/* $OpenBSD: radix.c,v 1.60 2021/03/10 10:21:48 jsg Exp $ */ /* $NetBSD: radix.c,v 1.20 2003/08/07 16:32:56 agc Exp $ */ /* * Copyright (c) 1988, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)radix.c 8.6 (Berkeley) 10/17/95 */ /* * Routines to build and maintain radix trees for routing lookups. */ #ifndef _KERNEL #include "kern_compat.h" #else #include #include #include #include #include #endif #include #define SALEN(sa) (*(u_char *)(sa)) /* * Read-only variables, allocated & filled during rn_init(). */ static char *rn_zeros; /* array of 0s */ static char *rn_ones; /* array of 1s */ static unsigned int max_keylen; /* size of the above arrays */ #define KEYLEN_LIMIT 64 /* maximum allowed keylen */ struct radix_node_head *mask_rnhead; /* head of shared mask tree */ struct pool rtmask_pool; /* pool for radix_mask structures */ static inline int rn_satisfies_leaf(char *, struct radix_node *, int); static inline int rn_lexobetter(void *, void *); static inline struct radix_mask *rn_new_radix_mask(struct radix_node *, struct radix_mask *); int rn_refines(void *, void *); int rn_inithead0(struct radix_node_head *, int); struct radix_node *rn_addmask(void *, int, int); struct radix_node *rn_insert(void *, struct radix_node_head *, int *, struct radix_node [2]); struct radix_node *rn_newpair(void *, int, struct radix_node[2]); void rn_link_dupedkey(struct radix_node *, struct radix_node *, int); static inline struct radix_node *rn_search(void *, struct radix_node *); struct radix_node *rn_search_m(void *, struct radix_node *, void *); int rn_add_dupedkey(struct radix_node *, struct radix_node_head *, struct radix_node [2], u_int8_t); void rn_fixup_nodes(struct radix_node *); static inline struct radix_node *rn_lift_node(struct radix_node *); void rn_add_radix_mask(struct radix_node *, int); int rn_del_radix_mask(struct radix_node *); static inline void rn_swap_nodes(struct radix_node *, struct radix_node *); /* * The data structure for the keys is a radix tree with one way * branching removed. The index rn_b at an internal node n represents a bit * position to be tested. The tree is arranged so that all descendants * of a node n have keys whose bits all agree up to position rn_b - 1. * (We say the index of n is rn_b.) * * There is at least one descendant which has a one bit at position rn_b, * and at least one with a zero there. * * A route is determined by a pair of key and mask. We require that the * bit-wise logical and of the key and mask to be the key. * We define the index of a route to associated with the mask to be * the first bit number in the mask where 0 occurs (with bit number 0 * representing the highest order bit). * * We say a mask is normal if every bit is 0, past the index of the mask. * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, * and m is a normal mask, then the route applies to every descendant of n. * If the index(m) < rn_b, this implies the trailing last few bits of k * before bit b are all 0, (and hence consequently true of every descendant * of n), so the route applies to all descendants of the node as well. * * Similar logic shows that a non-normal mask m such that * index(m) <= index(n) could potentially apply to many children of n. * Thus, for each non-host route, we attach its mask to a list at an internal * node as high in the tree as we can go. * * The present version of the code makes use of normal routes in short- * circuiting an explicit mask and compare operation when testing whether * a key satisfies a normal route, and also in remembering the unique leaf * that governs a subtree. */ static inline struct radix_node * rn_search(void *v_arg, struct radix_node *head) { struct radix_node *x = head; caddr_t v = v_arg; while (x->rn_b >= 0) { if (x->rn_bmask & v[x->rn_off]) x = x->rn_r; else x = x->rn_l; } return (x); } struct radix_node * rn_search_m(void *v_arg, struct radix_node *head, void *m_arg) { struct radix_node *x = head; caddr_t v = v_arg; caddr_t m = m_arg; while (x->rn_b >= 0) { if ((x->rn_bmask & m[x->rn_off]) && (x->rn_bmask & v[x->rn_off])) x = x->rn_r; else x = x->rn_l; } return x; } int rn_refines(void *m_arg, void *n_arg) { caddr_t m = m_arg; caddr_t n = n_arg; caddr_t lim, lim2; int longer; int masks_are_equal = 1; lim2 = lim = n + *(u_char *)n; longer = (*(u_char *)n++) - (int)(*(u_char *)m++); if (longer > 0) lim -= longer; while (n < lim) { if (*n & ~(*m)) return 0; if (*n++ != *m++) masks_are_equal = 0; } while (n < lim2) if (*n++) return 0; if (masks_are_equal && (longer < 0)) for (lim2 = m - longer; m < lim2; ) if (*m++) return 1; return (!masks_are_equal); } /* return a perfect match if m_arg is set, else do a regular rn_match */ struct radix_node * rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head) { struct radix_node *x, *tm; caddr_t netmask = 0; if (m_arg) { tm = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off); if (tm == NULL) return (NULL); netmask = tm->rn_key; } x = rn_match(v_arg, head); if (x && netmask) { while (x && x->rn_mask != netmask) x = x->rn_dupedkey; } /* Never return internal nodes to the upper layer. */ if (x && (x->rn_flags & RNF_ROOT)) return (NULL); return x; } static inline int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip) { char *cp = trial; char *cp2 = leaf->rn_key; char *cp3 = leaf->rn_mask; char *cplim; int length; length = min(SALEN(cp), SALEN(cp2)); if (cp3 == NULL) cp3 = rn_ones; else length = min(length, SALEN(cp3)); cplim = cp + length; cp += skip; cp2 += skip; cp3 += skip; while (cp < cplim) { if ((*cp ^ *cp2) & *cp3) return 0; cp++, cp2++, cp3++; } return 1; } struct radix_node * rn_match(void *v_arg, struct radix_node_head *head) { caddr_t v = v_arg; caddr_t cp, cp2, cplim; struct radix_node *top = head->rnh_treetop; struct radix_node *saved_t, *t; int off = top->rn_off; int vlen, matched_off; int test, b, rn_b; t = rn_search(v, top); /* * See if we match exactly as a host destination * or at least learn how many bits match, for normal mask finesse. * * It doesn't hurt us to limit how many bytes to check * to the length of the mask, since if it matches we had a genuine * match and the leaf we have is the most specific one anyway; * if it didn't match with a shorter length it would fail * with a long one. This wins big for class B&C netmasks which * are probably the most common case... */ if (t->rn_mask) vlen = SALEN(t->rn_mask); else vlen = SALEN(v); cp = v + off; cp2 = t->rn_key + off; cplim = v + vlen; for (; cp < cplim; cp++, cp2++) if (*cp != *cp2) goto on1; /* * This extra grot is in case we are explicitly asked * to look up the default. Ugh! */ if (t->rn_flags & RNF_ROOT) t = t->rn_dupedkey; KASSERT(t == NULL || (t->rn_flags & RNF_ROOT) == 0); return t; on1: test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ for (b = 7; (test >>= 1) > 0;) b--; matched_off = cp - v; b += matched_off << 3; rn_b = -1 - b; /* * If there is a host route in a duped-key chain, it will be first. */ saved_t = t; if (t->rn_mask == NULL) t = t->rn_dupedkey; for (; t; t = t->rn_dupedkey) /* * Even if we don't match exactly as a host, * we may match if the leaf we wound up at is * a route to a net. */ if (t->rn_flags & RNF_NORMAL) { if (rn_b <= t->rn_b) { KASSERT((t->rn_flags & RNF_ROOT) == 0); return t; } } else if (rn_satisfies_leaf(v, t, matched_off)) { KASSERT((t->rn_flags & RNF_ROOT) == 0); return t; } t = saved_t; /* start searching up the tree */ do { struct radix_mask *m; t = t->rn_p; m = t->rn_mklist; while (m) { /* * If non-contiguous masks ever become important * we can restore the masking and open coding of * the search and satisfaction test and put the * calculation of "off" back before the "do". */ if (m->rm_flags & RNF_NORMAL) { if (rn_b <= m->rm_b) { KASSERT((m->rm_leaf->rn_flags & RNF_ROOT) == 0); return (m->rm_leaf); } } else { struct radix_node *x; off = min(t->rn_off, matched_off); x = rn_search_m(v, t, m->rm_mask); while (x && x->rn_mask != m->rm_mask) x = x->rn_dupedkey; if (x && rn_satisfies_leaf(v, x, off)) { KASSERT((x->rn_flags & RNF_ROOT) == 0); return x; } } m = m->rm_mklist; } } while (t != top); return NULL; } struct radix_node * rn_newpair(void *v, int b, struct radix_node nodes[2]) { struct radix_node *tt = nodes, *t = nodes + 1; t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); t->rn_l = tt; t->rn_off = b >> 3; tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t; tt->rn_flags = t->rn_flags = RNF_ACTIVE; return t; } struct radix_node * rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry, struct radix_node nodes[2]) { caddr_t v = v_arg; struct radix_node *top = head->rnh_treetop; struct radix_node *t, *tt; int off = top->rn_off; int b; t = rn_search(v_arg, top); /* * Find first bit at which v and t->rn_key differ */ { caddr_t cp, cp2, cplim; int vlen, cmp_res; vlen = SALEN(v); cp = v + off; cp2 = t->rn_key + off; cplim = v + vlen; while (cp < cplim) if (*cp2++ != *cp++) goto on1; *dupentry = 1; return t; on1: *dupentry = 0; cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; for (b = (cp - v) << 3; cmp_res; b--) cmp_res >>= 1; } { struct radix_node *p, *x = top; caddr_t cp = v; do { p = x; if (cp[x->rn_off] & x->rn_bmask) x = x->rn_r; else x = x->rn_l; } while (b > (unsigned int) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */ t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; if ((cp[p->rn_off] & p->rn_bmask) == 0) p->rn_l = t; else p->rn_r = t; x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */ if ((cp[t->rn_off] & t->rn_bmask) == 0) { t->rn_r = x; } else { t->rn_r = tt; t->rn_l = x; } } return (tt); } struct radix_node * rn_addmask(void *n_arg, int search, int skip) { caddr_t netmask = n_arg; struct radix_node *tm, *saved_tm; caddr_t cp, cplim; int b = 0, mlen, j; int maskduplicated, m0, isnormal; char addmask_key[KEYLEN_LIMIT]; if ((mlen = SALEN(netmask)) > max_keylen) mlen = max_keylen; if (skip == 0) skip = 1; if (mlen <= skip) return (mask_rnhead->rnh_nodes); /* rn_zero root node */ if (skip > 1) memcpy(addmask_key + 1, rn_ones + 1, skip - 1); if ((m0 = mlen) > skip) memcpy(addmask_key + skip, netmask + skip, mlen - skip); /* * Trim trailing zeroes. */ for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) cp--; mlen = cp - addmask_key; if (mlen <= skip) return (mask_rnhead->rnh_nodes); memset(addmask_key + m0, 0, max_keylen - m0); SALEN(addmask_key) = mlen; tm = rn_search(addmask_key, mask_rnhead->rnh_treetop); if (memcmp(addmask_key, tm->rn_key, mlen) != 0) tm = NULL; if (tm || search) return (tm); tm = malloc(max_keylen + 2 * sizeof(*tm), M_RTABLE, M_NOWAIT | M_ZERO); if (tm == NULL) return (0); saved_tm = tm; netmask = cp = (caddr_t)(tm + 2); memcpy(cp, addmask_key, mlen); tm = rn_insert(cp, mask_rnhead, &maskduplicated, tm); if (maskduplicated) { log(LOG_ERR, "%s: mask impossibly already in tree\n", __func__); free(saved_tm, M_RTABLE, max_keylen + 2 * sizeof(*saved_tm)); return (tm); } /* * Calculate index of mask, and check for normalcy. */ cplim = netmask + mlen; isnormal = 1; for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) cp++; if (cp != cplim) { static const char normal_chars[] = { 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1 }; for (j = 0x80; (j & *cp) != 0; j >>= 1) b++; if (*cp != normal_chars[b] || cp != (cplim - 1)) isnormal = 0; } b += (cp - netmask) << 3; tm->rn_b = -1 - b; if (isnormal) tm->rn_flags |= RNF_NORMAL; return (tm); } /* rn_lexobetter: return a arbitrary ordering for non-contiguous masks */ static inline int rn_lexobetter(void *m_arg, void *n_arg) { u_char *mp = m_arg, *np = n_arg; /* * Longer masks might not really be lexicographically better, * but longer masks always have precedence since they must be checked * first. The netmasks were normalized before calling this function and * don't have unneeded trailing zeros. */ if (SALEN(mp) > SALEN(np)) return 1; if (SALEN(mp) < SALEN(np)) return 0; /* * Must return the first difference between the masks * to ensure deterministic sorting. */ return (memcmp(mp, np, *mp) > 0); } static inline struct radix_mask * rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next) { struct radix_mask *m; m = pool_get(&rtmask_pool, PR_NOWAIT | PR_ZERO); if (m == NULL) { log(LOG_ERR, "Mask for route not entered\n"); return (0); } m->rm_b = tt->rn_b; m->rm_flags = tt->rn_flags; if (tt->rn_flags & RNF_NORMAL) m->rm_leaf = tt; else m->rm_mask = tt->rn_mask; m->rm_mklist = next; tt->rn_mklist = m; return m; } /* * Find the point where the rn_mklist needs to be changed. */ static inline struct radix_node * rn_lift_node(struct radix_node *t) { struct radix_node *x = t; int b = -1 - t->rn_b; /* rewind possible dupedkey list to head */ while (t->rn_b < 0) t = t->rn_p; /* can't lift node above head of dupedkey list, give up */ if (b > t->rn_b) return (NULL); do { x = t; t = t->rn_p; } while (b <= t->rn_b && x != t); return (x); } void rn_add_radix_mask(struct radix_node *tt, int keyduplicated) { caddr_t netmask, mmask; struct radix_node *x; struct radix_mask *m, **mp; int b_leaf = tt->rn_b; /* Add new route to highest possible ancestor's list */ if (tt->rn_mask == NULL) return; /* can't lift at all */ x = rn_lift_node(tt); if (x == NULL) return; /* didn't lift either */ /* * Search through routes associated with node to * insert new route according to index. * Need same criteria as when sorting dupedkeys to avoid * double loop on deletion. */ netmask = tt->rn_mask; for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) { if (m->rm_b < b_leaf) continue; if (m->rm_b > b_leaf) break; if (m->rm_flags & RNF_NORMAL) { if (keyduplicated) { if (m->rm_leaf->rn_p == tt) /* new route is better */ m->rm_leaf = tt; #ifdef DIAGNOSTIC else { struct radix_node *t; for (t = m->rm_leaf; t && t->rn_mklist == m; t = t->rn_dupedkey) if (t == tt) break; if (t == NULL) { log(LOG_ERR, "Non-unique " "normal route on dupedkey, " "mask not entered\n"); return; } } #endif m->rm_refs++; tt->rn_mklist = m; return; } else if (tt->rn_flags & RNF_NORMAL) { log(LOG_ERR, "Non-unique normal route," " mask not entered\n"); return; } mmask = m->rm_leaf->rn_mask; } else mmask = m->rm_mask; if (mmask == netmask) { m->rm_refs++; tt->rn_mklist = m; return; } if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) break; } *mp = rn_new_radix_mask(tt, *mp); } int rn_add_dupedkey(struct radix_node *saved_tt, struct radix_node_head *head, struct radix_node *tt, u_int8_t prio) { caddr_t netmask = tt->rn_mask; struct radix_node *x = saved_tt, *xp; int before = -1; int b_leaf = 0; if (netmask) b_leaf = tt->rn_b; for (xp = x; x; xp = x, x = x->rn_dupedkey) { if (x->rn_mask == netmask) return (-1); if (netmask == NULL || (x->rn_mask && ((b_leaf < x->rn_b) || /* index(netmask) > node */ rn_refines(netmask, x->rn_mask) || rn_lexobetter(netmask, x->rn_mask)))) break; } /* * If the mask is not duplicated, we wouldn't * find it among possible duplicate key entries * anyway, so the above test doesn't hurt. * * We sort the masks