/* $OpenBSD: route.c,v 1.413 2022/07/28 22:19:09 bluhm Exp $ */ /* $NetBSD: route.c,v 1.14 1996/02/13 22:00:46 christos Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1980, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.c 8.2 (Berkeley) 11/15/93 */ /* * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995 * * NRL grants permission for redistribution and use in source and binary * forms, with or without modification, of the software and documentation * created at NRL provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgements: * This product includes software developed by the University of * California, Berkeley and its contributors. * This product includes software developed at the Information * Technology Division, US Naval Research Laboratory. * 4. Neither the name of the NRL nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as representing * official policies, either expressed or implied, of the US Naval * Research Laboratory (NRL). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #ifdef MPLS #include #endif #ifdef BFD #include #endif #define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) /* Give some jitter to hash, to avoid synchronization between routers. */ static uint32_t rt_hashjitter; extern unsigned int rtmap_limit; struct cpumem * rtcounters; int rttrash; /* routes not in table but not freed */ int ifatrash; /* ifas not in ifp list but not free */ struct pool rtentry_pool; /* pool for rtentry structures */ struct pool rttimer_pool; /* pool for rttimer structures */ int rt_setgwroute(struct rtentry *, u_int); void rt_putgwroute(struct rtentry *); int rtflushclone1(struct rtentry *, void *, u_int); int rtflushclone(struct rtentry *, unsigned int); int rt_ifa_purge_walker(struct rtentry *, void *, unsigned int); struct rtentry *rt_match(struct sockaddr *, uint32_t *, int, unsigned int); int rt_clone(struct rtentry **, struct sockaddr *, unsigned int); struct sockaddr *rt_plentosa(sa_family_t, int, struct sockaddr_in6 *); static int rt_copysa(struct sockaddr *, struct sockaddr *, struct sockaddr **); #define LABELID_MAX 50000 struct rt_label { TAILQ_ENTRY(rt_label) rtl_entry; char rtl_name[RTLABEL_LEN]; u_int16_t rtl_id; int rtl_ref; }; TAILQ_HEAD(rt_labels, rt_label) rt_labels = TAILQ_HEAD_INITIALIZER(rt_labels); void route_init(void) { rtcounters = counters_alloc(rts_ncounters); pool_init(&rtentry_pool, sizeof(struct rtentry), 0, IPL_MPFLOOR, 0, "rtentry", NULL); while (rt_hashjitter == 0) rt_hashjitter = arc4random(); #ifdef BFD bfdinit(); #endif } /* * Returns 1 if the (cached) ``rt'' entry is still valid, 0 otherwise. */ int rtisvalid(struct rtentry *rt) { if (rt == NULL) return (0); if (!ISSET(rt->rt_flags, RTF_UP)) return (0); if (ISSET(rt->rt_flags, RTF_GATEWAY)) { KASSERT(rt->rt_gwroute != NULL); KASSERT(!ISSET(rt->rt_gwroute->rt_flags, RTF_GATEWAY)); if (!ISSET(rt->rt_gwroute->rt_flags, RTF_UP)) return (0); } return (1); } /* * Do the actual lookup for rtalloc(9), do not use directly! * * Return the best matching entry for the destination ``dst''. * * "RT_RESOLVE" means that a corresponding L2 entry should * be added to the routing table and resolved (via ARP or * NDP), if it does not exist. */ struct rtentry * rt_match(struct sockaddr *dst, uint32_t *src, int flags, unsigned int tableid) { struct rtentry *rt = NULL; rt = rtable_match(tableid, dst, src); if (rt == NULL) { rtstat_inc(rts_unreach); return (NULL); } if (ISSET(rt->rt_flags, RTF_CLONING) && ISSET(flags, RT_RESOLVE)) rt_clone(&rt, dst, tableid); rt->rt_use++; return (rt); } int rt_clone(struct rtentry **rtp, struct sockaddr *dst, unsigned int rtableid) { struct rt_addrinfo info; struct rtentry *rt = *rtp; int error = 0; memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = dst; /* * The priority of cloned route should be different * to avoid conflict with /32 cloning routes. * * It should also be higher to let the ARP layer find * cloned routes instead of the cloning one. */ KERNEL_LOCK(); error = rtrequest(RTM_RESOLVE, &info, rt->rt_priority - 1, &rt, rtableid); KERNEL_UNLOCK(); if (error) { rtm_miss(RTM_MISS, &info, 0, RTP_NONE, 0, error, rtableid); } else { /* Inform listeners of the new route */ rtm_send(rt, RTM_ADD, 0, rtableid); rtfree(*rtp); *rtp = rt; } return (error); } /* * Originated from bridge_hash() in if_bridge.c */ #define mix(a, b, c) do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (0) int rt_hash(struct rtentry *rt, struct sockaddr *dst, uint32_t *src) { uint32_t a, b, c; if (src == NULL || !rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_MPATH)) return (-1); a = b = 0x9e3779b9; c = rt_hashjitter; switch (dst->sa_family) { case AF_INET: { struct sockaddr_in *sin; if (!ipmultipath) return (-1); sin = satosin(dst); a += sin->sin_addr.s_addr; b += src[0]; mix(a, b, c); break; } #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; if (!ip6_multipath) return (-1); sin6 = satosin6(dst); a += sin6->sin6_addr.s6_addr32[0]; b += sin6->sin6_addr.s6_addr32[2]; c += src[0]; mix(a, b, c); a += sin6->sin6_addr.s6_addr32[1]; b += sin6->sin6_addr.s6_addr32[3]; c += src[1]; mix(a, b, c); a += sin6->sin6_addr.s6_addr32[2]; b += sin6->sin6_addr.s6_addr32[1]; c += src[2]; mix(a, b, c); a += sin6->sin6_addr.s6_addr32[3]; b += sin6->sin6_addr.s6_addr32[0]; c += src[3]; mix(a, b, c); break; } #endif /* INET6 */ } return (c & 0xffff); } /* * Allocate a route, potentially using multipath to select the peer. */ struct rtentry * rtalloc_mpath(struct sockaddr *dst, uint32_t *src, unsigned int rtableid) { return (rt_match(dst, src, RT_RESOLVE, rtableid)); } /* * Look in the routing table for the best matching entry for * ``dst''. * * If a route with a gateway is found and its next hop is no * longer valid, try to cache it. */ struct rtentry * rtalloc(struct sockaddr *dst, int flags, unsigned int rtableid) { return (rt_match(dst, NULL, flags, rtableid)); } /* * Cache the route entry corresponding to a reachable next hop in * the gateway entry ``rt''. */ int rt_setgwroute(struct rtentry *rt, u_int rtableid) { struct rtentry *prt, *nhrt; unsigned int rdomain = rtable_l2(rtableid); int error; NET_ASSERT_LOCKED(); KASSERT(ISSET(rt->rt_flags, RTF_GATEWAY)); /* If we cannot find a valid next hop bail. */ nhrt = rt_match(rt->rt_gateway, NULL, RT_RESOLVE, rdomain); if (nhrt == NULL) return (ENOENT); /* Next hop entry must be on the same interface. */ if (nhrt->rt_ifidx != rt->rt_ifidx) { struct sockaddr_in6 sa_mask; if (!ISSET(nhrt->rt_flags, RTF_LLINFO) || !ISSET(nhrt->rt_flags, RTF_CLONED)) { rtfree(nhrt); return (EHOSTUNREACH); } /* * We found a L2 entry, so we might have multiple * RTF_CLONING routes for the same subnet. Query * the first route of the multipath chain and iterate * until we find the correct one. */ prt = rtable_lookup(rdomain, rt_key(nhrt->rt_parent), rt_plen2mask(nhrt->rt_parent, &sa_mask), NULL, RTP_ANY); rtfree(nhrt); while (prt != NULL && prt->rt_ifidx != rt->rt_ifidx) prt = rtable_iterate(prt); /* We found nothing or a non-cloning MPATH route. */ if (prt == NULL || !ISSET(prt->rt_flags, RTF_CLONING)) { rtfree(prt); return (EHOSTUNREACH); } error = rt_clone(&prt, rt->rt_gateway, rdomain); if (error) { rtfree(prt); return (error); } nhrt = prt; } /* * Next hop must be reachable, this also prevents rtentry * loops for example when rt->rt_gwroute points to rt. */ if (ISSET(nhrt->rt_flags, RTF_CLONING|RTF_GATEWAY)) { rtfree(nhrt); return (ENETUNREACH); } /* Next hop is valid so remove possible old cache. */ rt_putgwroute(rt); KASSERT(rt->rt_gwroute == NULL); /* * If the MTU of next hop is 0, this will reset the MTU of the * route to run PMTUD again from scratch. */ if (!ISSET(rt->rt_locks, RTV_MTU) && (rt->rt_mtu > nhrt->rt_mtu)) rt->rt_mtu = nhrt->rt_mtu; /* * To avoid reference counting problems when writing link-layer * addresses in an outgoing packet, we ensure that the lifetime * of a cached entry is greater than the bigger lifetime of the * gateway entries it is pointed by. */ nhrt->rt_flags |= RTF_CACHED; nhrt->rt_cachecnt++; rt->rt_gwroute = nhrt; return (0); } /* * Invalidate the cached route entry of the gateway entry ``rt''. */ void rt_putgwroute(struct rtentry *rt) { struct rtentry *nhrt = rt->rt_gwroute; NET_ASSERT_LOCKED(); if (!ISSET(rt->rt_flags, RTF_GATEWAY) || nhrt == NULL) return; KASSERT(ISSET(nhrt->rt_flags, RTF_CACHED)); KASSERT(nhrt->rt_cachecnt > 0); --nhrt->rt_cachecnt; if (nhrt->rt_cachecnt == 0) nhrt->rt_flags &= ~RTF_CACHED; rtfree(rt->rt_gwroute); rt->rt_gwroute = NULL; } void rtref(struct rtentry *rt) { refcnt_take(&rt->rt_refcnt); } void rtfree(struct rtentry *rt) { if (rt == NULL) return; if (refcnt_rele(&rt->rt_refcnt) == 0) return; KASSERT(!ISSET(rt->rt_flags, RTF_UP)); KASSERT(!RT_ROOT(rt)); atomic_dec_int(&rttrash); KERNEL_LOCK(); rt_timer_remove_all(rt); ifafree(rt->rt_ifa); rtlabel_unref(rt->rt_labelid); #ifdef MPLS rt_mpls_clear(rt); #endif free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len)); free(rt_key(rt), M_RTABLE, rt_key(rt)->sa_len); KERNEL_UNLOCK(); pool_put(&rtentry_pool, rt); } void ifafree(struct ifaddr *ifa) { if (ifa == NULL) panic("ifafree"); if (ifa->ifa_refcnt == 0) { ifatrash--; free(ifa, M_IFADDR, 0); } else ifa->ifa_refcnt--; } /* * Force a routing table entry to the specified * destination to go through the given gateway. * Normally called as a result of a routing redirect * message from the network layer. */ void rtredirect(struct sockaddr *dst, struct sockaddr *gateway, struct sockaddr *src, struct rtentry **rtp, unsigned int rdomain) { struct rtentry *rt; int error = 0; enum rtstat_counters stat = rts_ncounters; struct rt_addrinfo info; struct ifaddr *ifa; unsigned int ifidx = 0; int flags = RTF_GATEWAY|RTF_HOST; uint8_t prio = RTP_NONE; NET_ASSERT_LOCKED(); /* verify the gateway is