/* $OpenBSD: ieee80211.c,v 1.81 2019/11/15 09:29:21 mlarkin Exp $ */ /* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */ /*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * IEEE 802.11 generic handler */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #ifdef IEEE80211_DEBUG int ieee80211_debug = 0; #endif int ieee80211_cache_size = IEEE80211_CACHE_SIZE; void ieee80211_setbasicrates(struct ieee80211com *); int ieee80211_findrate(struct ieee80211com *, enum ieee80211_phymode, int); void ieee80211_configure_ampdu_tx(struct ieee80211com *, int); void ieee80211_begin_bgscan(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; if ((ic->ic_flags & IEEE80211_F_BGSCAN) || ic->ic_state != IEEE80211_S_RUN || ic->ic_mgt_timer != 0) return; if (ic->ic_bgscan_start != NULL && ic->ic_bgscan_start(ic) == 0) { /* * Free the nodes table to ensure we get an up-to-date view * of APs around us. In particular, we need to kick out the * AP we are associated to. Otherwise, our current AP might * stay cached if it is turned off while we are scanning, and * we could end up picking a now non-existent AP over and over. */ ieee80211_free_allnodes(ic, 0 /* keep ic->ic_bss */); ic->ic_flags |= IEEE80211_F_BGSCAN; if (ifp->if_flags & IFF_DEBUG) printf("%s: begin background scan\n", ifp->if_xname); /* Driver calls ieee80211_end_scan() when done. */ } } void ieee80211_bgscan_timeout(void *arg) { struct ifnet *ifp = arg; ieee80211_begin_bgscan(ifp); } void ieee80211_channel_init(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; struct ieee80211_channel *c; int i; /* * Fill in 802.11 available channel set, mark * all available channels as active, and pick * a default channel if not already specified. */ memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); ic->ic_modecaps |= 1<ic_channels[i]; if (c->ic_flags) { /* * Verify driver passed us valid data. */ if (i != ieee80211_chan2ieee(ic, c)) { printf("%s: bad channel ignored; " "freq %u flags %x number %u\n", ifp->if_xname, c->ic_freq, c->ic_flags, i); c->ic_flags = 0; /* NB: remove */ continue; } setbit(ic->ic_chan_avail, i); /* * Identify mode capabilities. */ if (IEEE80211_IS_CHAN_A(c)) ic->ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_modecaps |= 1<ic_curmode */ if ((ic->ic_modecaps & (1<ic_curmode)) == 0) ic->ic_curmode = IEEE80211_MODE_AUTO; ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ } void ieee80211_ifattach(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr, ETHER_ADDR_LEN); ether_ifattach(ifp); ifp->if_output = ieee80211_output; #if NBPFILTER > 0 bpfattach(&ic->ic_rawbpf, ifp, DLT_IEEE802_11, sizeof(struct ieee80211_frame_addr4)); #endif ieee80211_crypto_attach(ifp); ieee80211_channel_init(ifp); /* IEEE 802.11 defines a MTU >= 2290 */ ifp->if_capabilities |= IFCAP_VLAN_MTU; ieee80211_setbasicrates(ic); (void)ieee80211_setmode(ic, ic->ic_curmode); if (ic->ic_lintval == 0) ic->ic_lintval = 100; /* default sleep */ ic->ic_bmissthres = IEEE80211_BEACON_MISS_THRES; ic->ic_dtim_period = 1; /* all TIMs are DTIMs */ ieee80211_node_attach(ifp); ieee80211_proto_attach(ifp); if_addgroup(ifp, "wlan"); ifp->if_priority = IF_WIRELESS_DEFAULT_PRIORITY; ieee80211_set_link_state(ic, LINK_STATE_DOWN); timeout_set(&ic->ic_bgscan_timeout, ieee80211_bgscan_timeout, ifp); } void ieee80211_ifdetach(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; timeout_del(&ic->ic_bgscan_timeout); ieee80211_proto_detach(ifp); ieee80211_crypto_detach(ifp); ieee80211_node_detach(ifp); ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY); ether_ifdetach(ifp); } /* * Convert MHz frequency to IEEE channel number. */ u_int ieee80211_mhz2ieee(u_int freq, u_int flags) { if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; else return 15 + ((freq - 2512) / 20); } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5GHz band */ return (freq - 5000) / 5; } else { /* either, guess */ if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; if (freq < 5000) return 15 + ((freq - 2512) / 20); return (freq - 5000) / 5; } } /* * Convert channel to IEEE channel number. */ u_int ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) { struct ifnet *ifp = &ic->ic_if; if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX]) return c - ic->ic_channels; else if (c == IEEE80211_CHAN_ANYC) return IEEE80211_CHAN_ANY; panic("%s: bogus channel pointer", ifp->if_xname); } /* * Convert IEEE channel number to MHz frequency. */ u_int ieee80211_ieee2mhz(u_int chan, u_int flags) { if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (chan == 14) return 2484; if (chan < 14) return 2407 + chan*5; else return 2512 + ((chan-15)*20); } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5GHz band */ return 5000 + (chan*5); } else { /* either, guess */ if (chan == 14) return 2484; if (chan < 14) /* 0-13 */ return 2407 + chan*5; if (chan < 27) /* 15-26 */ return 2512 + ((chan-15)*20); return 5000 + (chan*5); } } void ieee80211_configure_ampdu_tx(struct ieee80211com *ic, int enable) { if ((ic->ic_caps & IEEE80211_C_TX_AMPDU) == 0) return; /* Sending AMPDUs requires QoS support. */ if ((ic->ic_caps & IEEE80211_C_QOS) == 0) return; if (enable) ic->ic_flags |= IEEE80211_F_QOS; else ic->ic_flags &= ~IEEE80211_F_QOS; } /* * Setup the media data structures according to the channel and * rate tables. This must be called by the driver after * ieee80211_attach and before most anything else. */ void ieee80211_media_init(struct ifnet *ifp, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) { #define ADD(_ic, _s, _o) \ ifmedia_add(&(_ic)->ic_media, \ IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) struct ieee80211com *ic = (void *)ifp; struct ifmediareq imr; int i, j, mode, rate, maxrate, r; uint64_t mword, mopt; const struct ieee80211_rateset *rs; struct ieee80211_rateset allrates; /* * Do late attach work that must wait for any subclass * (i.e. driver) work such as overriding methods. */ ieee80211_node_lateattach(ifp); /* * Fill in media characteristics. */ ifmedia_init(&ic->ic_media, 0, media_change, media_stat); maxrate = 0; memset(&allrates, 0, sizeof(allrates)); for (mode = IEEE80211_MODE_AUTO; mode <= IEEE80211_MODE_11G; mode++) { static const uint64_t mopts[] = { IFM_AUTO, IFM_IEEE80211_11A, IFM_IEEE80211_11B, IFM_IEEE80211_11G, }; if ((ic->ic_modecaps & (1<ic_caps & IEEE80211_C_IBSS) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC); #endif if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); if (mode == IEEE80211_MODE_AUTO) continue; rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; mword = ieee80211_rate2media(ic, rate, mode); if (mword == 0) continue; ADD(ic, mword, mopt); #ifndef IEEE80211_STA_ONLY if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, mword, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC); #endif if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR); /* * Add rate to the collection of all rates. */ r = rate & IEEE80211_RATE_VAL; for (j = 0; j < allrates.rs_nrates; j++) if (allrates.rs_rates[j] == r) break; if (j == allrates.rs_nrates) { /* unique, add to the set */ allrates.rs_rates[j] = r; allrates.rs_nrates++; } rate = (rate & IEEE80211_RATE_VAL) / 2; if (rate > maxrate) maxrate = rate; } } for (i = 0; i < allrates.rs_nrates; i++) { mword = ieee80211_rate2media(ic, allrates.rs_rates[i], IEEE80211_MODE_AUTO); if (mword == 0) continue; mword = IFM_SUBTYPE(mword); /* remove media options */ ADD(ic, mword, 0); #ifndef IEEE80211_STA_ONLY if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, mword, IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, mword, IFM_IEEE80211_HOSTAP); if (ic->ic_caps & IEEE80211_C_AHDEMO) ADD(ic, mword, IFM_IEEE80211_ADHOC); #endif if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, mword, IFM_IEEE80211_MONITOR); } if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) { mopt = IFM_IEEE80211_11N; ADD(ic, IFM_AUTO, mopt); #ifndef IEEE80211_STA_ONLY if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); #endif if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); for (i = 0; i < IEEE80211_HT_NUM_MCS; i++) { if (!isset(ic->ic_sup_mcs, i)) continue; ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt); #ifndef IEEE80211_STA_ONLY if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt | IFM_IEEE80211_HOSTAP); #endif if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt | IFM_IEEE80211_MONITOR); } ic->ic_flags |= IEEE80211_F_HTON; /* enable 11n by default */ ieee80211_configure_ampdu_tx(ic, 1); } if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) { mopt = IFM_IEEE80211_11AC; ADD(ic, IFM_AUTO, mopt); #ifndef IEEE80211_STA_ONLY if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); #endif if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); for (i = 0; i < IEEE80211_VHT_NUM_MCS; i++) { #if 0 /* TODO: Obtain VHT MCS information from VHT CAP IE. */ if (!vht_mcs_supported) continue; #endif ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt); #ifndef IEEE80211_STA_ONLY if (ic->ic_caps & IEEE80211_C_IBSS) ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt | IFM_IEEE80211_IBSS); if (ic->ic_caps & IEEE80211_C_HOSTAP) ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt | IFM_IEEE80211_HOSTAP); #endif if (ic->ic_caps & IEEE80211_C_MONITOR) ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt | IFM_IEEE80211_MONITOR); } #if 0 ic->ic_flags |= IEEE80211_F_VHTON; /* enable 11ac by default */ if (ic->ic_caps & IEEE80211_C_QOS) ic->ic_flags |= IEEE80211_F_QOS; #endif } ieee80211_media_status(ifp, &imr); ifmedia_set(&ic->ic_media, imr.ifm_active); if (maxrate) ifp->if_baudrate = IF_Mbps(maxrate); #undef ADD } int ieee80211_findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, int rate) { #define IEEERATE(_ic,_m,_i) \ ((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL) int i, nrates = ic->ic_sup_rates[mode].rs_nrates; for (i = 0; i < nrates; i++) if (IEEERATE(ic, mode, i) == rate) return i; return -1; #undef IEEERATE } /* * Handle a media change request. */ int ieee80211_media_change(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; struct ifmedia_entry *ime; enum ieee80211_opmode newopmode; enum ieee80211_phymode newphymode; int i, j, newrate, error = 0; ime = ic->ic_media.ifm_cur; /* * First, identify the phy mode. */ switch (IFM_MODE(ime->ifm_media)) { case IFM_IEEE80211_11A: newphymode = IEEE80211_MODE_11A; break; case IFM_IEEE80211_11B: newphymode = IEEE80211_MODE_11B; break; case IFM_IEEE80211_11G: newphymode = IEEE80211_MODE_11G; break; case IFM_IEEE80211_11N: newphymode = IEEE80211_MODE_11N; break; case IFM_IEEE80211_11AC: newphymode = IEEE80211_MODE_11AC; break; case IFM_AUTO: newphymode = IEEE80211_MODE_AUTO; break; default: return EINVAL; } /* * Validate requested mode is available. */ if ((ic->ic_modecaps & (1<ifm_media) >= IFM_IEEE80211_VHT_MCS0 && IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_VHT_MCS9) { if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) == 0) return EINVAL; if (newphymode != IEEE80211_MODE_AUTO && newphymode != IEEE80211_MODE_11AC) return EINVAL; i = ieee80211_media2mcs(ime->ifm_media); /* TODO: Obtain VHT MCS information from VHT CAP IE. */ if (i == -1 /* || !vht_mcs_supported */) return EINVAL; } else if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_HT_MCS0 && IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_HT_MCS76) { if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) == 0) return EINVAL; if (newphymode != IEEE80211_MODE_AUTO && newphymode != IEEE80211_MODE_11N) return EINVAL; i = ieee80211_media2mcs(ime->ifm_media); if (i == -1 || isclr(ic->ic_sup_mcs, i)) return EINVAL; } else if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) { /* * Convert media subtype to rate. */ newrate = ieee80211_media2rate(ime->ifm_media); if (newrate == 0) return EINVAL; /* * Check the rate table for the specified/current phy. */ if (newphymode == IEEE80211_MODE_AUTO) { /* * In autoselect mode search for the rate. */ for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++) { if ((ic->ic_modecaps & (1<ifm_media & IFM_IEEE80211_ADHOC) newopmode = IEEE80211_M_AHDEMO; else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) newopmode = IEEE80211_M_HOSTAP; else if (ime->ifm_media & IFM_IEEE80211_IBSS) newopmode = IEEE80211_M_IBSS; else #endif if (ime->ifm_media & IFM_IEEE80211_MONITOR) newopmode = IEEE80211_M_MONITOR; else newopmode = IEEE80211_M_STA; #ifndef IEEE80211_STA_ONLY /* * Autoselect doesn't make sense when operating as an AP. * If no phy mode has been selected, pick one and lock it * down so rate tables can be used in forming beacon frames * and the like. */ if (newopmode == IEEE80211_M_HOSTAP && newphymode == IEEE80211_MODE_AUTO) { if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) newphymode = IEEE80211_MODE_11AC; else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) newphymode = IEEE80211_MODE_11N; else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A)) newphymode = IEEE80211_MODE_11A; else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G)) newphymode = IEEE80211_MODE_11G; else newphymode = IEEE80211_MODE_11B; } #endif /* * Handle phy mode change. */ if (ic->ic_curmode != newphymode) { /* change phy mode */ error = ieee80211_setmode(ic, newphymode); if (error != 0) return error; error = ENETRESET; } /* * Committed to changes, install the MCS/rate setting. */ ic->ic_flags &= ~(IEEE80211_F_HTON | IEEE80211_F_VHTON); ieee80211_configure_ampdu_tx(ic, 0); if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) && (newphymode == IEEE80211_MODE_AUTO || newphymode == IEEE80211_MODE_11AC)) { ic->ic_flags |= IEEE80211_F_VHTON; ieee80211_configure_ampdu_tx(ic, 1); } else if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) && (newphymode == IEEE80211_MODE_AUTO || newphymode == IEEE80211_MODE_11N)) { ic->ic_flags |= IEEE80211_F_HTON; ieee80211_configure_ampdu_tx(ic, 1); } if ((ic->ic_flags & (IEEE80211_F_HTON | IEEE80211_F_VHTON)) == 0) { ic->ic_fixed_mcs = -1; if (ic->ic_fixed_rate != i) { ic->ic_fixed_rate = i; /* set fixed tx rate */ error = ENETRESET; } } else { ic->ic_fixed_rate = -1; if (ic->ic_fixed_mcs != i) { ic->ic_fixed_mcs = i; /* set fixed mcs */ error = ENETRESET; } } /* * Handle operating mode change. */ if (ic->ic_opmode != newopmode) { ic->ic_opmode = newopmode; #ifndef IEEE80211_STA_ONLY switch (newopmode) { case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: case IEEE80211_M_STA: case IEEE80211_M_MONITOR: ic->ic_flags &= ~IEEE80211_F_IBSSON; break; case IEEE80211_M_IBSS: ic->ic_flags |= IEEE80211_F_IBSSON; break; } #endif /* * Yech, slot time may change depending on the * operating mode so reset it to be sure everything * is setup appropriately. */ ieee80211_reset_erp(ic); error = ENETRESET; } #ifdef notdef if (error == 0) ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media); #endif return error; } void ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211com *ic = (void *)ifp; const struct ieee80211_node *ni = NULL; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN && (ic->ic_opmode != IEEE80211_M_STA || !