/* $OpenBSD: rtsock.c,v 1.148 2014/07/08 17:19:25 deraadt Exp $ */ /* $NetBSD: rtsock.c,v 1.18 1996/03/29 00:32:10 cgd Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)rtsock.c 8.6 (Berkeley) 2/11/95 */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MPLS #include #endif #include #include #include struct sockaddr route_dst = { 2, PF_ROUTE, }; struct sockaddr route_src = { 2, PF_ROUTE, }; struct sockproto route_proto = { PF_ROUTE, }; struct walkarg { int w_op, w_arg, w_given, w_needed, w_tmemsize; caddr_t w_where, w_tmem; }; int route_ctloutput(int, struct socket *, int, int, struct mbuf **); void route_input(struct mbuf *m0, ...); struct mbuf *rt_msg1(int, struct rt_addrinfo *); int rt_msg2(int, int, struct rt_addrinfo *, caddr_t, struct walkarg *); void rt_xaddrs(caddr_t, caddr_t, struct rt_addrinfo *); struct routecb { struct rawcb rcb; struct timeout timeout; unsigned int msgfilter; unsigned int flags; u_int rtableid; }; #define sotoroutecb(so) ((struct routecb *)(so)->so_pcb) /* * These flags and timeout are used for indicating to userland (via a * RTM_DESYNC msg) when the route socket has overflowed and messages * have been lost. */ #define ROUTECB_FLAG_DESYNC 0x1 /* Route socket out of memory */ #define ROUTECB_FLAG_FLUSH 0x2 /* Wait until socket is empty before queueing more packets */ #define ROUTE_DESYNC_RESEND_TIMEOUT (hz / 5) /* In hz */ void rt_senddesync(void *); int route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam, struct mbuf *control, struct proc *p) { struct rawcb *rp; struct routecb *rop; int s, af; int error = 0; s = splsoftnet(); rp = sotorawcb(so); switch (req) { case PRU_ATTACH: /* * use the rawcb but allocate a routecb, this * code does not care about the additional fields * and works directly on the raw socket. */ rop = malloc(sizeof(struct routecb), M_PCB, M_WAITOK|M_ZERO); rp = &rop->rcb; so->so_pcb = rp; /* Init the timeout structure */ timeout_set(&((struct routecb *)rp)->timeout, rt_senddesync, rp); /* * Don't call raw_usrreq() in the attach case, because * we want to allow non-privileged processes to listen * on and send "safe" commands to the routing socket. */ if (curproc == 0) error = EACCES; else error = raw_attach(so, (int)(long)nam); if (error) { free(rp, M_PCB); splx(s); return (error); } rop->rtableid = curproc->p_p->ps_rtableid; af = rp->rcb_proto.sp_protocol; if (af == AF_INET) route_cb.ip_count++; else if (af == AF_INET6) route_cb.ip6_count++; #ifdef MPLS else if (af == AF_MPLS) route_cb.mpls_count++; #endif rp->rcb_faddr = &route_src; route_cb.any_count++; soisconnected(so); so->so_options |= SO_USELOOPBACK; break; case PRU_RCVD: rop = (struct routecb *)rp; /* * If we are in a FLUSH state, check if the buffer is * empty so that we can clear the flag. */ if (((rop->flags & ROUTECB_FLAG_FLUSH) != 0) && ((sbspace(&rp->rcb_socket->so_rcv) == rp->rcb_socket->so_rcv.sb_hiwat))) rop->flags &= ~ROUTECB_FLAG_FLUSH; break; case PRU_DETACH: if (rp) { timeout_del(&((struct routecb *)rp)->timeout); af = rp->rcb_proto.sp_protocol; if (af == AF_INET) route_cb.ip_count--; else if (af == AF_INET6) route_cb.ip6_count--; #ifdef MPLS else if (af == AF_MPLS) route_cb.mpls_count--; #endif route_cb.any_count--; } /* FALLTHROUGH */ default: error = raw_usrreq(so, req, m, nam, control, p); } splx(s); return (error); } int route_ctloutput(int op, struct socket *so, int level, int optname, struct mbuf **mp) { struct routecb *rop = sotoroutecb(so); struct mbuf *m = *mp; int error = 0; unsigned int tid; if (level != AF_ROUTE) { error = EINVAL; if (op == PRCO_SETOPT && *mp) m_free(*mp); return (error); } switch (op) { case PRCO_SETOPT: switch (optname) { case ROUTE_MSGFILTER: if (m == NULL || m->m_len != sizeof(unsigned int)) error = EINVAL; else rop->msgfilter = *mtod(m, unsigned int *); break; case