/* $OpenBSD: ieee80211.c,v 1.4 2005/02/17 18:28:05 reyk Exp $ */ /* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #if defined(__FreeBSD__) __FBSDID("$FreeBSD: src/sys/net80211/ieee80211.c,v 1.11 2004/04/02 20:19:20 sam Exp $"); #elif defined (__NetBSD__) __KERNEL_RCSID(0, "$NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $"); #endif /* * IEEE 802.11 generic handler */ #ifdef __NetBSD__ #include "opt_inet.h" #endif #include "bpfilter.h" #include #include #include #include #include #include #include #include #ifdef __FreeBSD__ #include #endif #include #include #ifdef __FreeBSD__ #include #endif #include #include #include #include #if defined( __FreeBSD__) #include #elif defined(__NetBSD__) #include #endif #include #if NBPFILTER > 0 #include #endif #ifdef INET #include #if defined(__FreeBSD__) || defined(__OpenBSD__) #include #else #include #endif #endif #include #include #ifdef IEEE80211_DEBUG int ieee80211_debug = 0; #ifdef __NetBSD__ static int ieee80211_debug_nodenum; #endif /* __NetBSD__ */ #ifdef __FreeBSD__ SYSCTL_INT(_debug, OID_AUTO, ieee80211, CTLFLAG_RW, &ieee80211_debug, 0, "IEEE 802.11 media debugging printfs"); #endif #endif int ieee80211_cache_size = IEEE80211_CACHE_SIZE; #ifdef __NetBSD__ static int ieee80211_cache_size_nodenum; #endif struct ieee80211com_head ieee80211com_head = LIST_HEAD_INITIALIZER(ieee80211com_head); static void ieee80211_setbasicrates(struct ieee80211com *); #ifdef __NetBSD__ static void sysctl_ieee80211_fill_node(struct ieee80211_node *, struct ieee80211_node_sysctl *, int, struct ieee80211_channel *, int); static struct ieee80211_node *ieee80211_node_walknext( struct ieee80211_node_walk *); static struct ieee80211_node *ieee80211_node_walkfirst( struct ieee80211_node_walk *, u_short); static int sysctl_ieee80211_verify(SYSCTLFN_ARGS); static int sysctl_ieee80211_node(SYSCTLFN_ARGS); #endif /* __NetBSD__ */ #define LOGICALLY_EQUAL(x, y) (!(x) == !(y)) #if 0 static const char *ieee80211_phymode_name[] = { "auto", /* IEEE80211_MODE_AUTO */ "11a", /* IEEE80211_MODE_11A */ "11b", /* IEEE80211_MODE_11B */ "11g", /* IEEE80211_MODE_11G */ "FH", /* IEEE80211_MODE_FH */ "turbo", /* IEEE80211_MODE_TURBO */ }; #endif void ieee80211_ifattach(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; struct ieee80211_channel *c; int i; #if defined(__OpenBSD__) memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr, ETHER_ADDR_LEN); ether_ifattach(ifp); #else ether_ifattach(ifp, ic->ic_myaddr); #endif #if NBPFILTER > 0 BPF_ATTACH(ifp, DLT_IEEE802_11, sizeof(struct ieee80211_frame_addr4), &ic->ic_rawbpf); #endif ieee80211_crypto_attach(ifp); /* * Fill in 802.11 available channel set, mark * all available channels as active, and pick * a default channel if not already specified. */ memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); ic->ic_modecaps |= 1<ic_channels[i]; if (c->ic_flags) { /* * Verify driver passed us valid data. */ if (i != ieee80211_chan2ieee(ic, c)) { if_printf(ifp, "bad channel ignored; " "freq %u flags %x number %u\n", c->ic_freq, c->ic_flags, i); c->ic_flags = 0; /* NB: remove */ continue; } setbit(ic->ic_chan_avail, i); /* * Identify mode capabilities. */ if (IEEE80211_IS_CHAN_A(c)) ic->ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_curmode */ if ((ic->ic_modecaps & (1<ic_curmode)) == 0) ic->ic_curmode = IEEE80211_MODE_AUTO; ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ ieee80211_setbasicrates(ic); (void) ieee80211_setmode(ic, ic->ic_curmode); if (ic->ic_lintval == 0) ic->ic_lintval = 100; /* default sleep */ ic->ic_bmisstimeout = 7*ic->ic_lintval; /* default 7 beacons */ LIST_INSERT_HEAD(&ieee80211com_head, ic, ic_list); ieee80211_node_attach(ifp); ieee80211_proto_attach(ifp); } void ieee80211_ifdetach(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; ieee80211_proto_detach(ifp); ieee80211_crypto_detach(ifp); ieee80211_node_detach(ifp); LIST_REMOVE(ic, ic_list); #ifdef __FreeBSD__ ifmedia_removeall(&ic->ic_media); #else ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY); #endif #if NBPFILTER > 0 BPF_DETACH(ifp); #endif ether_ifdetach(ifp); } /* * Convert MHz frequency to IEEE channel number. */ u_int ieee80211_mhz2ieee(u_int freq, u_int flags) { if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; else return 15 + ((freq - 2512) / 20); } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ return (freq - 5000) / 5; } else { /* either, guess */ if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; if (freq < 5000) return 15 + ((freq - 2512) / 20); return (freq - 5000) / 5; } } /* * Convert channel to IEEE channel number. */ u_int ieee80211_chan2ieee(struct ieee80211com *ic, struct ieee80211_channel *c) { if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX]) return c - ic->ic_channels; else if (c == IEEE80211_CHAN_ANYC) return IEEE80211_CHAN_ANY; else if (c != NULL) { if_printf(&ic->ic_if, "invalid channel freq %u flags %x\n", c->ic_freq, c->ic_flags); return 0; /* XXX */ } else { if_printf(&ic->ic_if, "invalid channel (NULL)\n"); return 0; /* XXX */ } } /* * Convert IEEE channel number to MHz frequency. */ u_int ieee80211_ieee2mhz(u_int chan, u_int flags) { if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (chan == 14) return 2484; if (chan < 14) return 2407 + chan*5; else return 2512 + ((chan-15)*20); } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ return 5000 + (chan*5); } else { /* either, guess */ if (chan == 14) return 2484; if (chan < 14) /* 0-13 */ return 2407 + chan*5; if (chan < 27) /* 15-26 */ return 2512 + ((chan-15)*20); return 5000 + (chan*5); } } /* * Setup the media data structures according to the channel and * rate tables. This must be called by the driver after * ieee80211_attach and before most anything else. */ void ieee80211_media_init(struct ifnet *ifp, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) { #define ADD(_ic, _s, _o) \ ifmedia_add(&(_ic)->ic_media, \ IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) struct ieee80211com *ic = (void *)ifp; struct ifmediareq imr; int i, j, mode, rate, maxrate, mword, mopt, r; struct ieee80211_rateset *rs; struct ieee80211_rateset allrates; /* * Do late attach work that must wait for any subclass * (i.e. driver) work such as overriding methods. */ ieee80211_node_lateattach(ifp); /* * Fill in media characteristics. */ ifmedia_init(&ic->ic_media, 0, media_change, media_stat); maxrate = 0; memset(&allrates, 0, sizeof(allrates)); for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_MAX; mode++) { static const u_int mopts[] = { IFM_AUTO, IFM_IEEE80211_11A, IFM_IEEE80211_11B, IFM_IEEE80211_11G, IFM_IEEE80211_FH, IFM_IEEE80211_11A | IFM_IEEE80211_TURBO, }; if ((ic->ic_modecaps & (1<ic_caps & IEEE80211_C_IBSS) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC); if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); if (mode == IEEE80211_MODE_AUTO) continue; rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; mword = ieee80211_rate2media(ic, rate, mode); if (mword == 0) continue; ADD(ic, mword, mopt); if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, mword, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC); if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR); /* * Add rate to the collection of all rates. */ r = rate & IEEE80211_RATE_VAL; for (j = 0; j < allrates.rs_nrates; j++) if (allrates.rs_rates[j] == r) break; if (j == allrates.rs_nrates) { /* unique, add to the set */ allrates.rs_rates[j] = r; allrates.rs_nrates++; } rate = (rate & IEEE80211_RATE_VAL) / 2; if (rate > maxrate) maxrate = rate; } } for (i = 0; i < allrates.rs_nrates; i++) { mword = ieee80211_rate2media(ic, allrates.rs_rates[i], IEEE80211_MODE_AUTO); if (mword == 0) continue; mword = IFM_SUBTYPE(mword); /* remove media options */ ADD(ic, mword, 0); if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, mword, IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, mword, IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, mword, IFM_IEEE80211_ADHOC); if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, mword, IFM_IEEE80211_MONITOR); } ieee80211_media_status(ifp, &imr); ifmedia_set(&ic->ic_media, imr.ifm_active); if (maxrate) ifp->if_baudrate = IF_Mbps(maxrate); #undef ADD } static int findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, int rate) { #define IEEERATE(_ic,_m,_i) \ ((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL) int i, nrates = ic->ic_sup_rates[mode].rs_nrates; for (i = 0; i < nrates; i++) if (IEEERATE(ic, mode, i) == rate) return i; return -1; #undef IEEERATE } /* * Handle a media change request. */ int ieee80211_media_change(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; struct ifmedia_entry *ime; enum ieee80211_opmode newopmode; enum ieee80211_phymode newphymode; int i, j, newrate, error = 0; ime = ic->ic_media.ifm_cur; /* * First, identify the phy mode. */ switch (IFM_MODE(ime->ifm_media)) { case IFM_IEEE80211_11A: newphymode = IEEE80211_MODE_11A; break; case IFM_IEEE80211_11B: newphymode = IEEE80211_MODE_11B; break; case IFM_IEEE80211_11G: newphymode = IEEE80211_MODE_11G; break; case IFM_IEEE80211_FH: newphymode = IEEE80211_MODE_FH; break; case IFM_AUTO: newphymode = IEEE80211_MODE_AUTO; break; default: return EINVAL; } /* * Turbo mode is an ``option''. Eventually it * needs to be applied to 11g too. */ if (ime->ifm_media & IFM_IEEE80211_TURBO) { if (newphymode != IEEE80211_MODE_11A) return EINVAL; newphymode = IEEE80211_MODE_TURBO; } /* * Validate requested mode is available. */ if ((ic->ic_modecaps & (1<ifm_media) != IFM_AUTO) { /* * Convert media subtype to rate. */ newrate = ieee80211_media2rate(ime->ifm_media); if (newrate == 0) return EINVAL; /* * Check the rate table for the specified/current phy. */ if (newphymode == IEEE80211_MODE_AUTO) { /* * In autoselect mode search for the rate. */ for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++) { if ((ic->ic_modecaps & (1<ifm_media & IFM_IEEE80211_ADHOC) newopmode = IEEE80211_M_AHDEMO; else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) newopmode = IEEE80211_M_HOSTAP; else if (ime->ifm_media & IFM_IEEE80211_IBSS) newopmode = IEEE80211_M_IBSS; else if (ime->ifm_media & IFM_IEEE80211_MONITOR) newopmode = IEEE80211_M_MONITOR; else newopmode = IEEE80211_M_STA; /* * Autoselect doesn't make sense when operating as an AP. * If no phy mode has been selected, pick one and lock it * down so rate tables can be used in forming beacon frames * and the like. */ if (newopmode == IEEE80211_M_HOSTAP && newphymode == IEEE80211_MODE_AUTO) { for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++) if (ic->ic_modecaps & (1<ic_curmode != newphymode) { /* change phy mode */ error = ieee80211_setmode(ic, newphymode); if (error != 0) return error; error = ENETRESET; } /* * Committed to changes, install the rate setting. */ if (ic->ic_fixed_rate != i) { ic->ic_fixed_rate = i; /* set fixed tx rate */ error = ENETRESET; } /* * Handle operating mode change. */ if (ic->ic_opmode != newopmode) { ic->ic_opmode = newopmode; switch (newopmode) { case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: case IEEE80211_M_STA: case IEEE80211_M_MONITOR: ic->ic_flags &= ~IEEE80211_F_IBSSON; break; case IEEE80211_M_IBSS: ic->ic_flags |= IEEE80211_F_IBSSON; break; } error = ENETRESET; } #ifdef notdef if (error == 0) ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media); #endif return error; } void ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211com *ic = (void *)ifp; struct ieee80211_node *ni = NULL; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; imr->ifm_active |= IFM_AUTO; switch (ic->ic_opmode) { case IEEE80211_M_STA: ni = ic->ic_bss; /* calculate rate subtype */ imr->ifm_active |= ieee80211_rate2media(ic, ni->ni_rates.rs_rates[ni->ni_txrate], ic->ic_curmode); break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_IBSS; break; case IEEE80211_M_AHDEMO: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_HOSTAP: imr->ifm_active |= IFM_IEEE80211_HOSTAP; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; } switch (ic->ic_curmode) { case IEEE80211_MODE_11A: imr->ifm_active |= IFM_IEEE80211_11A; break; case IEEE80211_MODE_11B: imr->ifm_active |= IFM_IEEE80211_11B; break; case IEEE80211_MODE_11G: imr->ifm_active |= IFM_IEEE80211_11G; break; case IEEE80211_MODE_FH: imr->ifm_active |= IFM_IEEE80211_FH; break; case IEEE80211_MODE_TURBO: imr->ifm_active |= IFM_IEEE80211_11A | IFM_IEEE80211_TURBO; break; } } void ieee80211_watchdog(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); if (ic->ic_mgt_timer != 0) ifp->if_timer = 1; } /* * Mark the basic rates for the 11g rate table based on the * operating mode. For real 11g we mark all the 11b rates * and 6, 12, and 24 OFDM. For 11b compatibility we mark only * 11b rates. There's also a pseudo 11a-mode used to mark only * the basic OFDM rates. */ static void ieee80211_setbasicrates(struct ieee80211com *ic) { static const struct ieee80211_rateset basic[] = { { 0 }, /* IEEE80211_MODE_AUTO */ { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */ { 2, { 2, 4 } }, /* IEEE80211_MODE_11B */ { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */ { 2, { 2, 4 } }, /* IEEE80211_MODE_FH */ { 0 }, /* IEEE80211_MODE_TURBO */ }; enum ieee80211_phymode mode; struct ieee80211_rateset *rs; int i, j; for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) { rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rs->rs_rates[i] &= IEEE80211_RATE_VAL; for (j = 0; j < basic[mode].rs_nrates; j++) if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { rs->rs_rates[i] |= IEEE80211_RATE_BASIC; break; } } } } /* * Set the current phy mode and recalculate the active channel * set based on the available channels for this mode. Also * select a new default/current channel if the current one is * inappropriate for this mode. */ int ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) { #define N(a) (sizeof(a) / sizeof(a[0])) static const u_int chanflags[] = { 0, /* IEEE80211_MODE_AUTO */ IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */ IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */ IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */ IEEE80211_CHAN_FHSS, /* IEEE80211_MODE_FH */ IEEE80211_CHAN_T, /* IEEE80211_MODE_TURBO */ }; struct ieee80211_channel *c; u_int modeflags; int i; /* validate new mode */ if ((ic->ic_modecaps & (1<ic_modecaps)); return EINVAL; } /* * Verify at least one channel is present in the available * channel list before committing to the new mode. */ IASSERT(mode < N(chanflags), ("Unexpected mode %u", mode)); modeflags = chanflags[mode]; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { c = &ic->ic_channels[i]; if (mode == IEEE80211_MODE_AUTO) { /* ignore turbo channels for autoselect */ if ((c->ic_flags &~ IEEE80211_CHAN_TURBO) != 0) break; } else { if ((c->ic_flags & modeflags) == modeflags) break; } } if (i > IEEE80211_CHAN_MAX) { IEEE80211_DPRINTF(("%s: no channels found for mode %u\n", __func__, mode)); return EINVAL; } /* * Calculate the active channel set. */ memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active)); for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { c = &ic->ic_channels[i]; if (mode == IEEE80211_MODE_AUTO) { /* take anything but pure turbo channels */ if ((c->ic_flags &~ IEEE80211_CHAN_TURBO) != 0) setbit(ic->ic_chan_active, i); } else { if ((c->ic_flags & modeflags) == modeflags) setbit(ic->ic_chan_active, i); } } /* * If no current/default channel is setup or the current * channel is wrong for the mode then pick the first * available channel from the active list. This is likely * not the right one. */ if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) { for (i = 0; i <= IEEE80211_CHAN_MAX; i++) if (isset(ic->ic_chan_active, i)) { ic->ic_ibss_chan = &ic->ic_channels[i]; break; } IASSERT(ic->ic_ibss_chan != NULL && isset(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan)), ("Bad IBSS channel %u\n", ieee80211_chan2ieee(ic, ic->ic_ibss_chan))); } /* * Set/reset state flags that influence beacon contents, etc. * * XXX what if we have stations already associated??? * XXX probably not right for autoselect? * * Short preamble is not interoperable with legacy .11b * equipment, so it should not be the default for b or * mixed b/g networks. -dcy */ #if 0 if (ic->ic_caps & IEEE80211_C_SHPREAMBLE) ic->ic_flags |= IEEE80211_F_SHPREAMBLE; #endif if (mode == IEEE80211_MODE_11G) { if (ic->ic_caps & IEEE80211_C_SHSLOT) ic->ic_flags |= IEEE80211_F_SHSLOT; } else { ic->ic_flags &= ~IEEE80211_F_SHSLOT; } ic->ic_curmode = mode; return 0; #undef N } /* * Return the phy mode for with the specified channel so the * caller can select a rate set. This is problematic and the * work here