(ic->ic_flags & IEEE80211_F_RSNON) || ic->ic_bss->ni_port_valid)) imr->ifm_status |= IFM_ACTIVE; imr->ifm_active |= IFM_AUTO; switch (ic->ic_opmode) { case IEEE80211_M_STA: ni = ic->ic_bss; if (ic->ic_curmode == IEEE80211_MODE_11N || ic->ic_curmode == IEEE80211_MODE_11AC) imr->ifm_active |= ieee80211_mcs2media(ic, ni->ni_txmcs, ic->ic_curmode); else /* calculate rate subtype */ imr->ifm_active |= ieee80211_rate2media(ic, ni->ni_rates.rs_rates[ni->ni_txrate], ic->ic_curmode); break; #ifndef IEEE80211_STA_ONLY case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_IBSS; break; case IEEE80211_M_AHDEMO: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_HOSTAP: imr->ifm_active |= IFM_IEEE80211_HOSTAP; break; #endif case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; default: break; } switch (ic->ic_curmode) { case IEEE80211_MODE_11A: imr->ifm_active |= IFM_IEEE80211_11A; break; case IEEE80211_MODE_11B: imr->ifm_active |= IFM_IEEE80211_11B; break; case IEEE80211_MODE_11G: imr->ifm_active |= IFM_IEEE80211_11G; break; case IEEE80211_MODE_11N: imr->ifm_active |= IFM_IEEE80211_11N; break; case IEEE80211_MODE_11AC: imr->ifm_active |= IFM_IEEE80211_11AC; break; } } void ieee80211_watchdog(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) { if (ic->ic_opmode == IEEE80211_M_STA && (ic->ic_state == IEEE80211_S_AUTH || ic->ic_state == IEEE80211_S_ASSOC)) { struct ieee80211_node *ni; if (ifp->if_flags & IFF_DEBUG) printf("%s: %s timed out for %s\n", ifp->if_xname, ic->ic_state == IEEE80211_S_ASSOC ? "association" : "authentication", ether_sprintf(ic->ic_bss->ni_macaddr)); ni = ieee80211_find_node(ic, ic->ic_bss->ni_macaddr); if (ni) ni->ni_fails++; if (ISSET(ic->ic_flags, IEEE80211_F_AUTO_JOIN)) ieee80211_deselect_ess(ic); } ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); } if (ic->ic_mgt_timer != 0) ifp->if_timer = 1; } const struct ieee80211_rateset ieee80211_std_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; const struct ieee80211_rateset ieee80211_std_rateset_11b = { 4, { 2, 4, 11, 22 } }; const struct ieee80211_rateset ieee80211_std_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; const struct ieee80211_ht_rateset ieee80211_std_ratesets_11n[] = { /* MCS 0-7, 20MHz channel, no SGI */ { 8, { 13, 26, 39, 52, 78, 104, 117, 130 }, 0x000000ff, 0, 7, 0}, /* MCS 0-7, 20MHz channel, SGI */ { 8, { 14, 29, 43, 58, 87, 116, 130, 144 }, 0x000000ff, 0, 7, 1 }, /* MCS 8-15, 20MHz channel, no SGI */ { 8, { 26, 52, 78, 104, 156, 208, 234, 260 }, 0x0000ff00, 8, 15, 0 }, /* MCS 8-15, 20MHz channel, SGI */ { 8, { 29, 58, 87, 116, 173, 231, 261, 289 }, 0x0000ff00, 8, 15, 1 }, /* MCS 16-23, 20MHz channel, no SGI */ { 8, { 39, 78, 117, 156, 234, 312, 351, 390 }, 0x00ff0000, 16, 23, 0 }, /* MCS 16-23, 20MHz channel, SGI */ { 8, { 43, 87, 130, 173, 260, 347, 390, 433 }, 0x00ff0000, 16, 23, 1 }, /* MCS 24-31, 20MHz channel, no SGI */ { 8, { 52, 104, 156, 208, 312, 416, 468, 520 }, 0xff000000, 24, 31, 0 }, /* MCS 24-31, 20MHz channel, SGI */ { 8, { 58, 116, 173, 231, 347, 462, 520, 578 }, 0xff000000, 24, 31, 1 }, }; const struct ieee80211_vht_rateset ieee80211_std_ratesets_11ac[] = { /* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, no SGI */ { 9, { 13, 26, 39, 52, 78, 104, 117, 130, 156 }, 1, 0 }, /* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, SGI */ { 9, { 14, 29, 43, 58, 87, 116, 130, 144, 174 }, 1, 1 }, /* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, no SGI */ { 9, { 26, 52, 78, 104, 156, 208, 234, 260, 312 }, 2, 0 }, /* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, SGI */ { 9, { 29, 58, 87, 116, 173, 231, 261, 289, 347 }, 2, 1 }, /* MCS 0-9, 1 SS, 40MHz channel, no SGI */ { 10, { 27, 54, 81, 108, 162, 216, 243, 270, 324, 360 }, 1, 0 }, /* MCS 0-9, 1 SS, 40MHz channel, SGI */ { 10, { 30, 60, 90, 120, 180, 240, 270, 300, 360, 400 }, 1, 1 }, /* MCS 0-9, 2 SS, 40MHz channel, no SGI */ { 10, { 54, 108, 162, 216, 324, 432, 486, 540, 648, 720 }, 2, 0 }, /* MCS 0-9, 2 SS, 40MHz channel, SGI */ { 10, { 60, 120, 180, 240, 360, 480, 540, 600, 720, 800 }, 2, 1 }, /* MCS 0-9, 1 SS, 80MHz channel, no SGI */ { 10, { 59, 117, 176, 234, 351, 468, 527, 585, 702, 780 }, 1, 0 }, /* MCS 0-9, 1 SS, 80MHz channel, SGI */ { 10, { 65, 130, 195, 260, 390, 520, 585, 650, 780, 867 }, 1, 1 }, /* MCS 0-9, 2 SS, 80MHz channel, no SGI */ { 10, { 117, 234, 351, 468, 702, 936, 1053, 1404, 1560 }, 2, 0 }, /* MCS 0-9, 2 SS, 80MHz channel, SGI */ { 10, { 130, 260, 390, 520, 780, 1040, 1170, 1300, 1560, 