for a duplicated key the same way as * in a masklist -- most specific to least specific. * This may require the unfortunate nuisance of relocating * the head of the list. * * We also reverse, or doubly link the list through the * parent pointer. */ if ((x == saved_tt && before) || before == 1) before = 1; else before = 0; rn_link_dupedkey(tt, xp, before); return (0); } /* * Insert tt after x or in place of x if before is true. */ void rn_link_dupedkey(struct radix_node *tt, struct radix_node *x, int before) { if (before) { if (x->rn_p->rn_b > 0) { /* link in at head of list */ tt->rn_dupedkey = x; tt->rn_flags = x->rn_flags; tt->rn_p = x->rn_p; x->rn_p = tt; if (tt->rn_p->rn_l == x) tt->rn_p->rn_l = tt; else tt->rn_p->rn_r = tt; } else { tt->rn_dupedkey = x; x->rn_p->rn_dupedkey = tt; tt->rn_p = x->rn_p; x->rn_p = tt; } } else { tt->rn_dupedkey = x->rn_dupedkey; x->rn_dupedkey = tt; tt->rn_p = x; if (tt->rn_dupedkey) tt->rn_dupedkey->rn_p = tt; } } /* * This function ensures that routes are properly promoted upwards. * It adjusts the rn_mklist of the parent node to make sure overlapping * routes can be found. * * There are two cases: * - leaf nodes with possible rn_dupedkey list * - internal nodes with maybe their own mklist * If the mask of the route is bigger than the current branch bit then * a rn_mklist entrie needs to be made. */ void rn_fixup_nodes(struct radix_node *tt) { struct radix_node *tp, *x; struct radix_mask *m, **mp; int b_leaf; tp = tt->rn_p; if (tp->rn_r == tt) x = tp->rn_l; else x = tp->rn_r; b_leaf = -1 - tp->rn_b; if (x->rn_b < 0) { /* x is a leaf node */ struct radix_node *xx = NULL; for (mp = &tp->rn_mklist; x; xx = x, x = x->rn_dupedkey) { if (xx && xx->rn_mklist && xx->rn_mask == x->rn_mask && x->rn_mklist == 0) { /* multipath route */ x->rn_mklist = xx->rn_mklist; x->rn_mklist->rm_refs++; } if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) { *mp = m = rn_new_radix_mask(x, 0); if (m) mp = &m->rm_mklist; } } } else if (x->rn_mklist) { /* x is an internal node */ /* * Skip over masks whose index is > that of new node */ for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) if (m->rm_b >= b_leaf) break; tp->rn_mklist = m; *mp = 0; } } struct radix_node * rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head, struct radix_node treenodes[2], u_int8_t prio) { caddr_t v = v_arg; struct radix_node *top = head->rnh_treetop; struct radix_node *tt, *saved_tt, *tm = NULL; int keyduplicated; /* * In dealing with non-contiguous masks, there may be * many different routes which have the same mask. * We will find it useful to have a unique pointer to * the mask to speed avoiding duplicate references at * nodes and possibly save time in calculating indices. */ if (n_arg) { if ((tm = rn_addmask(n_arg, 0, top->rn_off)) == 0) return (0); } tt = rn_insert(v, head, &keyduplicated, treenodes); if (keyduplicated) { saved_tt = tt; tt = treenodes; tt->rn_key = v_arg; tt->rn_b = -1; tt->rn_flags = RNF_ACTIVE; } /* Put mask into the node. */ if (tm) { tt->rn_mask = tm->rn_key; tt->rn_b = tm->rn_b; tt->rn_flags |= tm->rn_flags & RNF_NORMAL; } /* Either insert into dupedkey list or as a leaf node. */ if (keyduplicated) { if (rn_add_dupedkey(saved_tt, head, tt, prio)) return (NULL); } else { rn_fixup_nodes(tt); } /* finally insert a radix_mask element if needed */ rn_add_radix_mask(tt, keyduplicated); return (tt); } /* * Cleanup mask list, tt points to route that needs to be cleaned */ int rn_del_radix_mask(struct radix_node *tt) { struct radix_node *x; struct radix_mask *m, *saved_m, **mp; /* * Cleanup mask list from possible references to this route. */ saved_m = m = tt->rn_mklist; if (tt->rn_mask == NULL || m == NULL) return (0); if (tt->rn_flags & RNF_NORMAL) { if (m->rm_leaf != tt && m->rm_refs == 0) { log(LOG_ERR, "rn_delete: inconsistent normal " "annotation\n"); return (-1); } if (m->rm_leaf != tt) { if (--m->rm_refs >= 0) return (0); else log(LOG_ERR, "rn_delete: " "inconsistent mklist refcount\n"); } /* * If we end up here tt should be m->rm_leaf and therefore * tt should be the head of a multipath chain. * If this is not the case the table is no longer consistent. */ if (m->rm_refs > 0) { if (tt->rn_dupedkey == NULL || tt->rn_dupedkey->rn_mklist != m) { log(LOG_ERR, "rn_delete: inconsistent " "dupedkey list\n"); return (-1); } m->rm_leaf = tt->rn_dupedkey; --m->rm_refs; return (0); } /* else tt is last and only route */ } else { if (m->rm_mask != tt->rn_mask) { log(LOG_ERR, "rn_delete: inconsistent annotation\n"); return (0); } if (--m->rm_refs >= 0) return (0); } /* * No other references hold to the radix_mask remove it from * the tree. */ x = rn_lift_node(tt); if (x == NULL) return (0); /* Wasn't lifted at all */ /* Finally eliminate the radix_mask from the tree */ for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) if (m == saved_m) { *mp = m->rm_mklist; pool_put(&rtmask_pool, m); break; } if (m == NULL) { log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); if (tt->rn_flags & RNF_NORMAL) return (-1); /* Dangling ref to us */ } return (0); } /* swap two internal nodes and fixup the parent and child pointers */ static inline void rn_swap_nodes(struct radix_node *from, struct radix_node *to) { *to = *from; if (from->rn_p->rn_l == from) from->rn_p->rn_l = to; else from->rn_p->rn_r = to; to->rn_l->rn_p = to; to->rn_r->rn_p = to; } struct radix_node * rn_delete(void *v_arg, void *n_arg, struct radix_node_head *head, struct radix_node *rn) { caddr_t v = v_arg; caddr_t netmask = n_arg; struct radix_node *top = head->rnh_treetop; struct radix_node *tt, *tp, *pp, *x; struct radix_node *dupedkey_tt, *saved_tt; int off = top->rn_off; int vlen; vlen = SALEN(v); /* * Implement a lookup similar to rn_lookup but we need to save * the radix leaf node (where th rn_dupedkey list starts) so * it is not possible to use rn_lookup. */ tt = rn_search(v, top); /* make sure the key is a perfect match */ if (memcmp(v + off, tt->rn_key + off, vlen - off)) return (NULL); /* * Here, tt is the deletion target, and * saved_tt is the head of the dupedkey chain. * dupedkey_tt will point to the start of the multipath chain. */ saved_tt = tt; /* * make tt point to the start of the rn_dupedkey list of multipath * routes. */ if (netmask) { struct radix_node *tm; if ((tm = rn_addmask(netmask, 1, off)) == NULL) return (NULL); netmask = tm->rn_key; while (tt->rn_mask != netmask) if ((tt = tt->rn_dupedkey) == NULL) return (NULL); } /* save start of multi path chain for later use */ dupedkey_tt = tt; KASSERT((tt->rn_flags & RNF_ROOT) == 0); /* remove possible radix_mask */ if (rn_del_radix_mask(tt)) return (NULL); /* * Finally eliminate us from tree */ tp = tt->rn_p; if (saved_tt->rn_dupedkey) { if (tt == saved_tt) { x = saved_tt->rn_dupedkey; x->rn_p = tp; if (tp->rn_l == tt) tp->rn_l = x; else tp->rn_r = x; /* head changed adjust dupedkey pointer */ dupedkey_tt = x; } else { x = saved_tt; /* dupedkey will change so adjust pointer */ if (dupedkey_tt == tt) dupedkey_tt = tt->rn_dupedkey; tp->rn_dupedkey = tt->rn_dupedkey; if (tt->rn_dupedkey) tt->rn_dupedkey->rn_p = tp; } /* * We may be holding an active internal node in the tree. */ if (tt[1].rn_flags & RNF_ACTIVE) rn_swap_nodes(&tt[1], &x[1]); /* over and out */ goto out; } /* non-rn_dupedkey case, remove tt and tp node from the tree */ if (tp->rn_l == tt) x = tp->rn_r; else x = tp->rn_l; pp = tp->rn_p; if (pp->rn_r == tp) pp->rn_r = x; else pp->rn_l = x; x->rn_p = pp; /* * Demote