/* $OpenBSD: pf_norm.c,v 1.226 2022/11/06 18:05:05 dlg Exp $ */ /* * Copyright 2001 Niels Provos * Copyright 2009 Henning Brauer * Copyright 2011-2018 Alexander Bluhm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "pflog.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #endif /* INET6 */ #include #include struct pf_frent { TAILQ_ENTRY(pf_frent) fr_next; struct mbuf *fe_m; u_int16_t fe_hdrlen; /* ipv4 header length with ip options ipv6, extension, fragment header */ u_int16_t fe_extoff; /* last extension header offset or 0 */ u_int16_t fe_len; /* fragment length */ u_int16_t fe_off; /* fragment offset */ u_int16_t fe_mff; /* more fragment flag */ }; RB_HEAD(pf_frag_tree, pf_fragment); struct pf_frnode { struct pf_addr fn_src; /* ip source address */ struct pf_addr fn_dst; /* ip destination address */ sa_family_t fn_af; /* address family */ u_int8_t fn_proto; /* protocol for fragments in fn_tree */ u_int8_t fn_direction; /* pf packet direction */ u_int32_t fn_fragments; /* number of entries in fn_tree */ u_int32_t fn_gen; /* fr_gen of newest entry in fn_tree */ RB_ENTRY(pf_frnode) fn_entry; struct pf_frag_tree fn_tree; /* matching fragments, lookup by id */ }; struct pf_fragment { struct pf_frent *fr_firstoff[PF_FRAG_ENTRY_POINTS]; /* pointers to queue element */ u_int8_t fr_entries[PF_FRAG_ENTRY_POINTS]; /* count entries between pointers */ RB_ENTRY(pf_fragment) fr_entry; TAILQ_ENTRY(pf_fragment) frag_next; TAILQ_HEAD(pf_fragq, pf_frent) fr_queue; u_int32_t fr_id; /* fragment id for reassemble */ int32_t fr_timeout; u_int32_t fr_gen; /* generation number (per pf_frnode) */ u_int16_t fr_maxlen; /* maximum length of single fragment */ u_int16_t fr_holes; /* number of holes in the queue */ struct pf_frnode *fr_node; /* ip src/dst/proto/af for fragments */ }; struct pf_fragment_tag { u_int16_t ft_hdrlen; /* header length of reassembled pkt */ u_int16_t ft_extoff; /* last extension header offset or 0 */ u_int16_t ft_maxlen; /* maximum fragment payload length */ }; TAILQ_HEAD(pf_fragqueue, pf_fragment) pf_fragqueue; static __inline int pf_frnode_compare(struct pf_frnode *, struct pf_frnode *); RB_HEAD(pf_frnode_tree, pf_frnode) pf_frnode_tree; RB_PROTOTYPE(pf_frnode_tree, pf_frnode, fn_entry, pf_frnode_compare); RB_GENERATE(pf_frnode_tree, pf_frnode, fn_entry, pf_frnode_compare); static __inline int pf_frag_compare(struct pf_fragment *, struct pf_fragment *); RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); /* Private prototypes */ void pf_flush_fragments(void); void pf_free_fragment(struct pf_fragment *); struct pf_fragment *pf_find_fragment(struct pf_frnode *, u_int32_t); struct pf_frent *pf_create_fragment(u_short *); int pf_frent_holes(struct pf_frent *); static inline int pf_frent_index(struct pf_frent *); int pf_frent_insert(struct pf_fragment *, struct pf_frent *, struct pf_frent *); void pf_frent_remove(struct pf_fragment *, struct pf_frent *); struct pf_frent *pf_frent_previous(struct pf_fragment *, struct pf_frent *); struct pf_fragment *pf_fillup_fragment(struct pf_frnode *, u_int32_t, struct pf_frent *, u_short *); struct mbuf *pf_join_fragment(struct pf_fragment *); int pf_reassemble(struct mbuf **, int, u_short *); #ifdef INET6 int pf_reassemble6(struct mbuf **, struct ip6_frag *, u_int16_t, u_int16_t, int, u_short *); #endif /* INET6 */ /* Globals */ struct pool pf_frent_pl, pf_frag_pl, pf_frnode_pl; struct pool pf_state_scrub_pl; int pf_nfrents; struct mutex pf_frag_mtx; #define PF_FRAG_LOCK_INIT() mtx_init(&pf_frag_mtx, IPL_SOFTNET) #define PF_FRAG_LOCK() mtx_enter(&pf_frag_mtx) #define PF_FRAG_UNLOCK() mtx_leave(&pf_frag_mtx) void pf_normalize_init(void) { pool_init(&pf_frent_pl, sizeof(struct pf_frent), 0, IPL_SOFTNET, 0, "pffrent", NULL); pool_init(&pf_frnode_pl, sizeof(struct pf_frnode), 0, IPL_SOFTNET, 0, "pffrnode", NULL); pool_init(&pf_frag_pl, sizeof(struct pf_fragment), 0, IPL_SOFTNET, 0, "pffrag", NULL); pool_init(&pf_state_scrub_pl, sizeof(struct pf_state_scrub), 0, IPL_SOFTNET, 0, "pfstscr", NULL); pool_sethiwat(&pf_frag_pl, PFFRAG_FRAG_HIWAT); pool_sethardlimit(&pf_frent_pl, PFFRAG_FRENT_HIWAT, NULL, 0); TAILQ_INIT(&pf_fragqueue); PF_FRAG_LOCK_INIT(); } static __inline int pf_frnode_compare(struct pf_frnode *a, struct pf_frnode *b) { int diff; if ((diff = a->fn_proto - b->fn_proto) != 0) return (diff); if ((diff = a->fn_af - b->fn_af) != 0) return (diff); if ((diff = pf_addr_compare(&a->fn_src, &b->fn_src, a->fn_af)) != 0) return (diff); if ((diff = pf_addr_compare(&a->fn_dst, &b->fn_dst, a->fn_af)) != 0) return (diff); return (0); } static __inline int pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b) { int diff; if ((diff = a->fr_id - b->fr_id) != 0) return (diff); return (0); } void pf_purge_expired_fragments(void) { struct pf_fragment *frag; int32_t expire; PF_ASSERT_UNLOCKED(); expire = getuptime() - pf_default_rule.timeout[PFTM_FRAG]; PF_FRAG_LOCK(); while ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) != NULL) { if (frag->fr_timeout > expire) break; DPFPRINTF(LOG_NOTICE, "expiring %d(%p)", frag->fr_id, frag); pf_free_fragment(frag); } PF_FRAG_UNLOCK(); } /* * Try to flush old fragments to make space for new ones */ void pf_flush_fragments(void) { struct pf_fragment *frag; int goal; goal = pf_nfrents * 9 / 10; DPFPRINTF(LOG_NOTICE, "trying to free > %d frents", pf_nfrents - goal); while (goal < pf_nfrents) { if ((frag = TAILQ_LAST(&pf_fragqueue, pf_fragqueue)) == NULL) break; pf_free_fragment(frag); } } /* * Remove a fragment from the fragment queue, free its fragment entries, * and free the fragment itself. */ void pf_free_fragment(struct pf_fragment *frag) { struct pf_frent *frent; struct pf_frnode *frnode; frnode = frag->fr_node; RB_REMOVE(pf_frag_tree, &frnode->fn_tree, frag); KASSERT(frnode->fn_fragments >= 1); frnode->fn_fragments--; if (frnode->fn_fragments == 0) { KASSERT(RB_EMPTY(&frnode->fn_tree)); RB_REMOVE(pf_frnode_tree, &pf_frnode_tree, frnode); pool_put(&pf_frnode_pl, frnode); } TAILQ_REMOVE(&pf_fragqueue, frag, frag_next); /* Free all fragment entries */ while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) { TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); m_freem(frent->fe_m); pool_put(&pf_frent_pl, frent); pf_nfrents--; } pool_put(&pf_frag_pl, frag); } struct pf_fragment * pf_find_fragment(struct pf_frnode *key, u_int32_t id) { struct pf_fragment *frag, idkey; struct pf_frnode *frnode; u_int32_t stale; frnode = RB_FIND(pf_frnode_tree, &pf_frnode_tree, key); if (frnode == NULL) return (NULL); KASSERT(frnode->fn_fragments >= 1); idkey.fr_id = id; frag = RB_FIND(pf_frag_tree, &frnode->fn_tree, &idkey); if (frag == NULL) return (NULL); /* * Limit the number of fragments we accept for each (proto,src,dst,af) * combination (aka pf_frnode), so we can deal better with a high rate * of fragments. Problem analysis is in RFC 4963. * Store the current generation for each pf_frnode in fn_gen and on * lookup discard 'stale' fragments (pf_fragment, based on the fr_gen * member). Instead of adding another button interpret the pf fragment * timeout in multiples of 200 fragments. This way the default of 60s * means: pf_fragment objects older than 60*200 = 12,000 generations * are considered stale. */ stale = pf_default_rule.timeout[PFTM_FRAG] * PF_FRAG_STALE; if ((frnode->fn_gen - frag->fr_gen) >= stale) { DPFPRINTF(LOG_NOTICE, "stale fragment %d(%p), gen %u, num %u", frag->fr_id, frag, frag->fr_gen, frnode->fn_fragments); pf_free_fragment(frag); return (NULL); } TAILQ_REMOVE(&pf_fragqueue, frag, frag_next); TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next); return (frag); } struct pf_frent * pf_create_fragment(u_short *reason) { struct pf_frent *frent; frent = pool_get(&pf_frent_pl, PR_NOWAIT); if (frent == NULL) { pf_flush_fragments(); frent = pool_get(&pf_frent_pl, PR_NOWAIT); if (frent == NULL) { REASON_SET(reason, PFRES_MEMORY); return (NULL); } } pf_nfrents++; return (frent); } /* * Calculate the additional holes that were created in the fragment * queue by inserting this fragment. A fragment in the middle * creates one more hole by splitting. For each connected side, * it loses one hole. * Fragment entry must be in the queue when calling this function. */ int pf_frent_holes(struct pf_frent *frent) { struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); struct pf_frent *next = TAILQ_NEXT(frent, fr_next); int holes = 1; if (prev == NULL) { if (frent->fe_off == 0) holes--; } else { KASSERT(frent->fe_off != 0); if (frent->fe_off == prev->fe_off + prev->fe_len) holes--; } if (next == NULL) { if (!frent->fe_mff) holes--; } else { KASSERT(frent->fe_mff); if (next->fe_off == frent->fe_off + frent->fe_len) holes--; } return holes; } static inline int pf_frent_index(struct pf_frent *frent) { /* * We have an array of 16 entry points to the queue. A full size * 65535 octet IP packet can have 8192 fragments. So the queue * traversal length is at most 512 and at most 16 entry points are * checked. We need 128 additional bytes on a 64 bit architecture. */ CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) == 16 - 1); CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1); return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS); } int pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent, struct pf_frent *prev) { CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff); int index; /* * A packet has at most 65536 octets. With 16 entry points, each one * spawns 4096 octets. We limit these to 64 fragments each, which * means on average every fragment must have at least 64 octets. */ index = pf_frent_index(frent); if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT) return ENOBUFS; frag->fr_entries[index]++; if (prev == NULL) { TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next); } else { KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off); TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next); } if (frag->fr_firstoff[index] == NULL) { KASSERT(prev == NULL || pf_frent_index(prev) < index); frag->fr_firstoff[index] = frent; } else { if (frent->fe_off < frag->fr_firstoff[index]->fe_off) { KASSERT(prev == NULL || pf_frent_index(prev) < index); frag->fr_firstoff[index] = frent; } else { KASSERT(prev != NULL); KASSERT(pf_frent_index(prev) == index); } } frag->fr_holes += pf_frent_holes(frent); return 0; } void pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent) { #ifdef DIAGNOSTIC struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); #endif struct pf_frent *next = TAILQ_NEXT(frent, fr_next); int index; frag->fr_holes -= pf_frent_holes(frent); index = pf_frent_index(frent); KASSERT(frag->fr_firstoff[index] != NULL); if (frag->fr_firstoff[index]->fe_off == frent->fe_off) { if (next == NULL) { frag->fr_firstoff[index] = NULL; } else { KASSERT(frent->fe_off + frent->fe_len <= next->fe_off); if (pf_frent_index(next) == index) { frag->fr_firstoff[index] = next; } else { frag->fr_firstoff[index] = NULL; } } } else { KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off); KASSERT(prev != NULL); KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off); KASSERT(pf_frent_index(prev) == index); } TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); KASSERT(frag->fr_entries[index] > 0); frag->fr_entries[index]--; } struct pf_frent * pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent) { struct pf_frent *prev, *next; int index; /* * If there are no fragments after frag, take the final one. Assume * that the global queue is not empty. */ prev = TAILQ_LAST(&frag->fr_queue, pf_fragq); KASSERT(prev != NULL); if (prev->fe_off <= frent->fe_off) return prev; /* * We want to find a fragment entry that is before frag, but still * close to it. Find the first fragment entry that is in the same * entry point or in the first entry point after that. As we have * already checked that there are entries behind frag, this will * succeed. */ for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS; index++) { prev = frag->fr_firstoff[index]; if (prev != NULL) break; } KASSERT(prev != NULL); /* * In prev we may have a fragment from the same entry point that is * before frent, or one that is just one position behind frent. * In the latter case, we go back one step and have the predecessor. * There may be none if the new fragment will be the first one. */ if (prev->fe_off > frent->fe_off) { prev = TAILQ_PREV(prev, pf_fragq, fr_next); if (prev == NULL) return NULL; KASSERT(prev->fe_off <= frent->fe_off); return prev; } /* * In prev is the first fragment of the entry point. The offset * of frag is behind it. Find the closest previous fragment. */ for (next = TAILQ_NEXT(prev, fr_next); next != NULL; next = TAILQ_NEXT(next, fr_next)) { if (next->fe_off > frent->fe_off) break; prev = next; } return prev; } struct pf_fragment * pf_fillup_fragment(struct pf_frnode *key, u_int32_t id, struct pf_frent *frent, u_short *reason) { struct pf_frent *after, *next, *prev; struct pf_fragment *frag; struct pf_frnode *frnode; u_int16_t total; /* No empty fragments */ if (frent->fe_len == 0) { DPFPRINTF(LOG_NOTICE, "bad fragment: len 0"); goto bad_fragment; } /* All fragments are 8 byte aligned */ if (frent->fe_mff && (frent->fe_len & 0x7)) { DPFPRINTF(LOG_NOTICE, "bad fragment: mff and len %d", frent->fe_len); goto bad_fragment; } /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET */ if (frent->fe_off + frent->fe_len > IP_MAXPACKET) { DPFPRINTF(LOG_NOTICE, "bad fragment: max packet %d", frent->fe_off + frent->fe_len); goto bad_fragment; } DPFPRINTF(LOG_INFO, key->fn_af == AF_INET ? "reass frag %d @ %d-%d" : "reass frag %#08x @ %d-%d", id, frent->fe_off, frent->fe_off + frent->fe_len); /* Fully buffer all of the fragments in this fragment queue */ frag = pf_find_fragment(key, id); /* Create a new reassembly queue for this packet */ if (frag == NULL) { frag = pool_get(&pf_frag_pl, PR_NOWAIT); if (frag == NULL) { pf_flush_fragments(); frag = pool_get(&pf_frag_pl, PR_NOWAIT); if (frag == NULL) { REASON_SET(reason, PFRES_MEMORY); goto drop_fragment; } } frnode = RB_FIND(pf_frnode_tree, &pf_frnode_tree, key); if (frnode == NULL) { frnode = pool_get(&pf_frnode_pl, PR_NOWAIT); if (frnode == NULL) { pf_flush_fragments(); frnode = pool_get(&pf_frnode_pl, PR_NOWAIT); if (frnode == NULL) { REASON_SET(reason, PFRES_MEMORY); pool_put(&pf_frag_pl, frag); goto drop_fragment; } } *frnode = *key; RB_INIT(&frnode->fn_tree); frnode->fn_fragments = 0; frnode->fn_gen = 0; } memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff)); memset(frag->fr_entries, 0, sizeof(frag->fr_entries)); TAILQ_INIT(&frag->fr_queue); frag->fr_id = id; frag->fr_timeout = getuptime(); frag->fr_gen = frnode->fn_gen++; frag->fr_maxlen = frent->fe_len; frag->fr_holes = 1; frag->fr_node = frnode; /* RB_INSERT cannot fail as pf_find_fragment() found nothing */ RB_INSERT(pf_frag_tree, &frnode->fn_tree, frag); frnode->fn_fragments++; if (frnode->fn_fragments == 1) RB_INSERT(pf_frnode_tree, &pf_frnode_tree, frnode); TAILQ_INSERT_HEAD(&pf_fragqueue, frag, frag_next); /* We do not have a previous fragment, cannot fail. */ pf_frent_insert(frag, frent, NULL); return (frag); } KASSERT(!TAILQ_EMPTY(&frag->fr_queue)); KASSERT(frag->fr_node); /* Remember maximum fragment len for refragmentation */ if (frent->fe_len > frag->fr_maxlen) frag->fr_maxlen = frent->fe_len; /* Maximum data we have seen already */ total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; /* Non terminal fragments must have more fragments flag */ if (frent->fe_off + frent->fe_len < total && !frent->fe_mff) goto free_ipv6_fragment; /* Check if we saw the last fragment already */ if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) { if (frent->fe_off + frent->fe_len > total || (frent->fe_off + frent->fe_len == total && frent->fe_mff)) goto free_ipv6_fragment; } else { if (frent->fe_off + frent->fe_len == total && !frent->fe_mff) goto free_ipv6_fragment; } /* Find neighbors for newly inserted fragment */ prev = pf_frent_previous(frag, frent); if (prev == NULL) { after = TAILQ_FIRST(&frag->fr_queue); KASSERT(after != NULL); } else { after = TAILQ_NEXT(prev, fr_next); } if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) { u_int16_t precut; #ifdef INET6 if (frag->fr_node->fn_af == AF_INET6) goto free_ipv6_fragment; #endif /* INET6 */ precut = prev->fe_off + prev->fe_len - frent->fe_off; if (precut >= frent->fe_len) { DPFPRINTF(LOG_NOTICE, "new frag overlapped"); goto drop_fragment; } DPFPRINTF(LOG_NOTICE, "frag head overlap %d", precut); m_adj(frent->fe_m, precut); frent->fe_off += precut; frent->fe_len -= precut; } for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off; after = next) { u_int16_t aftercut; #ifdef INET6 if (frag->fr_node->fn_af == AF_INET6) goto free_ipv6_fragment; #endif /* INET6 */ aftercut = frent->fe_off + frent->fe_len - after->fe_off; if (aftercut < after->fe_len) { int old_index, new_index; DPFPRINTF(LOG_NOTICE, "frag tail overlap %d", aftercut); m_adj(after->fe_m, aftercut); old_index = pf_frent_index(after); after->fe_off += aftercut; after->fe_len -= aftercut; new_index = pf_frent_index(after); if (old_index != new_index) { DPFPRINTF(LOG_DEBUG, "frag index %d, new %d", old_index, new_index); /* Fragment switched queue as fe_off changed */ after->fe_off -= aftercut; after->fe_len += aftercut; /* Remove restored fragment from old queue */ pf_frent_remove(frag, after); after->fe_off += aftercut; after->fe_len -= aftercut; /* Insert into correct queue */ if (pf_frent_insert(frag, after, prev)) { DPFPRINTF(LOG_WARNING, "fragment requeue limit exceeded"); m_freem(after->fe_m); pool_put(&pf_frent_pl, after); pf_nfrents--; /* There is not way to recover */ goto free_fragment; } } break; } /* This fragment is completely overlapped, lose it */ DPFPRINTF(LOG_NOTICE, "old frag overlapped"); next = TAILQ_NEXT(after, fr_next); pf_frent_remove(frag, after); m_freem(after->fe_m); pool_put(&pf_frent_pl, after); pf_nfrents--; } /* If part of the queue gets too long, there is not way to recover. */ if (pf_frent_insert(frag, frent, prev)) { DPFPRINTF(LOG_WARNING, "fragment queue limit exceeded"); goto free_fragment; } return (frag); free_ipv6_fragment: if (frag->fr_node->fn_af == AF_INET) goto bad_fragment; /* * RFC 5722, Errata 3089: When reassembling an IPv6 datagram, if one * or more its constituent fragments is determined to be an overlapping * fragment, the entire datagram (and any constituent fragments) MUST * be silently discarded. */ DPFPRINTF(LOG_NOTICE, "flush overlapping fragments"); free_fragment: pf_free_fragment(frag); bad_fragment: REASON_SET(reason, PFRES_FRAG); drop_fragment: pool_put(&pf_frent_pl, frent); pf_nfrents--; return (NULL); } struct mbuf * pf_join_fragment(struct pf_fragment *frag) { struct mbuf *m, *m2; struct pf_frent *frent; frent = TAILQ_FIRST(&frag->fr_queue); TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); m = frent->fe_m; /* Strip off any trailing bytes */ if ((frent->fe_hdrlen + frent->fe_len) < m->m_pkthdr.len) m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len); /* Magic from ip_input */ m2 = m->m_next; m->m_next = NULL; m_cat(m, m2); pool_put(&pf_frent_pl, frent); pf_nfrents--; while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) { TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); m2 = frent->fe_m; /* Strip off ip header */ m_adj(m2, frent->fe_hdrlen); /* Strip off any trailing bytes */ if (frent->fe_len < m2->m_pkthdr.len) m_adj(m2, frent->fe_len - m2->m_pkthdr.len); pool_put(&pf_frent_pl, frent); pf_nfrents--; m_removehdr(m2); m_cat(m, m2); } /* Remove from fragment queue */ pf_free_fragment(frag); return (m); } int pf_reassemble(struct mbuf **m0, int dir, u_short *reason) { struct mbuf *m = *m0; struct ip *ip = mtod(m, struct ip *); struct pf_frent *frent; struct pf_fragment *frag; struct pf_frnode key; u_int16_t total, hdrlen; /* Get an entry for the fragment queue */ if ((frent = pf_create_fragment(reason)) == NULL) return (PF_DROP); frent->fe_m = m; frent->fe_hdrlen = ip->ip_hl << 2; frent->fe_extoff = 0; frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2); frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3; frent->fe_mff = ntohs(ip->ip_off) & IP_MF; key.fn_src.v4 = ip->ip_src; key.fn_dst.v4 = ip->ip_dst; key.fn_af = AF_INET; key.fn_proto = ip->ip_p; key.fn_direction = dir; if ((frag = pf_fillup_fragment(&key, ip->ip_id, frent, reason)) == NULL) return (PF_DROP); /* The mbuf is part of the fragment entry, no direct free or access */ m = *m0 = NULL; if (frag->fr_holes) { DPFPRINTF(LOG_DEBUG, "frag %d, holes %d", frag->fr_id, frag->fr_holes); return (PF_PASS); /* drop because *m0 is NULL, no error */ } /* We have all the data */ frent = TAILQ_FIRST(&frag->fr_queue); KASSERT(frent != NULL); total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; hdrlen = frent->fe_hdrlen; m = *m0 = pf_join_fragment(frag); frag = NULL; m_calchdrlen(m); ip = mtod(m, struct ip *); ip->ip_len = htons(hdrlen + total); ip->ip_off &= ~(IP_MF|IP_OFFMASK); if (hdrlen + total > IP_MAXPACKET) { DPFPRINTF(LOG_NOTICE, "drop: too big: %d", total); ip->ip_len = 0; REASON_SET(reason, PFRES_SHORT); /* PF_DROP requires a valid mbuf *m0 in pf_test() */ return (PF_DROP); } DPFPRINTF(LOG_INFO, "complete: %p(%d)", m, ntohs(ip->ip_len)); return (PF_PASS); } #ifdef INET6 int pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr, u_int16_t hdrlen, u_int16_t extoff, int dir, u_short *reason) { struct mbuf *m = *m0; struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); struct m_tag *mtag; struct pf_fragment_tag *ftag; struct pf_frent *frent; struct pf_fragment *frag; struct pf_frnode key; int off; u_int16_t total, maxlen; u_int8_t proto; /* Get an entry for the fragment queue */ if ((frent = pf_create_fragment(reason)) == NULL) return (PF_DROP); frent->fe_m = m; frent->fe_hdrlen = hdrlen; frent->fe_extoff = extoff; frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen; frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG; key.fn_src.v6 = ip6->ip6_src; key.fn_dst.v6 = ip6->ip6_dst; key.fn_af = AF_INET6; /* Only the first fragment's protocol is relevant */ key.fn_proto = 0; key.fn_direction = dir; if ((frag = pf_fillup_fragment(&key, fraghdr->ip6f_ident, frent, reason)) == NULL) return (PF_DROP); /* The mbuf is part of the fragment entry, no direct free or access */ m = *m0 = NULL; if (frag->fr_holes) { DPFPRINTF(LOG_DEBUG, "frag %#08x, holes %d", frag->fr_id, frag->fr_holes); return (PF_PASS); /* drop because *m0 is NULL, no error */ } /* We have all the data */ frent = TAILQ_FIRST(&frag->fr_queue); KASSERT(frent != NULL); extoff = frent->fe_extoff; maxlen = frag->fr_maxlen; total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag); m = *m0 = pf_join_fragment(frag); frag = NULL; /* Take protocol from first fragment header */ if ((m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off)) == NULL) panic("%s: short frag mbuf chain", __func__); proto = *(mtod(m, caddr_t) + off); m = *m0; /* Delete frag6 header */ if (frag6_deletefraghdr(m, hdrlen) != 0) goto fail; m_calchdrlen(m); if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED, sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) goto fail; ftag = (struct pf_fragment_tag *)(mtag + 1); ftag->ft_hdrlen = hdrlen; ftag->ft_extoff = extoff; ftag->ft_maxlen = maxlen; m_tag_prepend(m, mtag); ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total); if (extoff) { /* Write protocol into next field of last extension header */ if ((m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), &off)) == NULL) panic("%s: short ext mbuf chain", __func__); *(mtod(m, caddr_t) + off) = proto; m = *m0; } else ip6->ip6_nxt = proto; if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) { DPFPRINTF(LOG_NOTICE, "drop: too big: %d", total); ip6->ip6_plen = 0; REASON_SET(reason, PFRES_SHORT); /* PF_DROP requires a valid mbuf *m0 in pf_test6() */ return (PF_DROP); } DPFPRINTF(LOG_INFO, "complete: %p(%d)", m, ntohs(ip6->ip6_plen)); return (PF_PASS); fail: REASON_SET(reason, PFRES_MEMORY); /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later */ return (PF_DROP); } int pf_refragment6(struct mbuf **m0, struct m_tag *mtag, struct sockaddr_in6 *dst, struct ifnet *ifp, struct rtentry *rt) { struct mbuf *m = *m0; struct mbuf_list fml; struct pf_fragment_tag *ftag = (struct pf_fragment_tag *)(mtag + 1); u_int32_t mtu; u_int16_t hdrlen, extoff, maxlen; u_int8_t proto; int error; hdrlen = ftag->ft_hdrlen; extoff = ftag->ft_extoff; maxlen = ftag->ft_maxlen; m_tag_delete(m, mtag); mtag = NULL; ftag = NULL; /* Checksum must be calculated for the whole packet */ in6_proto_cksum_out(m, NULL); if (extoff) { int off; /* Use protocol from next field of last extension header */ if ((m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), &off)) == NULL) panic("%s: short ext mbuf chain", __func__); proto = *(mtod(m, caddr_t) + off); *(mtod(m, caddr_t) + off) = IPPROTO_FRAGMENT; m = *m0; } else { struct ip6_hdr *hdr; hdr = mtod(m, struct ip6_hdr *); proto = hdr->ip6_nxt; hdr->ip6_nxt = IPPROTO_FRAGMENT; } /* * Maxlen may be less than 8 iff there was only a single * fragment. As it was fragmented before, add a fragment * header also for a single fragment. If total or maxlen * is less than 8, ip6_fragment() will return EMSGSIZE and * we drop the packet. */ mtu = hdrlen + sizeof(struct ip6_frag) + maxlen; error = ip6_fragment(m, &fml, hdrlen, proto, mtu); *m0 = NULL; /* ip6_fragment() has consumed original packet. */ if (error) { DPFPRINTF(LOG_NOTICE, "refragment error %d", error); return (PF_DROP); } while ((m = ml_dequeue(&fml)) != NULL) { m->m_pkthdr.pf.flags |= PF_TAG_REFRAGMENTED; if (ifp == NULL) { ip6_forward(m, NULL, 0); } else if ((u_long)m->m_pkthdr.len <= ifp->if_mtu) { ifp->if_output(ifp, m, sin6tosa(dst), rt); } else { icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); } } return (PF_PASS); } #endif /* INET6 */ int pf_normalize_ip(struct pf_pdesc *pd, u_short *reason) { struct ip *h = mtod(pd->m, struct ip *); u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; u_int16_t mff = (ntohs(h->ip_off) & IP_MF); if (!fragoff && !mff) goto no_fragment; /* Clear IP_DF if we're in no-df mode */ if (pf_status.reass & PF_REASS_NODF && h->ip_off & htons(IP_DF)) h->ip_off &= htons(~IP_DF); /* We're dealing with a fragment now. Don't allow fragments * with IP_DF to enter the cache. If the flag was cleared by * no-df above, fine. Otherwise drop it. */ if (h->ip_off & htons(IP_DF)) { DPFPRINTF(LOG_NOTICE, "bad fragment: IP_DF"); REASON_SET(reason, PFRES_FRAG); return (PF_DROP); } if (!pf_status.reass) return (PF_PASS); /* no reassembly */ /* Returns PF_DROP or m is NULL or completely reassembled mbuf */ PF_FRAG_LOCK(); if (pf_reassemble(&pd->m, pd->dir, reason) != PF_PASS) { PF_FRAG_UNLOCK(); return (PF_DROP); } PF_FRAG_UNLOCK(); if (pd->m == NULL) return (PF_PASS); /* packet has been reassembled, no error */ h = mtod(pd->m, struct ip *); no_fragment: /* At this point, only IP_DF is allowed in ip_off */ if (h->ip_off & ~htons(IP_DF)) h->ip_off &= htons(IP_DF); return (PF_PASS); } #ifdef INET6 int pf_normalize_ip6(struct pf_pdesc *pd, u_short *reason) { struct ip6_frag frag; if (pd->fragoff == 0) goto no_fragment; if (!pf_pull_hdr(pd->m, pd->fragoff, &frag, sizeof(frag), NULL, reason, AF_INET6)) return (PF_DROP); if (!pf_status.reass) return (PF_PASS); /* no reassembly */ /* Returns PF_DROP or m is NULL or completely reassembled mbuf */ PF_FRAG_LOCK(); if (pf_reassemble6(&pd->m, &frag, pd->fragoff + sizeof(frag), pd->extoff, pd->dir, reason) != PF_PASS) { PF_FRAG_UNLOCK(); return (PF_DROP); } PF_FRAG_UNLOCK(); if (pd->m == NULL) return (PF_PASS); /* packet has been reassembled, no error */ no_fragment: return (PF_PASS); } #endif /* INET6 */ int pf_normalize_tcp_alloc(struct pf_state_peer *src) { src->scrub = pool_get(&pf_state_scrub_pl, PR_NOWAIT | PR_ZERO); if (src->scrub == NULL) return (ENOMEM); return (0); } int pf_normalize_tcp(struct pf_pdesc *pd) { struct tcphdr *th = &pd->hdr.tcp; u_short reason; u_int8_t flags; u_int rewrite = 0; flags = th->th_flags; if (flags & TH_SYN) { /* Illegal packet */ if (flags & TH_RST) goto tcp_drop; if (flags & TH_FIN) /* XXX why clear instead of drop? */ flags &= ~TH_FIN; } else { /* Illegal packet */ if (!