ROUTE_TABLEFILTER: if (m == NULL || m->m_len != sizeof(unsigned int)) { error = EINVAL; break; } tid = *mtod(m, unsigned int *); if (tid != RTABLE_ANY && !rtable_exists(tid)) error = ENOENT; else rop->rtableid = tid; break; default: error = ENOPROTOOPT; break; } if (m) m_free(m); break; case PRCO_GETOPT: switch (optname) { case ROUTE_MSGFILTER: *mp = m = m_get(M_WAIT, MT_SOOPTS); m->m_len = sizeof(unsigned int); *mtod(m, unsigned int *) = rop->msgfilter; break; case ROUTE_TABLEFILTER: *mp = m = m_get(M_WAIT, MT_SOOPTS); m->m_len = sizeof(unsigned int); *mtod(m, unsigned int *) = rop->rtableid; break; default: error = ENOPROTOOPT; break; } } return (error); } void rt_senddesync(void *data) { struct rawcb *rp; struct routecb *rop; struct mbuf *desync_mbuf; rp = (struct rawcb *)data; rop = (struct routecb *)rp; /* If we are in a DESYNC state, try to send a RTM_DESYNC packet */ if ((rop->flags & ROUTECB_FLAG_DESYNC) != 0) { /* * If we fail to alloc memory or if sbappendaddr() * fails, re-add timeout and try again. */ desync_mbuf = rt_msg1(RTM_DESYNC, NULL); if ((desync_mbuf != NULL) && (sbappendaddr(&rp->rcb_socket->so_rcv, &route_src, desync_mbuf, (struct mbuf *)0) != 0)) { rop->flags &= ~ROUTECB_FLAG_DESYNC; sorwakeup(rp->rcb_socket); } else { if (desync_mbuf) m_freem(desync_mbuf); /* Re-add timeout to try sending msg again */ timeout_add(&rop->timeout, ROUTE_DESYNC_RESEND_TIMEOUT); } } } void route_input(struct mbuf *m0, ...) { struct rawcb *rp; struct routecb *rop; struct rt_msghdr *rtm; struct mbuf *m = m0; int sockets = 0; struct socket *last = NULL; va_list ap; struct sockproto *proto; struct sockaddr *sosrc, *sodst; va_start(ap, m0); proto = va_arg(ap, struct sockproto *); sosrc = va_arg(ap, struct sockaddr *); sodst = va_arg(ap, struct sockaddr *); va_end(ap); /* ensure that we can access the rtm_type via mtod() */ if (m->m_len < offsetof(struct rt_msghdr, rtm_type) + 1) { m_freem(m); return; } LIST_FOREACH(rp, &rawcb, rcb_list) { if (rp->rcb_socket->so_state & SS_CANTRCVMORE) continue; if (rp->rcb_proto.sp_family != proto->sp_family) continue; if (rp->rcb_proto.sp_protocol && proto->sp_protocol && rp->rcb_proto.sp_protocol != proto->sp_protocol) continue; /* * We assume the lower level routines have * placed the address in a canonical format * suitable for a structure comparison. * * Note that if the lengths are not the same * the comparison will fail at the first byte. */ #define equal(a1, a2) \ (bcmp((caddr_t)(a1), (caddr_t)(a2), a1->sa_len) == 0) if (rp->rcb_laddr && !equal(rp->rcb_laddr, sodst)) continue; if (rp->rcb_faddr && !equal(rp->rcb_faddr, sosrc)) continue; /* filter messages that the process does not want */ rop = (struct routecb *)rp; rtm = mtod(m, struct rt_msghdr *); /* but RTM_DESYNC can't be filtered */ if (rtm->rtm_type != RTM_DESYNC && rop->msgfilter != 0 && !(rop->msgfilter & (1 << rtm->rtm_type))) continue; switch (rtm->rtm_type) { case RTM_IFANNOUNCE: case RTM_DESYNC: /* no tableid */ break; case RTM_RESOLVE: case RTM_NEWADDR: case RTM_DELADDR: case RTM_IFINFO: /* check against rdomain id */ if (rop->rtableid != RTABLE_ANY && rtable_l2(rop->rtableid) != rtm->rtm_tableid) continue; break; default: /* check against rtable id */ if (rop->rtableid != RTABLE_ANY && rop->rtableid != rtm->rtm_tableid) continue; break; } /* * Check to see if the flush flag is set. If so, don't queue * any more messages until the flag is cleared. */ if ((rop->flags & ROUTECB_FLAG_FLUSH) != 0) continue; if (last) { struct mbuf *n; if ((n = m_copy(m, 0, (int)M_COPYALL)) != NULL) { if (sbspace(&last->so_rcv) < (2 * MSIZE) || sbappendaddr(&last->so_rcv, sosrc, n, (struct mbuf *)0) == 0) { /* * Flag socket as desync'ed and * flush required */ sotoroutecb(last)->flags |= ROUTECB_FLAG_DESYNC | ROUTECB_FLAG_FLUSH; rt_senddesync((void *) sotorawcb(last)); m_freem(n); } else { sorwakeup(last); sockets++; } } } last = rp->rcb_socket; } if (last) { if (sbspace(&last->so_rcv) < (2 * MSIZE) || sbappendaddr(&last->so_rcv, sosrc, m, (struct mbuf *)0) == 0) { /* Flag socket as desync'ed and flush required */ sotoroutecb(last)->flags |= ROUTECB_FLAG_DESYNC | ROUTECB_FLAG_FLUSH; rt_senddesync((void *) sotorawcb(last)); m_freem(m); } else { sorwakeup(last); sockets++; } } else m_freem(m); } int route_output(struct mbuf *m, ...) { struct rt_msghdr *rtm = NULL; struct radix_node *rn = NULL; struct rtentry *rt = NULL; struct rtentry *saved_nrt = NULL; struct radix_node_head *rnh; struct rt_addrinfo info; int len, newgate, error = 0; struct ifnet *ifp = NULL; struct ifaddr *ifa = NULL; struct socket *so; struct rawcb *rp = NULL; struct sockaddr_rtlabel sa_rl; #ifdef MPLS struct sockaddr_mpls sa_mpls, *psa_mpls; #endif va_list ap; u_int tableid; u_int8_t prio; u_char vers; va_start(ap, m); so = va_arg(ap, struct socket *); va_end(ap); info.rti_info[RTAX_DST] = NULL; /* for error handling (goto flush) */ if (m == 0 || ((m->m_len < sizeof(int32_t)) && (m = m_pullup(m, sizeof(int32_t))) == 0)) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); len = m->m_pkthdr.len; if (len < offsetof(struct rt_msghdr, rtm_type) + 1 || len != mtod(m, struct rt_msghdr *)->rtm_msglen) { error = EINVAL; goto fail; } vers = mtod(m, struct rt_msghdr *)->rtm_version; switch (vers) { case RTM_VERSION: if (len < sizeof(struct rt_msghdr)) { error = EINVAL; goto fail; } if (len > RTM_MAXSIZE) { error = EMSGSIZE; goto fail; } rtm = malloc(len, M_RTABLE, M_NOWAIT); if (rtm == NULL) { error = ENOBUFS; goto fail; } m_copydata(m, 0, len, (caddr_t)rtm); break; default: error = EPROTONOSUPPORT; goto fail; } rtm->rtm_pid = curproc->p_p->ps_pid; if (rtm->rtm_hdrlen == 0) /* old client */ rtm->rtm_hdrlen = sizeof(struct rt_msghdr); if (len < rtm->rtm_hdrlen) { error = EINVAL; goto fail; } /* Verify that the caller is sending an appropriate message early */ switch (rtm->rtm_type) { case RTM_ADD: case RTM_DELETE: case RTM_GET: case RTM_CHANGE: case RTM_LOCK: break; default: error = EOPNOTSUPP; goto fail; } /* * Verify that the caller has the appropriate privilege; RTM_GET * is the only operation the non-superuser is allowed. */ if (rtm->rtm_type != RTM_GET && suser(curproc, 0) != 0) { error = EACCES; goto fail; } tableid = rtm->rtm_tableid; if (!rtable_exists(tableid)) { if (rtm->rtm_type == RTM_ADD) { if ((error = rtable_add(tableid)) != 0) goto flush; } else { error = EINVAL; goto flush; } } /* Do not let userland play with kernel-only flags. */ if ((rtm->rtm_flags & (RTF_LOCAL|RTF_BROADCAST)) != 0) { error = EINVAL; goto fail; } /* make sure that kernel-only bits are not set */ rtm->rtm_priority &= RTP_MASK; rtm->rtm_flags &= ~(RTF_DONE|RTF_CLONED); rtm->rtm_fmask &= RTF_FMASK; if (rtm->rtm_priority != 0) { if (rtm->rtm_priority > RTP_MAX || rtm->rtm_priority == RTP_LOCAL) { error = EINVAL; goto fail; } prio = rtm->rtm_priority; } else if (rtm->rtm_type != RTM_ADD) prio = RTP_ANY; else if (rtm->rtm_flags & RTF_STATIC) prio = 0; else prio = RTP_DEFAULT; bzero(&info, sizeof(info)); info.rti_addrs = rtm->rtm_addrs; rt_xaddrs(rtm->rtm_hdrlen + (caddr_t)rtm, len + (caddr_t)rtm, &info); info.rti_flags = rtm->rtm_flags; if (info.rti_info[RTAX_DST] == NULL || info.rti_info[RTAX_DST]->sa_family >= AF_MAX || (info.rti_info[RTAX_GATEWAY] != NULL && info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX) || info.rti_info[RTAX_GENMASK] != NULL) { error = EINVAL; goto flush; } #ifdef MPLS info.rti_mpls = rtm->rtm_mpls; #endif switch (rtm->rtm_type) { case RTM_ADD: if (info.rti_info[RTAX_GATEWAY] == NULL) { error = EINVAL; goto flush; } error = rtrequest1(rtm->rtm_type, &info, prio, &saved_nrt, tableid); if (error == 0 && saved_nrt) { rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &saved_nrt->rt_rmx); saved_nrt->rt_refcnt--; /* write back the priority the kernel used */ rtm->rtm_priority = saved_nrt->rt_priority & RTP_MASK; rtm->rtm_index = saved_nrt->rt_ifp->if_index; rtm->rtm_flags = saved_nrt->rt_flags; } break; case RTM_DELETE: error = rtrequest1(rtm->rtm_type, &info, prio, &saved_nrt, tableid); if (error == 0) { (rt = saved_nrt)->rt_refcnt++; goto report; } break; case RTM_GET: case RTM_CHANGE: case RTM_LOCK: rnh = rtable_get(tableid, info.rti_info[RTAX_DST]->sa_family); if (rnh == NULL) { error = EAFNOSUPPORT; goto flush; } rt = rt_lookup(info.rti_info[RTAX_DST], info.rti_info[RTAX_NETMASK], tableid); rn = (struct radix_node *)rt; if (rn == NULL || (rn->rn_flags & RNF_ROOT) != 0) { error = ESRCH; rt = NULL; goto flush; } #ifndef SMALL_KERNEL if (rn_mpath_capable(rnh)) { /* first find the right priority */ rt = rt_mpath_matchgate(rt, NULL, prio); if (!rt) { error = ESRCH; goto flush; } /* * For RTM_CHANGE/LOCK, if we got multipath routes, * a matching RTAX_GATEWAY is required. * OR * If a gateway is specified then RTM_GET and * RTM_LOCK must match the gateway no matter * what even in the non multipath case. */ if ((rt->rt_flags & RTF_MPATH) || (info.rti_info[RTAX_GATEWAY] && rtm->rtm_type != RTM_CHANGE)) { rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY], prio); if (!rt) { error = ESRCH; goto flush; } /* * only RTM_GET may use an empty gateway * on multipath routes */ if (!info.rti_info[RTAX_GATEWAY] && rtm->rtm_type != RTM_GET) { rt = NULL; error = ESRCH; goto flush; } } rn = (struct radix_node *)rt; } #endif rt->rt_refcnt++; /* * RTM_CHANGE/LOCK need a perfect match, rn_lookup() * returns a perfect match in case a netmask is specified. * For host routes only a longest prefix match is returned * so it is necessary to compare the existence of the netmaks. * If both have a netmask rn_lookup() did a perfect match and * if none of them have a netmask both are host routes which is * also a perfect match. */ if (rtm->rtm_type != RTM_GET && !rt_mask(rt) != !info.rti_info[RTAX_NETMASK]) { error = ESRCH; goto flush; } switch (rtm->rtm_type) { case RTM_GET: report: info.rti_info[RTAX_DST] = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); #ifdef MPLS if (rt->rt_flags & RTF_MPLS) { bzero(&sa_mpls, sizeof(sa_mpls)); sa_mpls.smpls_family = AF_MPLS; sa_mpls.smpls_len = sizeof(sa_mpls); sa_mpls.smpls_label = ((struct rt_mpls *) rt->rt_llinfo)->mpls_label; info.rti_info[RTAX_SRC] = (struct sockaddr *)&sa_mpls; info.rti_mpls = ((struct rt_mpls *) rt->rt_llinfo)->mpls_operation; rtm->rtm_mpls = info.rti_mpls; } #endif info.rti_info[RTAX_IFP] = NULL; info.rti_info[RTAX_IFA] = NULL; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA) && (ifp = rt->rt_ifp) != NULL) { info.rti_info[RTAX_IFP] = (struct sockaddr *)ifp->if_sadl; info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; if (ifp->if_flags & IFF_POINTOPOINT) info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; else info.rti_info[RTAX_BRD] = NULL; rtm->rtm_index = ifp->if_index; } len = rt_msg2(rtm->rtm_type, RTM_VERSION, &info, NULL, NULL); if (len > rtm->rtm_msglen) { struct rt_msghdr *new_rtm; new_rtm = malloc(len, M_RTABLE, M_NOWAIT); if (new_rtm == NULL) { error = ENOBUFS; goto flush; } memcpy(new_rtm, rtm, rtm->rtm_msglen); free(rtm, M_RTABLE); rtm = new_rtm; } rt_msg2(rtm->rtm_type, RTM_VERSION, &info, (caddr_t)rtm, NULL); rtm->rtm_flags = rt->rt_flags; rtm->rtm_use = 0; rtm->rtm_priority = rt->rt_priority & RTP_MASK; rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); rtm->rtm_addrs = info.rti_addrs; break; case RTM_CHANGE: /* * new gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ if ((error = rt_getifa(&info, tableid)) != 0) goto flush; newgate = 0; if (info.rti_info[RTAX_GATEWAY] != NULL) if (rt->rt_gateway == NULL || bcmp(rt->rt_gateway, info.rti_info[RTAX_GATEWAY], info.rti_info[RTAX_GATEWAY]->sa_len)) { newgate = 1; } if (info.rti_info[RTAX_GATEWAY] != NULL && rt_setgate(rt, rt_key(rt), info.rti_info[RTAX_GATEWAY], tableid)) { error = EDQUOT; goto flush; } ifa = info.rti_ifa; if (ifa) { if (rt->rt_ifa != ifa) { if (rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest( RTM_DELETE, rt); ifafree(rt->rt_ifa); rt->rt_ifa = ifa; ifa->ifa_refcnt++; rt->rt_ifp = ifa->ifa_ifp; #ifndef SMALL_KERNEL /* recheck link state after ifp change*/ rt_if_linkstate_change( (struct radix_node *)rt, rt->rt_ifp, tableid); #endif } } #ifdef MPLS if ((rtm->rtm_flags & RTF_MPLS) && info.rti_info[RTAX_SRC] != NULL) { struct rt_mpls *rt_mpls; psa_mpls = (struct sockaddr_mpls *) info.rti_info[RTAX_SRC]; if (rt->rt_llinfo == NULL) { rt->rt_llinfo = malloc(sizeof(struct rt_mpls), M_TEMP, M_NOWAIT|M_ZERO); } if (rt->rt_llinfo == NULL) { error = ENOMEM; goto flush; } rt_mpls = (struct rt_mpls *)rt->rt_llinfo; if (psa_mpls != NULL) { rt_mpls->mpls_label = psa_mpls->smpls_label; } rt_mpls->mpls_operation = info.rti_mpls; /* XXX: set experimental bits */ rt->rt_flags |= RTF_MPLS; } else if (newgate || ((rtm->rtm_fmask & RTF_MPLS) && !(rtm->rtm_flags & RTF_MPLS))) { /* if gateway changed remove MPLS information */ if (rt->rt_llinfo != NULL && rt->rt_flags & RTF_MPLS) { free(rt->rt_llinfo, M_TEMP); rt->rt_llinfo = NULL; rt->rt_flags &= ~RTF_MPLS; } } #endif /* Hack to allow some flags to be toggled */ if (rtm->rtm_fmask) rt->rt_flags = (rt->rt_flags & ~rtm->rtm_fmask) | (rtm->rtm_flags & rtm->rtm_fmask); rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); rtm->rtm_index = rt->rt_ifp->if_index; rtm->rtm_priority = rt->rt_priority & RTP_MASK; rtm->rtm_flags = rt->rt_flags; if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt); if (info.rti_info[RTAX_LABEL] != NULL) { char *rtlabel = ((struct sockaddr_rtlabel *) info.rti_info[RTAX_LABEL])->sr_label; rtlabel_unref(rt->rt_labelid); rt->rt_labelid = rtlabel_name2id(rtlabel); } if_group_routechange(info.rti_info[RTAX_DST], info.rti_info[RTAX_NETMASK]); /* FALLTHROUGH */ case RTM_LOCK: rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); rt->rt_rmx.rmx_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); rtm->rtm_priority = rt->rt_priority & RTP_MASK; break; } break; } flush: if (rtm) { if (error) rtm->rtm_errno = error; else { rtm->rtm_flags |= RTF_DONE; } } if (info.rti_info[RTAX_DST]) route_proto.sp_protocol = info.rti_info[RTAX_DST]->sa_family; if (rt) rtfree(rt); /* * Check to see if we don't want our own messages. */ if (!(so->so_options & SO_USELOOPBACK)) { if (route_cb.any_count <= 1) { fail: free(rtm, M_RTABLE); m_freem(m); return (error); } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rp) rp->rcb_proto.sp_family = 0; /* Avoid us */ if (rtm) { if (m_copyback(m, 0, rtm->rtm_msglen, rtm, M_NOWAIT)) { m_freem(m); m = NULL; } else if (m->m_pkthdr.len > rtm->rtm_msglen) m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); free(rtm, M_RTABLE); } if (m) route_input(m, &route_proto, &route_src, &route_dst); if (rp) rp->rcb_proto.sp_family = PF_ROUTE; return (error); } void rt_setmetrics(u_long which, struct rt_metrics *in, struct rt_kmetrics *out) { if (which & RTV_MTU) out->rmx_mtu = in->rmx_mtu; if (which & RTV_EXPIRE) out->rmx_expire = in->rmx_expire; /* RTV_PRIORITY handled before */ } void rt_getmetrics(struct rt_kmetrics *in, struct rt_metrics *out) { bzero(out, sizeof(*out)); out->rmx_locks = in->rmx_locks; out->rmx_mtu = in->rmx_mtu; out->rmx_expire = in->rmx_expire; out->rmx_pksent = in->rmx_pksent; } #define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) void rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) { struct sockaddr *sa; int i; bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info)); for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) { if ((rtinfo->rti_addrs & (1 << i)) == 0) continue; rtinfo->rti_info[i] = sa = (struct sockaddr *)cp; ADVANCE(cp, sa); } } struct mbuf * rt_msg1(int type, struct rt_addrinfo *rtinfo) { struct rt_msghdr *rtm; struct mbuf *m; int i; struct sockaddr *sa; int len, dlen, hlen; switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_IFANNOUNCE: len = sizeof(struct if_announcemsghdr); break; default: len = sizeof(struct rt_msghdr); break; } if (len > MCLBYTES) panic("rt_msg1"); m = m_gethdr(M_DONTWAIT, MT_DATA); if (m && len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); m = NULL; } } if (m == 0) return (m); m->m_pkthdr.len = m->m_len = hlen = len; m->m_pkthdr.rcvif = NULL; rtm = mtod(m, struct rt_msghdr *); bzero(rtm, len); for (i = 0; i < RTAX_MAX; i++) { if (rtinfo == NULL || (sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); if (m_copyback(m, len, dlen, sa, M_NOWAIT)) { m_freem(m); return (NULL); } len += dlen; } rtm->rtm_msglen = len; rtm->rtm_hdrlen = hlen; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; return (m); } int rt_msg2(int type, int vers, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) { int i; int len, dlen, hlen, second_time = 0; caddr_t cp0; rtinfo->rti_addrs = 0; again: switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; default: len = sizeof(struct rt_msghdr); break; } hlen = len; if ((cp0 = cp) != NULL) cp += len; for (i = 0; i < RTAX_MAX; i++) { struct sockaddr *sa; if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = ROUNDUP(sa->sa_len); if (cp) { bcopy(sa, cp, (size_t)dlen); cp += dlen; } len += dlen; } /* align message length to the next natural boundary */ len = ALIGN(len); if (cp == 0 && w != NULL && !second_time) { struct walkarg *rw = w; rw->w_needed += len; if (rw->w_needed <= 0 && rw->w_where) { if (rw->w_tmemsize < len) { free(rw->w_tmem, M_RTABLE); rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT); if (rw->w_tmem) rw->w_tmemsize = len; } if (rw->w_tmem) { cp = rw->w_tmem; second_time = 1; goto again; } else rw->w_where = 0; } } if (cp && w) /* clear the message header */ bzero(cp0, hlen); if (cp) { struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; rtm->rtm_msglen = len; rtm->rtm_hdrlen = hlen; } return (len); } /* * This routine is called to generate a message from the routing * socket indicating that a redirect has occurred, a routing lookup * has failed, or that a protocol has detected timeouts to a particular * destination. */ void rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, struct ifnet *ifp, int error, u_int tableid) { struct rt_msghdr *rtm; struct mbuf *m; struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; if (route_cb.any_count == 0) return; m = rt_msg1(type, rtinfo); if (m == 0) return; rtm = mtod(m, struct rt_msghdr *); rtm->rtm_flags = RTF_DONE | flags; rtm->rtm_errno = error; rtm->rtm_tableid = tableid; rtm->rtm_addrs = rtinfo->rti_addrs; if (ifp != NULL) rtm->rtm_index = ifp->if_index; if (sa == NULL) route_proto.sp_protocol = 0; else route_proto.sp_protocol = sa->sa_family; route_input(m, &route_proto, &route_src, &route_dst); } /* * This routine is called to generate a message from the routing * socket indicating that the status of a network interface has changed. */ void rt_ifmsg(struct ifnet *ifp) { struct if_msghdr *ifm; struct mbuf *m; if (route_cb.any_count == 0) return; m = rt_msg1(RTM_IFINFO, NULL); if (m == 0) return; ifm = mtod(m, struct if_msghdr *); ifm->ifm_index = ifp->if_index; ifm->ifm_tableid = ifp->if_rdomain; ifm->ifm_flags = ifp->if_flags; ifm->ifm_xflags = ifp->if_xflags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = 0; route_proto.sp_protocol = 