assumes how things work elsewhere in this code. * * XXX never returns turbo modes -dcy */ enum ieee80211_phymode ieee80211_chan2mode(struct ieee80211com *ic, struct ieee80211_channel *chan) { /* * NB: this assumes the channel would not be supplied to us * unless it was already compatible with the current mode. */ if (ic->ic_curmode != IEEE80211_MODE_AUTO || chan == IEEE80211_CHAN_ANYC) return ic->ic_curmode; /* * In autoselect mode; deduce a mode based on the channel * characteristics. We assume that turbo-only channels * are not considered when the channel set is constructed. */ if (IEEE80211_IS_CHAN_T(chan)) return IEEE80211_MODE_TURBO; else if (IEEE80211_IS_CHAN_5GHZ(chan)) return IEEE80211_MODE_11A; else if (IEEE80211_IS_CHAN_FHSS(chan)) return IEEE80211_MODE_FH; else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) return IEEE80211_MODE_11G; else return IEEE80211_MODE_11B; } /* * convert IEEE80211 rate value to ifmedia subtype. * ieee80211 rate is in unit of 0.5Mbps. */ int ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) { #define N(a) (sizeof(a) / sizeof(a[0])) static const struct { u_int m; /* rate + mode */ u_int r; /* if_media rate */ } rates[] = { { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, /* NB: OFDM72 doesn't realy exist so we don't handle it */ }; u_int mask, i; mask = rate & IEEE80211_RATE_VAL; switch (mode) { case IEEE80211_MODE_11A: case IEEE80211_MODE_TURBO: mask |= IFM_IEEE80211_11A; break; case IEEE80211_MODE_11B: mask |= IFM_IEEE80211_11B; break; case IEEE80211_MODE_FH: mask |= IFM_IEEE80211_FH; break; case IEEE80211_MODE_AUTO: /* NB: ic may be NULL for some drivers */ if (ic && ic->ic_phytype == IEEE80211_T_FH) { mask |= IFM_IEEE80211_FH; break; } /* NB: hack, 11g matches both 11b+11a rates */ /* fall thru... */ case IEEE80211_MODE_11G: mask |= IFM_IEEE80211_11G; break; } for (i = 0; i < N(rates); i++) if (rates[i].m == mask) return rates[i].r; return IFM_AUTO; #undef N } int ieee80211_media2rate(int mword) { #define N(a) (sizeof(a) / sizeof(a[0])) int i; static const struct { int subtype; int rate; } ieeerates[] = { { IFM_AUTO, -1 }, { IFM_MANUAL, 0 }, { IFM_NONE, 0 }, { IFM_IEEE80211_FH1, 2 }, { IFM_IEEE80211_FH2, 4 }, { IFM_IEEE80211_DS1, 2 }, { IFM_IEEE80211_DS2, 4 }, { IFM_IEEE80211_DS5, 11 }, { IFM_IEEE80211_DS11, 22 }, { IFM_IEEE80211_DS22, 44 }, { IFM_IEEE80211_OFDM6, 12 }, { IFM_IEEE80211_OFDM9, 18 }, { IFM_IEEE80211_OFDM12, 24 }, { IFM_IEEE80211_OFDM18, 36 }, { IFM_IEEE80211_OFDM24, 48 }, { IFM_IEEE80211_OFDM36, 72 }, { IFM_IEEE80211_OFDM48, 96 }, { IFM_IEEE80211_OFDM54, 108 }, { IFM_IEEE80211_OFDM72, 144 }, }; for (i = 0; i < N(ieeerates); i++) { if (ieeerates[i].subtype == IFM_SUBTYPE(mword)) return ieeerates[i].rate; } return 0; #undef N } #ifdef __NetBSD__ static void ieee80211_clean_all_nodes(int cache_size) { struct ieee80211com *ic; LIST_FOREACH(ic, &ieee80211com_head, ic_list) { ic->ic_max_nnodes = cache_size; ieee80211_clean_nodes(ic); } } /* TBD factor with sysctl_ath_verify. */ static int sysctl_ieee80211_verify(SYSCTLFN_ARGS) { int error, t; struct sysctlnode node; node = *rnode; t = *(int*)rnode->sysctl_data; node.sysctl_data = &t; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (node.sysctl_num == ieee80211_cache_size_nodenum) { if (t < 0) return (EINVAL); #ifdef IEEE80211_DEBUG } else if (node.sysctl_num != ieee80211_debug_nodenum) #else /* IEEE80211_DEBUG */ } else #endif /* IEEE80211_DEBUG */ return (EINVAL); *(int*)rnode->sysctl_data = t; return (0); } /* * Pointers for testing: * * If there are no interfaces, or else no 802.11 interfaces, * ieee80211_node_walkfirst must return NULL. * * If there is any single 802.11 interface, ieee80211_node_walkfirst * must not return NULL. */ static struct ieee80211_node * ieee80211_node_walkfirst(struct ieee80211_node_walk *nw, u_short if_index) { struct ieee80211com *ic; (void)memset(nw, 0, sizeof(*nw)); nw->nw_ifindex = if_index; LIST_FOREACH(ic, &ieee80211com_head, ic_list) { if (if_index != 0 && ic->ic_if.if_index != if_index) continue; nw->nw_ic = ic; nw->nw_ni = ic->ic_bss; break; } KASSERT(LOGICALLY_EQUAL(nw->nw_ni == NULL, nw->nw_ic == NULL)); return nw->nw_ni; } static struct ieee80211_node * ieee80211_node_walknext(struct ieee80211_node_walk *nw) { KASSERT(LOGICALLY_EQUAL(nw->nw_ni == NULL, nw->nw_ic == NULL)); if (nw->nw_ic == NULL && nw->nw_ni == NULL) return NULL; if (nw->nw_ni == nw->nw_ic->ic_bss) nw->nw_ni = TAILQ_FIRST(&nw->nw_ic->ic_node); else nw->nw_ni = TAILQ_NEXT(nw->nw_ni, ni_list); if (nw->nw_ni == NULL) { if (nw->nw_ifindex != 0) return NULL; nw->nw_ic = LIST_NEXT(nw->nw_ic, ic_list); if (nw->nw_ic == NULL) return NULL; nw->nw_ni = nw->nw_ic->ic_bss; } KASSERT(LOGICALLY_EQUAL(nw->nw_ni == NULL, nw->nw_ic == NULL)); return nw->nw_ni; } static void sysctl_ieee80211_fill_node(struct ieee80211_node *ni, struct ieee80211_node_sysctl *ns, int ifindex, struct ieee80211_channel *chan0, int is_bss) { ns->ns_ifindex = ifindex; ns->ns_capinfo = ni->ni_capinfo; ns->ns_flags = (is_bss) ? IEEE80211_NODE_SYSCTL_F_BSS : 0; (void)memcpy(ns->ns_macaddr, ni->ni_macaddr, sizeof(ns->ns_macaddr)); (void)memcpy(ns->ns_bssid, ni->ni_bssid, sizeof(ns->ns_bssid)); if (ni->ni_chan != IEEE80211_CHAN_ANYC) { ns->ns_freq = ni->ni_chan->ic_freq; ns->ns_chanflags = ni->ni_chan->ic_flags; ns->ns_chanidx = ni->ni_chan - chan0; } else { ns->ns_freq = ns->ns_chanflags = 0; ns->ns_chanidx = 0; } ns->ns_rssi = ni->ni_rssi; ns->ns_esslen = ni->ni_esslen; (void)memcpy(ns->ns_essid, ni->ni_essid, sizeof(ns->ns_essid)); ns->ns_pwrsave = ni->ni_pwrsave; ns->ns_erp = ni->ni_erp; ns->ns_associd = ni->ni_associd; ns->ns_inact = ni->ni_inact * IEEE80211_INACT_WAIT; ns->ns_rstamp = ni->ni_rstamp; ns->ns_rates = ni->ni_rates; ns->ns_txrate = ni->ni_txrate; ns->ns_intval = ni->ni_intval; (void)memcpy(ns->ns_tstamp, ni->ni_tstamp, sizeof(ns->ns_tstamp)); ns->ns_txseq = ni->ni_txseq; ns->ns_rxseq = ni->ni_rxseq; ns->ns_fhdwell = ni->ni_fhdwell; ns->ns_fhindex = ni->ni_fhindex; ns->ns_fails = ni->ni_fails; } /* Between two examinations of the sysctl tree, I expect each * interface to add no more than 5 nodes. */ #define IEEE80211_SYSCTL_NODE_GROWTH 5 static int sysctl_ieee80211_node(SYSCTLFN_ARGS) { struct ieee80211_node_walk nw; struct ieee80211_node *ni; struct ieee80211_node_sysctl ns; char *dp; u_int cur_ifindex, ifcount, ifindex, last_ifindex, op, arg, hdr_type; size_t len, needed, eltsize, out_size; int error, s, nelt; if (namelen == 1 && name[0] == CTL_QUERY) return (sysctl_query(SYSCTLFN_CALL(rnode))); if (namelen != IEEE80211_SYSCTL_NODENAMELEN) return (EINVAL); /* ifindex.op.arg.header-type.eltsize.nelt */ dp = oldp; len = (oldp != NULL) ? *oldlenp : 0; ifindex = name[IEEE80211_SYSCTL_NODENAME_IF]; op = name[IEEE80211_SYSCTL_NODENAME_OP]; arg = name[IEEE80211_SYSCTL_NODENAME_ARG]; hdr_type = name[IEEE80211_SYSCTL_NODENAME_TYPE]; eltsize = name[IEEE80211_SYSCTL_NODENAME_ELTSIZE]; nelt = name[IEEE80211_SYSCTL_NODENAME_ELTCOUNT]; out_size = MIN(sizeof(ns), eltsize); if (op != IEEE80211_SYSCTL_OP_ALL || arg != 0 || hdr_type != IEEE80211_SYSCTL_T_NODE || eltsize < 1 || nelt < 0) return (EINVAL); error = 0; needed = 0; ifcount = 0; last_ifindex = 0; s = splnet(); for (ni = ieee80211_node_walkfirst(&nw, ifindex); ni != NULL; ni = ieee80211_node_walknext(&nw)) { struct ieee80211com *ic; ic = nw.nw_ic; cur_ifindex = ic->ic_if.if_index; if (cur_ifindex != last_ifindex) { ifcount++; last_ifindex = cur_ifindex; } if (nelt <= 0) continue; if (len >= eltsize) { sysctl_ieee80211_fill_node(ni, &ns, cur_ifindex, &ic->ic_channels[0], ni == ic->ic_bss); error = copyout(&ns, dp, out_size); if (error) goto cleanup; dp += eltsize; len -= eltsize; } needed += eltsize; if (nelt != INT_MAX) nelt--; } cleanup: splx(s); *oldlenp = needed; if (oldp == NULL) *oldlenp += ifcount * IEEE80211_SYSCTL_NODE_GROWTH * eltsize; return (error); } /* * Setup sysctl(3) MIB, net.ieee80211.* * * TBD condition CTLFLAG_PERMANENT on being an LKM or not */ SYSCTL_SETUP(sysctl_ieee80211, "sysctl ieee80211 subtree setup") { int rc; struct sysctlnode *cnode, *rnode; if ((rc = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", NULL, NULL, 0, NULL, 0, CTL_NET, CTL_EOL)) != 0) goto err; if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "link", "link-layer statistics and controls", NULL, 0, NULL, 0, PF_LINK, CTL_EOL)) != 0) goto err; if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ieee80211", "IEEE 802.11 WLAN statistics and controls", NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; if ((rc = sysctl_createv(clog, 0, &rnode, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "nodes", "client/peer stations", sysctl_ieee80211_node, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; #ifdef IEEE80211_DEBUG /* control debugging printfs */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable IEEE 802.11 debugging output"), sysctl_ieee80211_verify, 0, &ieee80211_debug, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; ieee80211_debug_nodenum = cnode->sysctl_num; #endif /* IEEE80211_DEBUG */ /* control LRU cache size */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxnodecache", SYSCTL_DESCR("Maximum station cache size"), sysctl_ieee80211_verify, 0, &ieee80211_cache_size, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; ieee80211_cache_size_nodenum = cnode->sysctl_num; return; err: printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); } #endif /* __NetBSD__ */ #ifdef __FreeBSD__ /* * Module glue. * * NB: the module name is "wlan" for compatibility with NetBSD. */ static int ieee80211_modevent(module_t mod, int type, void *unused) { switch (type) { case MOD_LOAD: if (bootverbose) printf("wlan: <802.11 Link Layer>\n"); return 0; case MOD_UNLOAD: return 0; } return EINVAL; } static moduledata_t ieee80211_mod = { "wlan", ieee80211_modevent, 0 }; DECLARE_MODULE(wlan, ieee80211_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); MODULE_VERSION(wlan, 1); MODULE_DEPEND(wlan, rc4, 1, 1, 1); MODULE_DEPEND(wlan, ether, 1, 1, 1); #endif