directly reachable */ rt = rtalloc(gateway, 0, rdomain); if (!rtisvalid(rt) || ISSET(rt->rt_flags, RTF_GATEWAY)) { rtfree(rt); error = ENETUNREACH; goto out; } ifidx = rt->rt_ifidx; ifa = rt->rt_ifa; rtfree(rt); rt = NULL; rt = rtable_lookup(rdomain, dst, NULL, NULL, RTP_ANY); /* * If the redirect isn't from our current router for this dst, * it's either old or wrong. If it redirects us to ourselves, * we have a routing loop, perhaps as a result of an interface * going down recently. */ #define equal(a1, a2) \ ((a1)->sa_len == (a2)->sa_len && \ bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0) if (rt != NULL && (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa)) error = EINVAL; else if (ifa_ifwithaddr(gateway, rdomain) != NULL || (gateway->sa_family == AF_INET && in_broadcast(satosin(gateway)->sin_addr, rdomain))) error = EHOSTUNREACH; if (error) goto done; /* * Create a new entry if we just got back a wildcard entry * or the lookup failed. This is necessary for hosts * which use routing redirects generated by smart gateways * to dynamically build the routing tables. */ if (rt == NULL) goto create; /* * Don't listen to the redirect if it's * for a route to an interface. */ if (ISSET(rt->rt_flags, RTF_GATEWAY)) { if (!ISSET(rt->rt_flags, RTF_HOST)) { /* * Changing from route to net => route to host. * Create new route, rather than smashing route to net. */ create: rtfree(rt); flags |= RTF_DYNAMIC; bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_ifa = ifa; info.rti_flags = flags; rt = NULL; error = rtrequest(RTM_ADD, &info, RTP_DEFAULT, &rt, rdomain); if (error == 0) { flags = rt->rt_flags; prio = rt->rt_priority; } stat = rts_dynamic; } else { /* * Smash the current notion of the gateway to * this destination. Should check about netmask!!! */ rt->rt_flags |= RTF_MODIFIED; flags |= RTF_MODIFIED; prio = rt->rt_priority; stat = rts_newgateway; rt_setgate(rt, gateway, rdomain); } } else error = EHOSTUNREACH; done: if (rt) { if (rtp && !error) *rtp = rt; else rtfree(rt); } out: if (error) rtstat_inc(rts_badredirect); else if (stat != rts_ncounters) rtstat_inc(stat); bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = dst; info.rti_info[RTAX_GATEWAY] = gateway; info.rti_info[RTAX_AUTHOR] = src; rtm_miss(RTM_REDIRECT, &info, flags, prio, ifidx, error, rdomain); } /* * Delete a route and generate a message */ int rtdeletemsg(struct rtentry *rt, struct ifnet *ifp, u_int tableid) { int error; struct rt_addrinfo info; struct sockaddr_rtlabel sa_rl; struct sockaddr_in6 sa_mask; KASSERT(rt->rt_ifidx == ifp->if_index); /* * Request the new route so that the entry is not actually * deleted. That will allow the information being reported to * be accurate (and consistent with route_output()). */ memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; if (!ISSET(rt->rt_flags, RTF_HOST)) info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); info.rti_flags = rt->rt_flags; info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; error = rtrequest_delete(&info, rt->rt_priority, ifp, &rt, tableid); rtm_miss(RTM_DELETE, &info, info.rti_flags, rt->rt_priority, rt->rt_ifidx, error, tableid); if (error == 0) rtfree(rt); return (error); } static inline int rtequal(struct rtentry *a, struct rtentry *b) { if (a == b) return 1; if (memcmp(rt_key(a), rt_key(b), rt_key(a)->sa_len) == 0 && rt_plen(a) == rt_plen(b)) return 1; else return 0; } int rtflushclone1(struct rtentry *rt, void *arg, u_int id) { struct rtentry *cloningrt = arg; struct ifnet *ifp; if (!ISSET(rt->rt_flags, RTF_CLONED)) return 0; /* Cached route must stay alive as long as their parent are alive. */ if (ISSET(rt->rt_flags, RTF_CACHED) && (rt->rt_parent != cloningrt)) return 0; if (!rtequal(rt->rt_parent, cloningrt)) return 0; /* * This happens when an interface with a RTF_CLONING route is * being detached. In this case it's safe to bail because all * the routes are being purged by rt_ifa_purge(). */ ifp = if_get(rt->rt_ifidx); if (ifp == NULL) return 0; if_put(ifp); return EEXIST; } int rtflushclone(struct rtentry *parent, unsigned int rtableid) { struct rtentry *rt = NULL; struct ifnet *ifp; int error; #ifdef DIAGNOSTIC if (!parent || (parent->rt_flags & RTF_CLONING) == 0) panic("rtflushclone: called with a non-cloning route"); #endif do { error = rtable_walk(rtableid, rt_key(parent)->sa_family, &rt, rtflushclone1, parent); if (rt != NULL && error == EEXIST) { ifp = if_get(rt->rt_ifidx); if (ifp == NULL) { error = EAGAIN; } else { error = rtdeletemsg(rt, ifp, rtableid); if (error == 0) error = EAGAIN; if_put(ifp); } } rtfree(rt); rt = NULL; } while (error == EAGAIN); return error; } int rtrequest_delete(struct rt_addrinfo *info, u_int8_t prio, struct ifnet *ifp, struct rtentry **ret_nrt, u_int tableid) { struct rtentry *rt; int error; NET_ASSERT_LOCKED(); if (!rtable_exists(tableid)) return (EAFNOSUPPORT); rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], prio); if (rt == NULL) return (ESRCH); /* Make sure that's the route the caller want to delete. */ if (ifp != NULL && ifp->if_index != rt->rt_ifidx) { rtfree(rt); return (ESRCH); } #ifdef BFD if (ISSET(rt->rt_flags, RTF_BFD)) bfdclear(rt); #endif error = rtable_delete(tableid, info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK], rt); if (error != 0) { rtfree(rt); return (ESRCH); } /* Release next hop cache before flushing cloned entries. */ rt_putgwroute(rt); /* Clean up any cloned children. */ if (ISSET(rt->rt_flags, RTF_CLONING)) rtflushclone(rt, tableid); rtfree(rt->rt_parent); rt->rt_parent = NULL; rt->rt_flags &= ~RTF_UP; KASSERT(ifp->if_index == rt->rt_ifidx); ifp->if_rtrequest(ifp, RTM_DELETE, rt); atomic_inc_int(&rttrash); if (ret_nrt != NULL) *ret_nrt = rt; else rtfree(rt); return (0); } int rtrequest(int req, struct rt_addrinfo *info, u_int8_t prio, struct rtentry **ret_nrt, u_int tableid) { struct ifnet *ifp; struct rtentry *rt, *crt; struct ifaddr *ifa; struct sockaddr *ndst; struct sockaddr_rtlabel *sa_rl, sa_rl2; struct sockaddr_dl sa_dl = { sizeof(sa_dl), AF_LINK }; int error; NET_ASSERT_LOCKED(); if (!rtable_exists(tableid)) return (EAFNOSUPPORT); if (info->rti_flags & RTF_HOST) info->rti_info[RTAX_NETMASK] = NULL; switch (req) { case RTM_DELETE: return (EINVAL); case RTM_RESOLVE: if (ret_nrt == NULL || (rt = *ret_nrt) == NULL) return (EINVAL); if ((rt->rt_flags & RTF_CLONING) == 0) return (EINVAL); KASSERT(rt->rt_ifa->ifa_ifp != NULL); info->rti_ifa = rt->rt_ifa; info->rti_flags = rt->rt_flags | (RTF_CLONED|RTF_HOST); info->rti_flags &= ~(RTF_CLONING|RTF_CONNECTED|RTF_STATIC); info->rti_info[RTAX_GATEWAY] = sdltosa(&sa_dl); info->rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl2); /* FALLTHROUGH */ case RTM_ADD: if (info->rti_ifa == NULL) return (EINVAL); ifa = info->rti_ifa; ifp = ifa->ifa_ifp; if (prio == 0) prio = ifp->if_priority + RTP_STATIC; error = rt_copysa(info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK], &ndst); if (error) return (error); rt = pool_get(&rtentry_pool, PR_NOWAIT | PR_ZERO); if (rt == NULL) { free(ndst, M_RTABLE, ndst->sa_len); return (ENOBUFS); } refcnt_init(&rt->rt_refcnt); rt->rt_flags = info->rti_flags | RTF_UP; rt->rt_priority = prio; /* init routing priority */ LIST_INIT(&rt->rt_timer); /* Check the link state if the table supports it. */ if (rtable_mpath_capable(tableid, ndst->sa_family) && !ISSET(rt->rt_flags, RTF_LOCAL) && (!LINK_STATE_IS_UP(ifp->if_link_state) || !ISSET(ifp->if_flags, IFF_UP))) { rt->rt_flags &= ~RTF_UP; rt->rt_priority |= RTP_DOWN; } if (info->rti_info[RTAX_LABEL] != NULL) { sa_rl = (struct sockaddr_rtlabel *) info->rti_info[RTAX_LABEL]; rt->rt_labelid = rtlabel_name2id(sa_rl->sr_label); } #ifdef MPLS /* We have to allocate additional space for MPLS infos */ if (info->rti_flags & RTF_MPLS && (info->rti_info[RTAX_SRC] != NULL || info->rti_info[RTAX_DST]->sa_family == AF_MPLS)) { error = rt_mpls_set(rt, info->rti_info[RTAX_SRC], info->rti_mpls); if (error) { free(ndst, M_RTABLE, ndst->sa_len); pool_put(&rtentry_pool, rt); return (error); } } else rt_mpls_clear(rt); #endif ifa->ifa_refcnt++; rt->rt_ifa = ifa; rt->rt_ifidx = ifp->if_index; /* * Copy metrics and a back pointer from the cloned * route's parent. */ if (ISSET(rt->rt_flags, RTF_CLONED)) { rtref(*ret_nrt); rt->rt_parent = *ret_nrt; rt->rt_rmx = (*ret_nrt)->rt_rmx; } /* * We must set rt->rt_gateway before adding ``rt'' to * the routing table because the radix MPATH code use * it to (re)order routes. */ if ((error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY], tableid))) { ifafree(ifa); rtfree(rt->rt_parent); rt_putgwroute(rt); free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len)); free(ndst, M_RTABLE, ndst->sa_len); pool_put(&rtentry_pool, rt); return (error); } error = rtable_insert(tableid, ndst, info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], rt->rt_priority, rt); if (error != 0 && (crt = rtable_match(tableid, ndst, NULL)) != NULL) { /* overwrite cloned route */ if (ISSET(crt->rt_flags, RTF_CLONED) && !ISSET(crt->rt_flags, RTF_CACHED)) { struct ifnet *cifp; cifp = if_get(crt->rt_ifidx); KASSERT(cifp != NULL); rtdeletemsg(crt, cifp, tableid); if_put(cifp); error = rtable_insert(tableid, ndst, info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], rt->rt_priority, rt); } rtfree(crt); } if (error != 0) { ifafree(ifa); rtfree(rt->rt_parent); rt_putgwroute(rt); free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len)); free(ndst, M_RTABLE, ndst->sa_len); pool_put(&rtentry_pool, rt); return (EEXIST); } ifp->if_rtrequest(ifp, req, rt); if_group_routechange(info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK]); if (ret_nrt != NULL) *ret_nrt = rt; else rtfree(rt); break; } return (0); } int rt_setgate(struct rtentry *rt, struct sockaddr *gate, u_int rtableid) { int glen = ROUNDUP(gate->sa_len); struct sockaddr *sa; if (rt->rt_gateway == NULL || glen != ROUNDUP(rt->rt_gateway->sa_len)) { sa = malloc(glen, M_RTABLE, M_NOWAIT); if (sa == NULL) return (ENOBUFS); if (rt->rt_gateway != NULL) { free(rt->rt_gateway, M_RTABLE, ROUNDUP(rt->rt_gateway->sa_len)); } rt->rt_gateway = sa; } memmove(rt->rt_gateway, gate, glen); if (ISSET(rt->rt_flags, RTF_GATEWAY)) return (rt_setgwroute(rt, rtableid)); return (0); } /* * Return the route entry containing the next hop link-layer * address corresponding to ``rt''. */ struct rtentry * rt_getll(struct rtentry *rt) { if (ISSET(rt->rt_flags, RTF_GATEWAY)) { KASSERT(rt->rt_gwroute != NULL); return (rt->rt_gwroute); } return (rt); } void rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst, struct sockaddr *netmask) { u_char *cp1 = (u_char *)src; u_char *cp2 = (u_char *)dst; u_char *cp3 = (u_char *)netmask; u_char *cplim = cp2 + *cp3; u_char *cplim2 = cp2 + *cp1; *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */ cp3 += 2; if (cplim > cplim2) cplim = cplim2; while (cp2 < cplim) *cp2++ = *cp1++ & *cp3++; if (cp2 < cplim2) bzero(cp2, cplim2 - cp2); } /* * allocate new sockaddr structure based on the user supplied src and mask * that is useable for the routing table. */ static int rt_copysa(struct sockaddr *src, struct sockaddr *mask, struct sockaddr **dst) { static const u_char maskarray[] = { 0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe }; struct sockaddr *ndst; const struct domain *dp; u_char *csrc, *cdst; int i, plen; for (i = 0; (dp = domains[i]) != NULL; i++) { if (dp->dom_rtoffset == 0) continue; if (src->sa_family == dp->dom_family) break; } if (dp == NULL) return (EAFNOSUPPORT); if (src->sa_len < dp->dom_sasize) return (EINVAL); plen = rtable_satoplen(src->sa_family, mask); if (plen == -1) return (EINVAL); ndst = malloc(dp->dom_sasize, M_RTABLE, M_NOWAIT|M_ZERO); if (ndst == NULL) return (ENOBUFS); ndst->sa_family = src->sa_family; ndst->sa_len = dp->dom_sasize; csrc = (u_char *)src + dp->dom_rtoffset; cdst = (u_char *)ndst + dp->dom_rtoffset; memcpy(cdst, csrc, plen / 8); if (plen % 8 != 0) cdst[plen / 8] = csrc[plen / 8] & maskarray[plen % 8]; *dst = ndst; return (0); } int rt_ifa_add(struct ifaddr *ifa, int flags, struct sockaddr *dst, unsigned int rdomain) { struct ifnet *ifp = ifa->ifa_ifp; struct rtentry *rt; struct sockaddr_rtlabel sa_rl; struct rt_addrinfo info; uint8_t prio = ifp->if_priority + RTP_STATIC; int error; KASSERT(rdomain == rtable_l2(rdomain)); memset(&info, 0, sizeof(info)); info.rti_ifa = ifa; info.rti_flags = flags; info.rti_info[RTAX_DST] = dst; if (flags & RTF_LLINFO) info.rti_info[RTAX_GATEWAY] = sdltosa(ifp->if_sadl); else info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl); #ifdef MPLS if ((flags & RTF_MPLS) == RTF_MPLS) info.rti_mpls = MPLS_OP_POP; #endif /* MPLS */ if ((flags & RTF_HOST) == 0) info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; if (flags & (RTF_LOCAL|RTF_BROADCAST)) prio = RTP_LOCAL; if (flags & RTF_CONNECTED) prio = ifp->if_priority + RTP_CONNECTED; error = rtrequest(RTM_ADD, &info, prio, &rt, rdomain); if (error == 0) { /* * A local route is created for every address configured * on an interface, so use this information to notify * userland that a new address has been added. */ if (flags & RTF_LOCAL) rtm_addr(RTM_NEWADDR, ifa); rtm_send(rt, RTM_ADD, 0, rdomain); rtfree(rt); } return (error); } int rt_ifa_del(struct ifaddr *ifa, int flags, struct sockaddr *dst, unsigned int rdomain) { struct ifnet *ifp = ifa->ifa_ifp; struct rtentry *rt; struct mbuf *m = NULL; struct sockaddr *deldst; struct rt_addrinfo info; struct sockaddr_rtlabel sa_rl; uint8_t prio = ifp->if_priority + RTP_STATIC; int error; KASSERT(rdomain == rtable_l2(rdomain)); if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) { m = m_get(M_DONTWAIT, MT_SONAME); if (m == NULL) return (ENOBUFS); deldst = mtod(m, struct sockaddr *); rt_maskedcopy(dst, deldst, ifa->ifa_netmask); dst = deldst; } memset(&info, 0, sizeof(info)); info.rti_ifa = ifa; info.rti_flags = flags; info.rti_info[RTAX_DST] = dst; if ((flags & RTF_LLINFO) == 0) info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl); if ((flags & RTF_HOST) == 0) info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; if (flags & (RTF_LOCAL|RTF_BROADCAST)) prio = RTP_LOCAL; if (flags & RTF_CONNECTED) prio = ifp->if_priority + RTP_CONNECTED; rtable_clearsource(rdomain, ifa->ifa_addr); error = rtrequest_delete(&info, prio, ifp, &rt, rdomain); if (error == 0) { rtm_send(rt, RTM_DELETE, 0, rdomain); if (flags & RTF_LOCAL) rtm_addr(RTM_DELADDR, ifa); rtfree(rt); } m_free(m); return (error); } /* * Add ifa's address as a local rtentry. */ int rt_ifa_addlocal(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct rtentry *rt; u_int flags = RTF_HOST|RTF_LOCAL; int error = 0; /* * If the configured address correspond to the magical "any" * address