1734 }, 2, 1 }, }; /* * Mark the basic rates for the 11g rate table based on the * operating mode. For real 11g we mark all the 11b rates * and 6, 12, and 24 OFDM. For 11b compatibility we mark only * 11b rates. There's also a pseudo 11a-mode used to mark only * the basic OFDM rates. */ void ieee80211_setbasicrates(struct ieee80211com *ic) { static const struct ieee80211_rateset basic[] = { { 0 }, /* IEEE80211_MODE_AUTO */ { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */ { 2, { 2, 4 } }, /* IEEE80211_MODE_11B */ { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */ { 0 }, /* IEEE80211_MODE_11N */ { 0 }, /* IEEE80211_MODE_11AC */ }; enum ieee80211_phymode mode; struct ieee80211_rateset *rs; int i, j; for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) { rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rs->rs_rates[i] &= IEEE80211_RATE_VAL; for (j = 0; j < basic[mode].rs_nrates; j++) { if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { rs->rs_rates[i] |= IEEE80211_RATE_BASIC; break; } } } } } int ieee80211_min_basic_rate(struct ieee80211com *ic) { struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates; int i, min, rval; min = -1; for (i = 0; i < rs->rs_nrates; i++) { if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0) continue; rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); if (min == -1) min = rval; else if (rval < min) min = rval; } /* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */ if (min == -1) min = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12; return min; } int ieee80211_max_basic_rate(struct ieee80211com *ic) { struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates; int i, max, rval; /* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */ max = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12; for (i = 0; i < rs->rs_nrates; i++) { if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0) continue; rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); if (rval > max) max = rval; } return max; } /* * Set the current phy mode and recalculate the active channel * set based on the available channels for this mode. Also * select a new default/current channel if the current one is * inappropriate for this mode. */ int ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) { struct ifnet *ifp = &ic->ic_if; static const u_int chanflags[] = { 0, /* IEEE80211_MODE_AUTO */ IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */ IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */ IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */ IEEE80211_CHAN_HT, /* IEEE80211_MODE_11N */ IEEE80211_CHAN_VHT, /* IEEE80211_MODE_11AC */ }; const struct ieee80211_channel *c; u_int modeflags; int i; /* validate new mode */ if ((ic->ic_modecaps & (1<ic_modecaps)); return EINVAL; } /* * Verify at least one channel is present in the available * channel list before committing to the new mode. */ if (mode >= nitems(chanflags)) panic("%s: unexpected mode %u", __func__, mode); modeflags = chanflags[mode]; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { c = &ic->ic_channels[i]; if (mode == IEEE80211_MODE_AUTO) { if (c->ic_flags != 0) break; } else if ((c->ic_flags & modeflags) == modeflags) break; } if (i > IEEE80211_CHAN_MAX) { DPRINTF(("no channels found for mode %u\n", mode)); return EINVAL; } /* * Calculate the active channel set. */ memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active)); for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { c = &ic->ic_channels[i]; if (mode == IEEE80211_MODE_AUTO) { if (c->ic_flags != 0) setbit(ic->ic_chan_active, i); } else if ((c->ic_flags & modeflags) == modeflags) setbit(ic->ic_chan_active, i); } /* * If no current/default channel is setup or the current * channel is wrong for the mode then pick the first * available channel from the active list. This is likely * not the right one. */ if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) { for (i = 0; i <= IEEE80211_CHAN_MAX; i++) if (isset(ic->ic_chan_active, i)) { ic->ic_ibss_chan = &ic->ic_channels[i]; break; } if ((ic->ic_ibss_chan == NULL) || isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) panic("Bad IBSS channel %u", ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); } /* * Reset the scan state for the new mode. This avoids scanning * of invalid channels, ie. 5GHz channels in 11b mode. */ ieee80211_reset_scan(ifp); ic->ic_curmode = mode; ieee80211_reset_erp(ic); /* reset ERP state */ return 0; } enum ieee80211_phymode ieee80211_next_mode(struct ifnet *ifp) { struct ieee80211com *ic = (void *)ifp; uint16_t mode; /* * Indicate a wrap-around if we're running in a fixed, user-specified * phy mode. */ if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) != IFM_AUTO) return (IEEE80211_MODE_AUTO); /* * Always scan in AUTO mode if the driver scans all bands. * The current mode might have changed during association * so we must reset it here. */ if (ic->ic_caps & IEEE80211_C_SCANALLBAND) { ieee80211_setmode(ic, IEEE80211_MODE_AUTO); return (ic->ic_curmode); } /* * Get the next supported mode; effectively, this alternates between * the 11a (5GHz) and 11b/g (2GHz) modes. What matters is that each * supported channel gets scanned. */ for (mode = ic->ic_curmode + 1; mode <= IEEE80211_MODE_MAX; mode++) { /* * Skip over 11n mode. Its set of channels is the superset * of all channels supported by the other modes. */ if (mode == IEEE80211_MODE_11N) continue; /* * Skip over 11ac mode. Its set of channels is the set * of all channels supported by 11a. */ if (mode == IEEE80211_MODE_11AC) continue; /* Start over if we have already tried all modes. */ if (mode == IEEE80211_MODE_MAX) { mode = IEEE80211_MODE_AUTO; break; } if (ic->ic_modecaps & (1 << mode)) break; } if (mode != ic->ic_curmode) ieee80211_setmode(ic, mode); return (ic->ic_curmode); } /* * Return the phy mode for with the specified channel so the * caller can select a rate set. This is problematic and the * work here assumes how things work elsewhere in this code. * * Because the result of this function is ultimately used to select a * rate from the rate set of the returned mode, it must return one of the * legacy 11a/b/g modes; 11n and 11ac modes use MCS instead of rate sets. */ enum ieee80211_phymode ieee80211_chan2mode(struct ieee80211com *ic, const struct ieee80211_channel *chan) { /* * Are we fixed in 11a/b/g mode? * NB: this assumes the channel would not be supplied to us * unless it was already compatible with the current mode. */ if (ic->ic_curmode == IEEE80211_MODE_11A || ic->ic_curmode == IEEE80211_MODE_11B || ic->ic_curmode == IEEE80211_MODE_11G) return ic->ic_curmode; /* If no channel was provided, return the most suitable legacy mode. */ if (chan == IEEE80211_CHAN_ANYC) { switch (ic->ic_curmode) { case IEEE80211_MODE_AUTO: case IEEE80211_MODE_11N: if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A)) return IEEE80211_MODE_11A; if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G)) return IEEE80211_MODE_11G; return IEEE80211_MODE_11B; case IEEE80211_MODE_11AC: return IEEE80211_MODE_11A; default: return ic->ic_curmode; } } /* Deduce a legacy mode based on the channel characteristics. */ if (IEEE80211_IS_CHAN_5GHZ(chan)) return IEEE80211_MODE_11A; else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) return IEEE80211_MODE_11G; else return IEEE80211_MODE_11B; } /* * Convert IEEE80211 MCS index to ifmedia subtype. */ uint64_t ieee80211_mcs2media(struct ieee80211com *ic, int mcs, enum ieee80211_phymode mode) { switch (mode) { case IEEE80211_MODE_11A: case IEEE80211_MODE_11B: case IEEE80211_MODE_11G: /* these modes use rates, not MCS */ panic("%s: unexpected mode %d", __func__, mode); break; case IEEE80211_MODE_11N: if (mcs >= 0 && mcs < IEEE80211_HT_NUM_MCS) return (IFM_IEEE80211_11N | (IFM_IEEE80211_HT_MCS0 + mcs)); break; case IEEE80211_MODE_11AC: if (mcs >= 0 && mcs < IEEE80211_VHT_NUM_MCS) return (IFM_IEEE80211_11AC | (IFM_IEEE80211_VHT_MCS0 + mcs)); break; case IEEE80211_MODE_AUTO: break; } return IFM_AUTO; } /* * Convert ifmedia subtype to IEEE80211 MCS index. */ int ieee80211_media2mcs(uint64_t mword) { uint64_t subtype; subtype = IFM_SUBTYPE(mword); if (subtype == IFM_AUTO) return -1; else if (subtype == IFM_MANUAL || subtype == IFM_NONE) return 0; if (subtype >= IFM_IEEE80211_HT_MCS0 && subtype <= IFM_IEEE80211_HT_MCS76) return (int)(subtype - IFM_IEEE80211_HT_MCS0); if (subtype >= IFM_IEEE80211_VHT_MCS0 && subtype <= IFM_IEEE80211_VHT_MCS9) return (int)(subtype - IFM_IEEE80211_VHT_MCS0); return -1; } /* * convert IEEE80211 rate value to ifmedia subtype. * ieee80211 rate is in unit of 0.5Mbps. */ uint64_t ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode) { static const struct { uint64_t m; /* rate + mode */ uint64_t r; /* if_media rate */ } rates[] = { { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, /* NB: OFDM72 doesn't really exist so we don't handle it */ }; uint64_t mask; int i; mask = rate & IEEE80211_RATE_VAL; switch (mode) { case IEEE80211_MODE_11A: mask |= IFM_IEEE80211_11A; break; case IEEE80211_MODE_11B: mask |= IFM_IEEE80211_11B; break; case IEEE80211_MODE_AUTO: /* NB: hack, 11g matches both 11b+11a rates */ /* FALLTHROUGH */ case IEEE80211_MODE_11G: mask |= IFM_IEEE80211_11G; break; case IEEE80211_MODE_11N: case IEEE80211_MODE_11AC: /* 11n/11ac uses MCS, not rates. */ panic("%s: unexpected mode %d", __func__, mode); break; } for (i = 0; i < nitems(rates); i++) if (rates[i].m == mask) return rates[i].r; return IFM_AUTO; } int ieee80211_media2rate(uint64_t mword) { int i; static const struct { uint64_t subtype; int rate; } ieeerates[] = { { IFM_AUTO, -1 }, { IFM_MANUAL, 0 }, { IFM_NONE, 0 }, { IFM_IEEE80211_DS1, 2 }, { IFM_IEEE80211_DS2, 4 }, { IFM_IEEE80211_DS5, 11 }, { IFM_IEEE80211_DS11, 22 }, { IFM_IEEE80211_DS22, 44 }, { IFM_IEEE80211_OFDM6, 12 }, { IFM_IEEE80211_OFDM9, 18 }, { IFM_IEEE80211_OFDM12, 24 }, { IFM_IEEE80211_OFDM18, 36 }, { IFM_IEEE80211_OFDM24, 48 }, { IFM_IEEE80211_OFDM36, 72 }, { IFM_IEEE80211_OFDM48, 96 }, { IFM_IEEE80211_OFDM54, 108 }, { IFM_IEEE80211_OFDM72, 144 }, }; for (i = 0; i < nitems(ieeerates); i++) { if (ieeerates[i].subtype == IFM_SUBTYPE(mword)) return ieeerates[i].rate; } return 0; } /* * Convert bit rate (in 0.5Mbps units) to PLCP signal (R4-R1) and vice versa. */ u_int8_t ieee80211_rate2plcp(u_int8_t rate, enum ieee80211_phymode mode) { rate &= IEEE80211_RATE_VAL; if (mode == IEEE80211_MODE_11B) { /* IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3 */ switch (rate) { case 2: return 10; case 4: return 20; case 11: return 55; case 22: return 110; /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ case 44: return 220; } } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ switch (rate) { case 12: return 0x0b; case 18: return 0x0f; case 24: return 0x0a; case 36: return 0x0e; case 48: return 0x09; case 72: return 0x0d; case 96: return 0x08; case 108: return 0x0c; } } else panic("%s: unexpected mode %u", __func__, mode); DPRINTF(("unsupported rate %u\n", rate)); return 0; } u_int8_t ieee80211_plcp2rate(u_int8_t plcp, enum ieee80211_phymode mode) { if (mode == IEEE80211_MODE_11B) { /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ switch (plcp) { case 10: return 2; case 20: return 4; case 55: return 11; case 110: return 22; /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ case 220: return 44; } } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ switch (plcp) { case 0x0b: return 12; case 0x0f: return 18; case 0x0a: return 24; case 0x0e: return 36; case 0x09: return 48; case 0x0d: return 72; case 0x08: return 96; case 0x0c: return 108; } } else panic("%s: unexpected mode %u", __func__, mode); DPRINTF(("unsupported plcp %u\n", plcp)); return 0; }