routes attached to us (actually on the internal parent node). */ if (tp->rn_mklist) { struct radix_mask *m, **mp; if (x->rn_b >= 0) { for (mp = &x->rn_mklist; (m = *mp);) mp = &m->rm_mklist; *mp = tp->rn_mklist; } else { /* If there are any key,mask pairs in a sibling duped-key chain, some subset will appear sorted in the same order attached to our mklist */ for (m = tp->rn_mklist; m && x; x = x->rn_dupedkey) if (m == x->rn_mklist) { struct radix_mask *mm = m->rm_mklist; x->rn_mklist = 0; if (--(m->rm_refs) < 0) pool_put(&rtmask_pool, m); else if (m->rm_flags & RNF_NORMAL) /* * don't progress because this * a multipath route. Next * route will use the same m. */ mm = m; m = mm; } if (m) log(LOG_ERR, "%s %p at %p\n", "rn_delete: Orphaned Mask", m, x); } } /* * We may be holding an active internal node in the tree. * If so swap our internal node (t) with the parent node (tp) * since that one was just removed from the tree. */ if (tp != &tt[1]) rn_swap_nodes(&tt[1], tp); /* no rn_dupedkey list so no need to fixup multipath chains */ out: tt[0].rn_flags &= ~RNF_ACTIVE; tt[1].rn_flags &= ~RNF_ACTIVE; return (tt); } int rn_walktree(struct radix_node_head *h, int (*f)(struct radix_node *, void *, u_int), void *w) { int error; struct radix_node *base, *next; struct radix_node *rn = h->rnh_treetop; /* * This gets complicated because we may delete the node * while applying the function f to it, so we need to calculate * the successor node in advance. */ /* First time through node, go left */ while (rn->rn_b >= 0) rn = rn->rn_l; for (;;) { base = rn; /* If at right child go back up, otherwise, go right */ while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) rn = rn->rn_p; /* Find the next *leaf* since next node might vanish, too */ for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) rn = rn->rn_l; next = rn; /* Process leaves */ while ((rn = base) != NULL) { base = rn->rn_dupedkey; if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w, h->rnh_rtableid))) return (error); } rn = next; if (rn->rn_flags & RNF_ROOT) return (0); } /* NOTREACHED */ } int rn_initmask(void) { if (mask_rnhead != NULL) return (0); KASSERT(max_keylen > 0); mask_rnhead = malloc(sizeof(*mask_rnhead), M_RTABLE, M_NOWAIT); if (mask_rnhead == NULL) return (1); rn_inithead0(mask_rnhead, 0); return (0); } int rn_inithead(void **head, int off) { struct radix_node_head *rnh; if (*head != NULL) return (1); if (rn_initmask()) panic("failed to initialize the mask tree"); rnh = malloc(sizeof(*rnh), M_RTABLE, M_NOWAIT); if (rnh == NULL) return (0); *head = rnh; rn_inithead0(rnh, off); return (1); } int rn_inithead0(struct radix_node_head *rnh, int offset) { struct radix_node *t, *tt, *ttt; int off = offset * NBBY; memset(rnh, 0, sizeof(*rnh)); t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); ttt = rnh->rnh_nodes + 2; t->rn_r = ttt; t->rn_p = t; tt = t->rn_l; tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; tt->rn_b = -1 - off; *ttt = *tt; ttt->rn_key = rn_ones; rnh->rnh_treetop = t; return (1); } /* * rn_init() can be called multiple time with a different key length * as long as no radix tree head has been allocated. */ void rn_init(unsigned int keylen) { char *cp, *cplim; KASSERT(keylen <= KEYLEN_LIMIT); if (max_keylen == 0) { pool_init(&rtmask_pool, sizeof(struct radix_mask), 0, IPL_SOFTNET, 0, "rtmask", NULL); } if (keylen <= max_keylen) return; KASSERT(mask_rnhead == NULL); free(rn_zeros, M_RTABLE, 2 * max_keylen); rn_zeros = mallocarray(2, keylen, M_RTABLE, M_NOWAIT | M_ZERO); if (rn_zeros == NULL) panic("cannot initialize a radix tree without memory"); max_keylen = keylen; cp = rn_ones = rn_zeros + max_keylen; cplim = rn_ones + max_keylen; while (cp < cplim) *cp++ = -1; }