do not add a local route entry because that might * corrupt the routing tree which uses this value for the * default routes. */ switch (ifa->ifa_addr->sa_family) { case AF_INET: if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY) return (0); break; #ifdef INET6 case AF_INET6: if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr, &in6addr_any)) return (0); break; #endif default: break; } if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT))) flags |= RTF_LLINFO; /* If there is no local entry, allocate one. */ rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain); if (rt == NULL || ISSET(rt->rt_flags, flags) != flags) { error = rt_ifa_add(ifa, flags | RTF_MPATH, ifa->ifa_addr, ifp->if_rdomain); } rtfree(rt); return (error); } /* * Remove local rtentry of ifa's address if it exists. */ int rt_ifa_dellocal(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct rtentry *rt; u_int flags = RTF_HOST|RTF_LOCAL; int error = 0; /* * We do not add local routes for such address, so do not bother * removing them. */ switch (ifa->ifa_addr->sa_family) { case AF_INET: if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY) return (0); break; #ifdef INET6 case AF_INET6: if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr, &in6addr_any)) return (0); break; #endif default: break; } if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT))) flags |= RTF_LLINFO; /* * Before deleting, check if a corresponding local host * route surely exists. With this check, we can avoid to * delete an interface direct route whose destination is same * as the address being removed. This can happen when removing * a subnet-router anycast address on an interface attached * to a shared medium. */ rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain); if (rt != NULL && ISSET(rt->rt_flags, flags) == flags) { error = rt_ifa_del(ifa, flags, ifa->ifa_addr, ifp->if_rdomain); } rtfree(rt); return (error); } /* * Remove all addresses attached to ``ifa''. */ void rt_ifa_purge(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct rtentry *rt = NULL; unsigned int rtableid; int error, af = ifa->ifa_addr->sa_family; KASSERT(ifp != NULL); for (rtableid = 0; rtableid < rtmap_limit; rtableid++) { /* skip rtables that are not in the rdomain of the ifp */ if (rtable_l2(rtableid) != ifp->if_rdomain) continue; do { error = rtable_walk(rtableid, af, &rt, rt_ifa_purge_walker, ifa); if (rt != NULL && error == EEXIST) { error = rtdeletemsg(rt, ifp, rtableid); if (error == 0) error = EAGAIN; } rtfree(rt); rt = NULL; } while (error == EAGAIN); if (error == EAFNOSUPPORT) error = 0; if (error) break; } } int rt_ifa_purge_walker(struct rtentry *rt, void *vifa, unsigned int rtableid) { struct ifaddr *ifa = vifa; if (rt->rt_ifa == ifa) return EEXIST; return 0; } /* * Route timer routines. These routes allow functions to be called * for various routes at any time. This is useful in supporting * path MTU discovery and redirect route deletion. * * This is similar to some BSDI internal functions, but it provides * for multiple queues for efficiency's sake... */ struct mutex rttimer_mtx; struct rttimer { TAILQ_ENTRY(rttimer) rtt_next; /* [T] entry on timer queue */ LIST_ENTRY(rttimer) rtt_link; /* [T] timers per rtentry */ struct timeout rtt_timeout; /* [I] timeout for this entry */ struct rttimer_queue *rtt_queue; /* [I] back pointer to queue */ struct rtentry *rtt_rt; /* [T] back pointer to route */ time_t rtt_expire; /* [I] rt expire time */ u_int rtt_tableid; /* [I] rtable id of rtt_rt */ }; #define RTTIMER_CALLOUT(r) { \ if (r->rtt_queue->rtq_func != NULL) { \ (*r->rtt_queue->rtq_func)(r->rtt_rt, r->rtt_tableid); \ } else { \ struct ifnet *ifp; \ \ ifp = if_get(r->rtt_rt->rt_ifidx); \ if (ifp != NULL && \ (r->rtt_rt->rt_flags & (RTF_DYNAMIC|RTF_HOST)) == \ (RTF_DYNAMIC|RTF_HOST)) \ rtdeletemsg(r->rtt_rt, ifp, r->rtt_tableid); \ if_put(ifp); \ } \ } /* * Some subtle order problems with domain initialization mean that * we cannot count on this being run from rt_init before various * protocol initializations are done. Therefore, we make sure * that this is run when the first queue is added... */ void rt_timer_init(void) { pool_init(&rttimer_pool, sizeof(struct rttimer), 0, IPL_MPFLOOR, 0, "rttmr", NULL); mtx_init(&rttimer_mtx, IPL_MPFLOOR); } void rt_timer_queue_init(struct rttimer_queue *rtq, int timeout, void (*func)(struct rtentry *, u_int)) { rtq->rtq_timeout = timeout; rtq->rtq_count = 0; rtq->rtq_func = func; TAILQ_INIT(&rtq->rtq_head); } void rt_timer_queue_change(struct rttimer_queue *rtq, int timeout) { mtx_enter(&rttimer_mtx); rtq->rtq_timeout = timeout; mtx_leave(&rttimer_mtx); } void rt_timer_queue_flush(struct rttimer_queue *rtq) { struct rttimer *r; TAILQ_HEAD(, rttimer) rttlist; NET_ASSERT_LOCKED(); TAILQ_INIT(&rttlist); mtx_enter(&rttimer_mtx); while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) { LIST_REMOVE(r, rtt_link); TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); TAILQ_INSERT_TAIL(&rttlist, r, rtt_next); KASSERT(rtq->rtq_count > 0); rtq->rtq_count--; } mtx_leave(&rttimer_mtx); while ((r = TAILQ_FIRST(&rttlist)) != NULL) { TAILQ_REMOVE(&rttlist, r, rtt_next); RTTIMER_CALLOUT(r); pool_put(&rttimer_pool, r); } } unsigned long rt_timer_queue_count(struct rttimer_queue *rtq) { return (rtq->rtq_count); } static inline struct rttimer * rt_timer_unlink(struct rttimer *r) { MUTEX_ASSERT_LOCKED(&rttimer_mtx); LIST_REMOVE(r, rtt_link); r->rtt_rt = NULL; if (timeout_del(&r->rtt_timeout) == 0) { /* timeout fired, so rt_timer_timer will do the cleanup */ return NULL; } TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next); KASSERT(r->rtt_queue->rtq_count > 0); r->rtt_queue->rtq_count--; return r; } void rt_timer_remove_all(struct rtentry *rt) { struct rttimer *r; TAILQ_HEAD(, rttimer) rttlist; TAILQ_INIT(&rttlist); mtx_enter(&rttimer_mtx); while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) { r = rt_timer_unlink(r); if (r != NULL) TAILQ_INSERT_TAIL(&rttlist, r, rtt_next); } mtx_leave(&rttimer_mtx); while ((r = TAILQ_FIRST(&rttlist)) != NULL) { TAILQ_REMOVE(&rttlist, r, rtt_next); pool_put(&rttimer_pool, r); } } time_t rt_timer_get_expire(const struct rtentry *rt) { const struct rttimer *r; time_t expire = 0; mtx_enter(&rttimer_mtx); LIST_FOREACH(r, &rt->rt_timer, rtt_link) { if (expire == 0 || expire > r->rtt_expire) expire = r->rtt_expire; } mtx_leave(&rttimer_mtx); return expire; } int rt_timer_add(struct rtentry *rt, struct rttimer_queue *queue, u_int rtableid) { struct rttimer *r, *rnew; rnew = pool_get(&rttimer_pool, PR_NOWAIT | PR_ZERO); if (rnew == NULL) return (ENOBUFS); rnew->rtt_rt = rt; rnew->rtt_queue = queue; rnew->rtt_tableid = rtableid; rnew->rtt_expire = getuptime() + queue->rtq_timeout; timeout_set_proc(&rnew->rtt_timeout, rt_timer_timer, rnew); mtx_enter(&rttimer_mtx); /* * If there's already a timer with this action, destroy it before * we add a new one. */ LIST_FOREACH(r, &rt->rt_timer, rtt_link) { if (r->rtt_queue == queue) { r = rt_timer_unlink(r); break; /* only one per list, so we can quit... */ } } LIST_INSERT_HEAD(&rt->rt_timer, rnew, rtt_link); TAILQ_INSERT_TAIL(&queue->rtq_head, rnew, rtt_next); timeout_add_sec(&rnew->rtt_timeout, queue->rtq_timeout); rnew->rtt_queue->rtq_count++; mtx_leave(&rttimer_mtx); if (r != NULL) pool_put(&rttimer_pool, r); return (0); } void rt_timer_timer(void *arg) { struct rttimer *r = arg; struct rttimer_queue *rtq = r->rtt_queue; NET_LOCK(); mtx_enter(&rttimer_mtx); if (r->rtt_rt != NULL) LIST_REMOVE(r, rtt_link); TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next); KASSERT(rtq->rtq_count > 0); rtq->rtq_count--; mtx_leave(&rttimer_mtx); if (r->rtt_rt != NULL) RTTIMER_CALLOUT(r); NET_UNLOCK(); pool_put(&rttimer_pool, r); } #ifdef MPLS int rt_mpls_set(struct rtentry *rt, struct sockaddr *src, uint8_t op) { struct sockaddr_mpls *psa_mpls = (struct sockaddr_mpls *)src; struct rt_mpls *rt_mpls; if (psa_mpls == NULL && op != MPLS_OP_POP) return (EOPNOTSUPP); if (psa_mpls != NULL && psa_mpls->smpls_len != sizeof(*psa_mpls)) return (EINVAL); if (psa_mpls != NULL && psa_mpls->smpls_family != AF_MPLS) return (EAFNOSUPPORT); rt->rt_llinfo = malloc(sizeof(struct rt_mpls), M_TEMP, M_NOWAIT|M_ZERO); if (rt->rt_llinfo == NULL) return (ENOMEM); rt_mpls = (struct rt_mpls *)rt->rt_llinfo; if (psa_mpls != NULL) rt_mpls->mpls_label = psa_mpls->smpls_label; rt_mpls->mpls_operation = op; /* XXX: set experimental bits */ rt->rt_flags |= RTF_MPLS; return (0); } void rt_mpls_clear(struct rtentry *rt) { if (rt->rt_llinfo != NULL && rt->rt_flags & RTF_MPLS) { free(rt->rt_llinfo, M_TEMP, sizeof(struct rt_mpls)); rt->rt_llinfo = NULL; } rt->rt_flags &= ~RTF_MPLS; } #endif u_int16_t rtlabel_name2id(char *name) { struct rt_label *label, *p; u_int16_t new_id = 1; if (!name[0]) return (0); TAILQ_FOREACH(label, &rt_labels, rtl_entry) if (strcmp(name, label->rtl_name) == 0) { label->rtl_ref++; return (label->rtl_id); } /* * to avoid fragmentation, we do a linear search from the beginning * and take the first free slot we find. if there is none or the list * is empty, append a new entry at the end. */ TAILQ_FOREACH(p, &rt_labels, rtl_entry) { if (p->rtl_id != new_id) break; new_id = p->rtl_id + 1; } if (new_id > LABELID_MAX) return (0); label = malloc(sizeof(*label), M_RTABLE, M_NOWAIT|M_ZERO); if (label == NULL) return (0); strlcpy(label->rtl_name, name, sizeof(label->rtl_name)); label->rtl_id = new_id; label->rtl_ref++; if (p != NULL) /* insert new entry before p */ TAILQ_INSERT_BEFORE(p, label, rtl_entry); else /* either list empty or no free slot in between */ TAILQ_INSERT_TAIL(&rt_labels, label, rtl_entry); return (label->rtl_id); } const char * rtlabel_id2name(u_int16_t id) { struct rt_label *label; TAILQ_FOREACH(label, &rt_labels, rtl_entry) if (label->rtl_id == id) return (label->rtl_name); return (NULL); } struct sockaddr * rtlabel_id2sa(u_int16_t labelid, struct sockaddr_rtlabel *sa_rl) { const char *label; if (labelid == 0 || (label = rtlabel_id2name(labelid)) == NULL) return (NULL); bzero(sa_rl, sizeof(*sa_rl)); sa_rl->sr_len = sizeof(*sa_rl); sa_rl->sr_family = AF_UNSPEC; strlcpy(sa_rl->sr_label, label, sizeof(sa_rl->sr_label)); return ((struct sockaddr *)sa_rl); } void rtlabel_unref(u_int16_t id) { struct rt_label *p, *next; if (id == 0) return; TAILQ_FOREACH_SAFE(p, &rt_labels, rtl_entry, next) { if (id == p->rtl_id) { if (--p->rtl_ref == 0) { TAILQ_REMOVE(&rt_labels, p, rtl_entry); free(p, M_RTABLE, sizeof(*p)); } break; } } } int rt_if_track(struct ifnet *ifp) { unsigned int rtableid; struct rtentry *rt = NULL; int i, error = 0; for (rtableid = 0; rtableid < rtmap_limit; rtableid++) { /* skip rtables that are not in the rdomain of the ifp */ if (rtable_l2(rtableid) != ifp->if_rdomain) continue; for (i = 1; i <= AF_MAX; i++) { if (!rtable_mpath_capable(rtableid, i)) continue; do { error = rtable_walk(rtableid, i, &rt, rt_if_linkstate_change, ifp); if (rt != NULL && error == EEXIST) { error = rtdeletemsg(rt, ifp, rtableid); if (error == 0) error = EAGAIN; } rtfree(rt); rt = NULL; } while (error == EAGAIN); if (error == EAFNOSUPPORT) error = 0; if (error) break; } } return (error); } int rt_if_linkstate_change(struct rtentry *rt, void *arg, u_int id) { struct ifnet *ifp = arg; struct sockaddr_in6 sa_mask; int error; if (rt->rt_ifidx != ifp->if_index) return (0); /* Local routes are always usable. */ if (rt->rt_flags & RTF_LOCAL) { rt->rt_flags |= RTF_UP; return (0); } if (LINK_STATE_IS_UP(ifp->if_link_state) && ifp->if_flags & IFF_UP) { if (ISSET(rt->rt_flags, RTF_UP)) return (0); /* bring route up */ rt->rt_flags |= RTF_UP; error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt), rt->rt_priority & RTP_MASK, rt); } else { /* * Remove redirected and cloned routes (mainly ARP) * from down interfaces so we have a chance to get * new routes from a better source. */ if (ISSET(rt->rt_flags, RTF_CLONED|RTF_DYNAMIC) && !ISSET(rt->rt_flags, RTF_CACHED|RTF_BFD)) { return (EEXIST); } if (!ISSET(rt->rt_flags, RTF_UP)) return (0); /* take route down */ rt->rt_flags &= ~RTF_UP; error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt), rt->rt_priority | RTP_DOWN, rt); } if_group_routechange(rt_key(rt), rt_plen2mask(rt, &sa_mask)); return (error); } struct sockaddr * rt_plentosa(sa_family_t af, int plen, struct sockaddr_in6 *sa_mask) { struct sockaddr_in *sin = (struct sockaddr_in *)sa_mask; #ifdef INET6 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa_mask; #endif KASSERT(plen >= 0 || plen == -1); if (plen == -1) return (NULL); memset(sa_mask, 0, sizeof(*sa_mask)); switch (af) { case AF_INET: sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); in_prefixlen2mask(&sin->sin_addr, plen); break; #ifdef INET6 case AF_INET6: sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(struct sockaddr_in6); in6_prefixlen2mask(&sin6->sin6_addr, plen); break; #endif /* INET6 */ default: return (NULL); } return ((struct sockaddr *)sa_mask); } struct sockaddr * rt_plen2mask(struct rtentry *rt, struct sockaddr_in6 *sa_mask) { return (rt_plentosa(rt_key(rt)->sa_family, rt_plen(rt), sa_mask)); } #ifdef DDB #include #include void db_print_sa(struct sockaddr *); void db_print_ifa(struct ifaddr *); void db_print_sa(struct sockaddr *sa) { int len; u_char *p; if (sa == NULL) { db_printf("[NULL]"); return; } p = (u_char *)sa; len = sa->sa_len; db_printf("["); while (len > 0) { db_printf("%d", *p); p++; len--; if (len) db_printf(","); } db_printf("]\n"); } void db_print_ifa(struct ifaddr *ifa) { if (ifa == NULL) return; db_printf(" ifa_addr="); db_print_sa(ifa->ifa_addr); db_printf(" ifa_dsta="); db_print_sa(ifa->ifa_dstaddr); db_printf(" ifa_mask="); db_print_sa(ifa->ifa_netmask); db_printf(" flags=0x%x, refcnt=%d, metric=%d\n", ifa->ifa_flags, ifa->ifa_refcnt, ifa->ifa_metric); } /* * Function to pass to rtable_walk(). * Return non-zero error to abort walk. */ int db_show_rtentry(struct rtentry *rt, void *w, unsigned int id) { db_printf("rtentry=%p", rt); db_printf(" flags=0x%x refcnt=%u use=%llu expire=%lld\n", rt->rt_flags, rt->rt_refcnt.r_refs, rt->rt_use, rt->rt_expire); db_printf(" key="); db_print_sa(rt_key(rt)); db_printf(" plen=%d", rt_plen(rt)); db_printf(" gw="); db_print_sa(rt->rt_gateway); db_printf(" ifidx=%u ", rt->rt_ifidx); db_printf(" ifa=%p\n", rt->rt_ifa); db_print_ifa(rt->rt_ifa); db_printf(" gwroute=%p llinfo=%p priority=%d\n", rt->rt_gwroute, rt->rt_llinfo, rt->rt_priority); return (0); } /* * Function to print all the route trees. */ int db_show_rtable(int af, unsigned int rtableid) { db_printf("Route tree for af %d, rtableid %u\n", af, rtableid); rtable_walk(rtableid, af, NULL, db_show_rtentry, NULL); return (0); } #endif /* DDB */