0; route_input(m, &route_proto, &route_src, &route_dst); } /* * This is called to generate messages from the routing socket * indicating a network interface has had addresses associated with it. * if we ever reverse the logic and replace messages TO the routing * socket indicate a request to configure interfaces, then it will * be unnecessary as the routing socket will automatically generate * copies of it. */ void rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) { struct rt_addrinfo info; struct sockaddr *sa = NULL; int pass; struct mbuf *m = NULL; struct ifnet *ifp = ifa->ifa_ifp; if (route_cb.any_count == 0) return; for (pass = 1; pass < 3; pass++) { bzero(&info, sizeof(info)); if ((cmd == RTM_ADD && pass == 1) || (cmd == RTM_DELETE && pass == 2)) { struct ifa_msghdr *ifam; int ncmd; if (cmd == RTM_ADD) ncmd = RTM_NEWADDR; else ncmd = RTM_DELADDR; info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; info.rti_info[RTAX_IFP] = (struct sockaddr *)ifp->if_sadl; info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; if ((m = rt_msg1(ncmd, &info)) == NULL) continue; ifam = mtod(m, struct ifa_msghdr *); ifam->ifam_index = ifp->if_index; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_addrs = info.rti_addrs; ifam->ifam_tableid = ifp->if_rdomain; } if ((cmd == RTM_ADD && pass == 2) || (cmd == RTM_DELETE && pass == 1)) { struct rt_msghdr *rtm; struct sockaddr_rtlabel sa_rl; if (rt == 0) continue; info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_DST] = sa = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); if ((m = rt_msg1(cmd, &info)) == NULL) continue; rtm = mtod(m, struct rt_msghdr *); rtm->rtm_index = ifp->if_index; rtm->rtm_flags |= rt->rt_flags; rtm->rtm_priority = rt->rt_priority & RTP_MASK; rtm->rtm_errno = error; rtm->rtm_addrs = info.rti_addrs; rtm->rtm_tableid = ifp->if_rdomain; } if (sa == NULL) route_proto.sp_protocol = 0; else route_proto.sp_protocol = sa->sa_family; route_input(m, &route_proto, &route_src, &route_dst); } } /* * This is called to generate routing socket messages indicating * network interface arrival and departure. */ void rt_ifannouncemsg(struct ifnet *ifp, int what) { struct if_announcemsghdr *ifan; struct mbuf *m; if (route_cb.any_count == 0) return; m = rt_msg1(RTM_IFANNOUNCE, NULL); if (m == 0) return; ifan = mtod(m, struct if_announcemsghdr *); ifan->ifan_index = ifp->if_index; strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); ifan->ifan_what = what; route_proto.sp_protocol = 0; route_input(m, &route_proto, &route_src, &route_dst); } /* * This is used in dumping the kernel table via sysctl(). */ int sysctl_dumpentry(struct radix_node *rn, void *v, u_int id) { struct walkarg *w = v; struct rtentry *rt = (struct rtentry *)rn; int error = 0, size; struct rt_addrinfo info; #ifdef MPLS struct sockaddr_mpls sa_mpls; #endif struct sockaddr_rtlabel sa_rl; if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) return 0; bzero(&info, sizeof(info)); info.rti_info[RTAX_DST] = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); if (rt->rt_ifp) { info.rti_info[RTAX_IFP] = (struct sockaddr *)rt->rt_ifp->if_sadl; info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; } info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); #ifdef MPLS if (rt->rt_flags & RTF_MPLS) { bzero(&sa_mpls, sizeof(sa_mpls)); sa_mpls.smpls_family = AF_MPLS; sa_mpls.smpls_len = sizeof(sa_mpls); sa_mpls.smpls_label = ((struct rt_mpls *) rt->rt_llinfo)->mpls_label; info.rti_info[RTAX_SRC] = (struct sockaddr *)&sa_mpls; info.rti_mpls = ((struct rt_mpls *) rt->rt_llinfo)->mpls_operation; } #endif size = rt_msg2(RTM_GET, RTM_VERSION, &info, NULL, w); if (w->w_where && w->w_tmem && w->w_needed <= 0) { struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; rtm->rtm_flags = rt->rt_flags; rtm->rtm_priority = rt->rt_priority & RTP_MASK; rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); rtm->rtm_rmx.rmx_refcnt = rt->rt_refcnt; rtm->rtm_index = rt->rt_ifp->if_index; rtm->rtm_addrs = info.rti_addrs; rtm->rtm_tableid = id; #ifdef MPLS rtm->rtm_mpls = info.rti_mpls; #endif if ((error = copyout(rtm, w->w_where, size)) != 0) w->w_where = NULL; else w->w_where += size; } return (error); } int sysctl_iflist(int af, struct walkarg *w) { struct ifnet *ifp; struct ifaddr *ifa; struct rt_addrinfo info; int len, error = 0; bzero(&info, sizeof(info)); TAILQ_FOREACH(ifp, &ifnet, if_list) { if (w->w_arg && w->w_arg != ifp->if_index) continue; /* Copy the link-layer address first */ info.rti_info[RTAX_IFP] = (struct sockaddr *)ifp->if_sadl; len = rt_msg2(RTM_IFINFO, RTM_VERSION, &info, 0, w); if (w->w_where && w->w_tmem && w->w_needed <= 0) { struct if_msghdr *ifm; ifm = (struct if_msghdr *)w->w_tmem; ifm->ifm_index = ifp->if_index; ifm->ifm_tableid = ifp->if_rdomain; ifm->ifm_flags = ifp->if_flags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = info.rti_addrs; error = copyout(ifm, w->w_where, len); if (error) return (error); w->w_where += len; } info.rti_info[RTAX_IFP] = NULL; TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { KASSERT(ifa->ifa_addr->sa_family != AF_LINK); if (af && af != ifa->ifa_addr->sa_family) continue; info.rti_info[RTAX_IFA] = ifa->ifa_addr; info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; len = rt_msg2(RTM_NEWADDR, RTM_VERSION, &info, 0, w); if (w->w_where && w->w_tmem && w->w_needed <= 0) { struct ifa_msghdr *ifam; ifam = (struct ifa_msghdr *)w->w_tmem; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_addrs = info.rti_addrs; error = copyout(w->w_tmem, w->w_where, len); if (error) return (error); w->w_where += len; } } info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = info.rti_info[RTAX_BRD] = NULL; } return (0); } int sysctl_rtable(int *name, u_int namelen, void *where, size_t *given, void *new, size_t newlen) { struct radix_node_head *rnh; int i, s, error = EINVAL; u_char af; struct walkarg w; struct rt_tableinfo tableinfo; u_int tableid = 0; if (new) return (EPERM); if (namelen < 3 || namelen > 4) return (EINVAL); af = name[0]; bzero(&w, sizeof(w)); w.w_where = where; w.w_given = *given; w.w_needed = 0 - w.w_given; w.w_op = name[1]; w.w_arg = name[2]; if (namelen == 4) { tableid = name[3]; if (!rtable_exists(tableid)) return (ENOENT); } else tableid = curproc->p_p->ps_rtableid; s = splsoftnet(); switch (w.w_op) { case NET_RT_DUMP: case NET_RT_FLAGS: for (i = 1; i <= AF_MAX; i++) if ((rnh = rtable_get(tableid, i)) != NULL && (af == 0 || af == i) && (error = (*rnh->rnh_walktree)(rnh, sysctl_dumpentry, &w))) break; break; case NET_RT_IFLIST: error = sysctl_iflist(af, &w); break; case NET_RT_STATS: error = sysctl_rdstruct(where, given, new, &rtstat, sizeof(rtstat)); splx(s); return (error); case NET_RT_TABLE: tableid = w.w_arg; if (!rtable_exists(tableid)) { splx(s); return (ENOENT); } tableinfo.rti_tableid = tableid; tableinfo.rti_domainid = rtable_l2(tableid); error = sysctl_rdstruct(where, given, new, &tableinfo, sizeof(tableinfo)); splx(s); return (error); } splx(s); free(w.w_tmem, M_RTABLE); w.w_needed += w.w_given; if (where) { *given = w.w_where - (caddr_t)where; if (*given < w.w_needed) return (ENOMEM); } else *given = (11 * w.w_needed) / 10; return (error); } /* * Definitions of protocols supported in the ROUTE domain. */ extern struct domain routedomain; /* or at least forward */ struct protosw routesw[] = { { SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR|PR_WANTRCVD, route_input, route_output, raw_ctlinput, route_ctloutput, route_usrreq, raw_init, 0, 0, 0, sysctl_rtable, } }; struct domain routedomain = { PF_ROUTE, "route", route_init, 0, 0, routesw, &routesw[nitems(routesw)] };