(flags & (TH_ACK|TH_RST))) goto tcp_drop; } if (!(flags & TH_ACK)) { /* These flags are only valid if ACK is set */ if (flags & (TH_FIN|TH_PUSH|TH_URG)) goto tcp_drop; } /* If flags changed, or reserved data set, then adjust */ if (flags != th->th_flags || th->th_x2 != 0) { /* hack: set 4-bit th_x2 = 0 */ u_int8_t *th_off = (u_int8_t*)(&th->th_ack+1); pf_patch_8(pd, th_off, th->th_off << 4, PF_HI); pf_patch_8(pd, &th->th_flags, flags, PF_LO); rewrite = 1; } /* Remove urgent pointer, if TH_URG is not set */ if (!(flags & TH_URG) && th->th_urp) { pf_patch_16(pd, &th->th_urp, 0); rewrite = 1; } /* copy back packet headers if we sanitized */ if (rewrite) { m_copyback(pd->m, pd->off, sizeof(*th), th, M_NOWAIT); } return (PF_PASS); tcp_drop: REASON_SET(&reason, PFRES_NORM); return (PF_DROP); } int pf_normalize_tcp_init(struct pf_pdesc *pd, struct pf_state_peer *src) { struct tcphdr *th = &pd->hdr.tcp; u_int32_t tsval, tsecr; int olen; u_int8_t opts[MAX_TCPOPTLEN], *opt; KASSERT(src->scrub == NULL); if (pf_normalize_tcp_alloc(src) != 0) return (1); switch (pd->af) { case AF_INET: { struct ip *h = mtod(pd->m, struct ip *); src->scrub->pfss_ttl = h->ip_ttl; break; } #ifdef INET6 case AF_INET6: { struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *); src->scrub->pfss_ttl = h->ip6_hlim; break; } #endif /* INET6 */ default: unhandled_af(pd->af); } /* * All normalizations below are only begun if we see the start of * the connections. They must all set an enabled bit in pfss_flags */ if ((th->th_flags & TH_SYN) == 0) return (0); olen = (th->th_off << 2) - sizeof(*th); if (olen < TCPOLEN_TIMESTAMP || !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, olen, NULL, NULL, pd->af)) return (0); opt = opts; while ((opt = pf_find_tcpopt(opt, opts, olen, TCPOPT_TIMESTAMP, TCPOLEN_TIMESTAMP)) != NULL) { src->scrub->pfss_flags |= PFSS_TIMESTAMP; src->scrub->pfss_ts_mod = arc4random(); /* note PFSS_PAWS not set yet */ memcpy(&tsval, &opt[2], sizeof(u_int32_t)); memcpy(&tsecr, &opt[6], sizeof(u_int32_t)); src->scrub->pfss_tsval0 = ntohl(tsval); src->scrub->pfss_tsval = ntohl(tsval); src->scrub->pfss_tsecr = ntohl(tsecr); getmicrouptime(&src->scrub->pfss_last); opt += opt[1]; } return (0); } void pf_normalize_tcp_cleanup(struct pf_state *state) { if (state->src.scrub) pool_put(&pf_state_scrub_pl, state->src.scrub); if (state->dst.scrub) pool_put(&pf_state_scrub_pl, state->dst.scrub); /* Someday... flush the TCP segment reassembly descriptors. */ } int pf_normalize_tcp_stateful(struct pf_pdesc *pd, u_short *reason, struct pf_state *state, struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback) { struct tcphdr *th = &pd->hdr.tcp; struct timeval uptime; u_int tsval_from_last; u_int32_t tsval, tsecr; int copyback = 0; int got_ts = 0; int olen; u_int8_t opts[MAX_TCPOPTLEN], *opt; KASSERT(src->scrub || dst->scrub); /* * Enforce the minimum TTL seen for this connection. Negate a common * technique to evade an intrusion detection system and confuse * firewall state code. */ switch (pd->af) { case AF_INET: if (src->scrub) { struct ip *h = mtod(pd->m, struct ip *); if (h->ip_ttl > src->scrub->pfss_ttl) src->scrub->pfss_ttl = h->ip_ttl; h->ip_ttl = src->scrub->pfss_ttl; } break; #ifdef INET6 case AF_INET6: if (src->scrub) { struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *); if (h->ip6_hlim > src->scrub->pfss_ttl) src->scrub->pfss_ttl = h->ip6_hlim; h->ip6_hlim = src->scrub->pfss_ttl; } break; #endif /* INET6 */ default: unhandled_af(pd->af); } olen = (th->th_off << 2) - sizeof(*th); if (olen >= TCPOLEN_TIMESTAMP && ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) || (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) && pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, olen, NULL, NULL, pd->af)) { /* Modulate the timestamps. Can be used for NAT detection, OS * uptime determination or reboot detection. */ opt = opts; while ((opt = pf_find_tcpopt(opt, opts, olen, TCPOPT_TIMESTAMP, TCPOLEN_TIMESTAMP)) != NULL) { u_int8_t *ts = opt + 2; u_int8_t *tsr = opt + 6; if (got_ts) { /* Huh? Multiple timestamps!? */ if (pf_status.debug >= LOG_NOTICE) { log(LOG_NOTICE, "pf: %s: multiple TS??", __func__); pf_print_state(state); addlog("\n"); } REASON_SET(reason, PFRES_TS); return (PF_DROP); } memcpy(&tsval, ts, sizeof(u_int32_t)); memcpy(&tsecr, tsr, sizeof(u_int32_t)); /* modulate TS */ if (tsval && src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) { /* tsval used further on */ tsval = ntohl(tsval); pf_patch_32_unaligned(pd, ts, htonl(tsval + src->scrub->pfss_ts_mod), PF_ALGNMNT(ts - opts)); copyback = 1; } /* modulate TS reply if any (!0) */ if (tsecr && dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) { /* tsecr used further on */ tsecr = ntohl(tsecr) - dst->scrub->pfss_ts_mod; pf_patch_32_unaligned(pd, tsr, htonl(tsecr), PF_ALGNMNT(tsr - opts)); copyback = 1; } got_ts = 1; opt += opt[1]; } if (copyback) { /* Copyback the options, caller copies back header */ *writeback = 1; m_copyback(pd->m, pd->off + sizeof(*th), olen, opts, M_NOWAIT); } } /* * Must invalidate PAWS checks on connections idle for too long. * The fastest allowed timestamp clock is 1ms. That turns out to * be about 24 days before it wraps. XXX Right now our lowerbound * TS echo check only works for the first 12 days of a connection * when the TS has exhausted half its 32bit space */ #define TS_MAX_IDLE (24*24*60*60) #define TS_MAX_CONN (12*24*60*60) /* XXX remove when better tsecr check */ getmicrouptime(&uptime); if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) && (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE || getuptime() - state->creation > TS_MAX_CONN)) { if (pf_status.debug >= LOG_NOTICE) { log(LOG_NOTICE, "pf: src idled out of PAWS "); pf_print_state(state); addlog("\n"); } src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS) | PFSS_PAWS_IDLED; } if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) && uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) { if (pf_status.debug >= LOG_NOTICE) { log(LOG_NOTICE, "pf: dst idled out of PAWS "); pf_print_state(state); addlog("\n"); } dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS) | PFSS_PAWS_IDLED; } if (got_ts && src->scrub && dst->scrub && (src->scrub->pfss_flags & PFSS_PAWS) && (dst->scrub->pfss_flags & PFSS_PAWS)) { /* Validate that the timestamps are "in-window". * RFC1323 describes TCP Timestamp options that allow * measurement of RTT (round trip time) and PAWS * (protection against wrapped sequence numbers). PAWS * gives us a set of rules for rejecting packets on * long fat pipes (packets that were somehow delayed * in transit longer than the time it took to send the * full TCP sequence space of 4Gb). We can use these * rules and infer a few others that will let us treat * the 32bit timestamp and the 32bit echoed timestamp * as sequence numbers to prevent a blind attacker from * inserting packets into a connection. * * RFC1323 tells us: * - The timestamp on this packet must be greater than * or equal to the last value echoed by the other * endpoint. The RFC says those will be discarded * since it is a dup that has already been acked. * This gives us a lowerbound on the timestamp. * timestamp >= other last echoed timestamp * - The timestamp will be less than or equal to * the last timestamp plus the time between the * last packet and now. The RFC defines the max * clock rate as 1ms. We will allow clocks to be * up to 10% fast and will allow a total difference * or 30 seconds due to a route change. And this * gives us an upperbound on the timestamp. * timestamp <= last timestamp + max ticks * We have to be careful here. Windows will send an * initial timestamp of zero and then initialize it * to a random value after the 3whs; presumably to * avoid a DoS by having to call an expensive RNG * during a SYN flood. Proof MS has at least one * good security geek. * * - The TCP timestamp option must also echo the other * endpoints timestamp. The timestamp echoed is the * one carried on the earliest unacknowledged segment * on the left edge of the sequence window. The RFC * states that the host will reject any echoed * timestamps that were larger than any ever sent. * This gives us an upperbound on the TS echo. * tescr <= largest_tsval * - The lowerbound on the TS echo is a little more * tricky to determine. The other endpoint's echoed * values will not decrease. But there may be * network conditions that re-order packets and * cause our view of them to decrease. For now the * only lowerbound we can safely determine is that * the TS echo will never be less than the original * TS. XXX There is probably a better lowerbound. * Remove TS_MAX_CONN with better lowerbound check. * tescr >= other original TS * * It is also important to note that the fastest * timestamp clock of 1ms will wrap its 32bit space in * 24 days. So we just disable TS checking after 24 * days of idle time. We actually must use a 12d * connection limit until we can come up with a better * lowerbound to the TS echo check. */ struct timeval delta_ts; int ts_fudge; /* * PFTM_TS_DIFF is how many seconds of leeway to allow * a host's timestamp. This can happen if the previous * packet got delayed in transit for much longer than * this packet. */ if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0) ts_fudge = pf_default_rule.timeout[PFTM_TS_DIFF]; /* Calculate max ticks since the last timestamp */ #define TS_MAXFREQ 1100 /* RFC max TS freq of 1Khz + 10% skew */ #define TS_MICROSECS 1000000 /* microseconds per second */ timersub(&uptime, &src->scrub->pfss_last, &delta_ts); tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ; tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ); if ((src->state >= TCPS_ESTABLISHED && dst->state >= TCPS_ESTABLISHED) && (SEQ_LT(tsval, dst->scrub->pfss_tsecr) || SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) || (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) || SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) { /* Bad RFC1323 implementation or an insertion attack. * * - Solaris 2.6 and 2.7 are known to send another ACK * after the FIN,FIN|ACK,ACK closing that carries * an old timestamp. */ DPFPRINTF(LOG_NOTICE, "Timestamp failed %c%c%c%c", SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ', SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ? '1' : ' ', SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ', SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '); DPFPRINTF(LOG_NOTICE, " tsval: %u tsecr: %u " "+ticks: %u idle: %llu.