > sizeof(struct sockaddr_storage)) return (EINVAL); error = ether_addmulti(ifr, (struct arpcom *)&ifv->ifv_ac); if (error != ENETRESET) return (error); /* * This is new multicast address. We have to tell parent * about it. Also, remember this multicast address so that * we can delete them on unconfigure. */ MALLOC(mc, struct vlan_mc_entry *, sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT); if (mc == NULL) { error = ENOMEM; goto alloc_failed; } /* * As ether_addmulti() returns ENETRESET, following two * statement shouldn't fail. */ (void)ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi); ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ac, mc->mc_enm); memcpy(&mc->mc_addr, &ifr->ifr_addr, ifr->ifr_addr.sa_len); LIST_INSERT_HEAD(&ifv->vlan_mc_listhead, mc, mc_entries); error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)ifr); if (error != 0) goto ioctl_failed; return (error); ioctl_failed: LIST_REMOVE(mc, mc_entries); FREE(mc, M_DEVBUF); alloc_failed: (void)ether_delmulti(ifr, (struct arpcom *)&ifv->ifv_ac); return (error); } int vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr) { struct ifnet *ifp = ifv->ifv_p; /* Parent. */ struct ether_multi *enm; struct vlan_mc_entry *mc; u_int8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN]; int error; /* * Find a key to lookup vlan_mc_entry. We have to do this * before calling ether_delmulti for obvious reason. */ if ((error = ether_multiaddr(&ifr->ifr_addr, addrlo, addrhi)) != 0) return (error); ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ac, enm); error = ether_delmulti(ifr, (struct arpcom *)&ifv->ifv_ac); if (error != ENETRESET) return (error); /* We no longer use this multicast address. Tell parent so. */ error = (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr); if (error == 0) { /* And forget about this address. */ for (mc = LIST_FIRST(&ifv->vlan_mc_listhead); mc != NULL; mc = LIST_NEXT(mc, mc_entries)) { if (mc->mc_enm == enm) { LIST_REMOVE(mc, mc_entries); FREE(mc, M_DEVBUF); break; } } KASSERT(mc != NULL); } else (void)ether_addmulti(ifr, (struct arpcom *)&ifv->ifv_ac); return (error); } /* * Delete any multicast address we have asked to add from parent * interface. Called when the vlan is being unconfigured. */ void vlan_ether_purgemulti(struct ifvlan *ifv) { struct ifnet *ifp = ifv->ifv_p; /* Parent. */ struct vlan_mc_entry *mc; union { struct ifreq ifreq; struct { char ifr_name[IFNAMSIZ]; struct sockaddr_storage ifr_ss; } ifreq_storage; } ifreq; struct ifreq *ifr = &ifreq.ifreq; memcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); while ((mc = LIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) { memcpy(&ifr->ifr_addr, &mc->mc_addr, mc->mc_addr.ss_len); (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)ifr); LIST_REMOVE(mc, mc_entries); FREE(mc, M_DEVBUF); } }