%06lus", tsval, tsecr, tsval_from_last, (long long)delta_ts.tv_sec, delta_ts.tv_usec); DPFPRINTF(LOG_NOTICE, " src->tsval: %u tsecr: %u", src->scrub->pfss_tsval, src->scrub->pfss_tsecr); DPFPRINTF(LOG_NOTICE, " dst->tsval: %u tsecr: %u " "tsval0: %u", dst->scrub->pfss_tsval, dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0); if (pf_status.debug >= LOG_NOTICE) { log(LOG_NOTICE, "pf: "); pf_print_state(state); pf_print_flags(th->th_flags); addlog("\n"); } REASON_SET(reason, PFRES_TS); return (PF_DROP); } /* XXX I'd really like to require tsecr but it's optional */ } else if (!got_ts && (th->th_flags & TH_RST) == 0 && ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED) || pd->p_len > 0 || (th->th_flags & TH_SYN)) && src->scrub && dst->scrub && (src->scrub->pfss_flags & PFSS_PAWS) && (dst->scrub->pfss_flags & PFSS_PAWS)) { /* Didn't send a timestamp. Timestamps aren't really useful * when: * - connection opening or closing (often not even sent). * but we must not let an attacker to put a FIN on a * data packet to sneak it through our ESTABLISHED check. * - on a TCP reset. RFC suggests not even looking at TS. * - on an empty ACK. The TS will not be echoed so it will * probably not help keep the RTT calculation in sync and * there isn't as much danger when the sequence numbers * got wrapped. So some stacks don't include TS on empty * ACKs :-( * * To minimize the disruption to mostly RFC1323 conformant * stacks, we will only require timestamps on data packets. * * And what do ya know, we cannot require timestamps on data * packets. There appear to be devices that do legitimate * TCP connection hijacking. There are HTTP devices that allow * a 3whs (with timestamps) and then buffer the HTTP request. * If the intermediate device has the HTTP response cache, it * will spoof the response but not bother timestamping its * packets. So we can look for the presence of a timestamp in * the first data packet and if there, require it in all future * packets. */ if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) { /* * Hey! Someone tried to sneak a packet in. Or the * stack changed its RFC1323 behavior?!?! */ if (pf_status.debug >= LOG_NOTICE) { log(LOG_NOTICE, "pf: did not receive expected RFC1323 " "timestamp"); pf_print_state(state); pf_print_flags(th->th_flags); addlog("\n"); } REASON_SET(reason, PFRES_TS); return (PF_DROP); } } /* * We will note if a host sends his data packets with or without * timestamps. And require all data packets to contain a timestamp * if the first does. PAWS implicitly requires that all data packets be * timestamped. But I think there are middle-man devices that hijack * TCP streams immediately after the 3whs and don't timestamp their * packets (seen in a WWW accelerator or cache). */ if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags & (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) { if (got_ts) src->scrub->pfss_flags |= PFSS_DATA_TS; else { src->scrub->pfss_flags |= PFSS_DATA_NOTS; if (pf_status.debug >= LOG_NOTICE && dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) { /* Don't warn if other host rejected RFC1323 */ log(LOG_NOTICE, "pf: broken RFC1323 stack did not " "timestamp data packet. Disabled PAWS " "security."); pf_print_state(state); pf_print_flags(th->th_flags); addlog("\n"); } } } /* * Update PAWS values */ if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags & (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) { getmicrouptime(&src->scrub->pfss_last); if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) || (src->scrub->pfss_flags & PFSS_PAWS) == 0) src->scrub->pfss_tsval = tsval; if (tsecr) { if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) || (src->scrub->pfss_flags & PFSS_PAWS) == 0) src->scrub->pfss_tsecr = tsecr; if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 && (SEQ_LT(tsval, src->scrub->pfss_tsval0) || src->scrub->pfss_tsval0 == 0)) { /* tsval0 MUST be the lowest timestamp */ src->scrub->pfss_tsval0 = tsval; } /* Only fully initialized after a TS gets echoed */ if ((src->scrub->pfss_flags & PFSS_PAWS) == 0) src->scrub->pfss_flags |= PFSS_PAWS; } } /* I have a dream.... TCP segment reassembly.... */ return (0); } int pf_normalize_mss(struct pf_pdesc *pd, u_int16_t maxmss) { int olen, optsoff; u_int8_t opts[MAX_TCPOPTLEN], *opt; olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); optsoff = pd->off + sizeof(struct tcphdr); if (olen < TCPOLEN_MAXSEG || !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af)) return (0); opt = opts; while ((opt = pf_find_tcpopt(opt, opts, olen, TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) { u_int16_t mss; u_int8_t *mssp = opt + 2; memcpy(&mss, mssp, sizeof(mss)); if (ntohs(mss) > maxmss) { size_t mssoffopts = mssp - opts; pf_patch_16_unaligned(pd, &mss, htons(maxmss), PF_ALGNMNT(mssoffopts)); m_copyback(pd->m, optsoff + mssoffopts, sizeof(mss), &mss, M_NOWAIT); m_copyback(pd->m, pd->off, sizeof(struct tcphdr), &pd->hdr.tcp, M_NOWAIT); } opt += opt[1]; } return (0); } void pf_scrub(struct mbuf *m, u_int16_t flags, sa_family_t af, u_int8_t min_ttl, u_int8_t tos) { struct ip *h = mtod(m, struct ip *); #ifdef INET6 struct ip6_hdr *h6 = mtod(m, struct ip6_hdr *); #endif /* INET6 */ u_int16_t old; /* Clear IP_DF if no-df was requested */ if (flags & PFSTATE_NODF && af == AF_INET && h->ip_off & htons(IP_DF)) { old = h->ip_off; h->ip_off &= htons(~IP_DF); pf_cksum_fixup(&h->ip_sum, old, h->ip_off, 0); } /* Enforce a minimum ttl, may cause endless packet loops */ if (min_ttl && af == AF_INET && h->ip_ttl < min_ttl) { old = h->ip_ttl; h->ip_ttl = min_ttl; pf_cksum_fixup(&h->ip_sum, old, h->ip_ttl, 0); } #ifdef INET6 if (min_ttl && af == AF_INET6 && h6->ip6_hlim < min_ttl) h6->ip6_hlim = min_ttl; #endif /* INET6 */ /* Enforce tos */ if (flags & PFSTATE_SETTOS) { if (af == AF_INET) { /* * ip_tos is 8 bit field at offset 1. Use 16 bit value * at offset 0. */ old = *(u_int16_t *)h; h->ip_tos = tos | (h->ip_tos & IPTOS_ECN_MASK); pf_cksum_fixup(&h->ip_sum, old, *(u_int16_t *)h, 0); } #ifdef INET6 if (af == AF_INET6) { /* drugs are unable to explain such idiocy */ h6->ip6_flow &= ~htonl(0x0fc00000); h6->ip6_flow |= htonl(((u_int32_t)tos) << 20); } #endif /* INET6 */ } /* random-id, but not for fragments */ if (flags & PFSTATE_RANDOMID && af == AF_INET && !(h->ip_off & ~htons(IP_DF))) { old = h->ip_id; h->ip_id = htons(ip_randomid()); pf_cksum_fixup(&h->ip_sum, old, h->ip_id, 0); } }