/* $OpenBSD: pk_input.c,v 1.8 2004/01/03 14:08:53 espie Exp $ */ /* $NetBSD: pk_input.c,v 1.7 1996/02/13 22:05:21 christos Exp $ */ /* * Copyright (c) University of British Columbia, 1984 * Copyright (C) Computer Science Department IV, * University of Erlangen-Nuremberg, Germany, 1992 * Copyright (c) 1991, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by the * Laboratory for Computation Vision and the Computer Science Department * of the the University of British Columbia and the Computer Science * Department (IV) of the University of Erlangen-Nuremberg, Germany. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)pk_input.c 8.1 (Berkeley) 6/10/93 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HDLC #include #include #endif #include struct pkcb_q pkcb_q = {&pkcb_q, &pkcb_q}; static void prune_dnic(char *, char *, char *, struct x25config *); static void save_extra(struct mbuf *, octet *, struct socket *); /* * ccittintr() is the generic interrupt handler for HDLC, LLC2, and X.25. This * allows to have kernel running X.25 but no HDLC or LLC2 or both (in case we * employ boards that do all the stuff themselves, e.g. ADAX X.25 or TPS ISDN.) */ void ccittintr() { extern struct ifqueue pkintrq; extern struct ifqueue hdintrq; extern struct ifqueue llcintrq; #ifdef HDLC if (hdintrq.ifq_len) hdintr(); #endif #ifdef LLC if (llcintrq.ifq_len) llcintr(); #endif if (pkintrq.ifq_len) pkintr(); } struct pkcb * pk_newlink(ia, llnext) struct x25_ifaddr *ia; caddr_t llnext; { struct x25config *xcp = &ia->ia_xc; struct pkcb *pkp; struct protosw *pp; unsigned size; pp = pffindproto(AF_CCITT, (int) xcp->xc_lproto, 0); if (pp == 0 || pp->pr_output == 0) { pk_message(0, xcp, "link level protosw error"); return ((struct pkcb *) 0); } /* * Allocate a network control block structure */ size = sizeof(struct pkcb); pkp = (struct pkcb *) malloc(size, M_PCB, M_WAITOK); bzero((caddr_t) pkp, size); pkp->pk_lloutput = pp->pr_output; pkp->pk_llctlinput = pp->pr_ctlinput; pkp->pk_xcp = xcp; pkp->pk_ia = ia; pkp->pk_state = DTE_WAITING; pkp->pk_llnext = llnext; insque(pkp, &pkcb_q); /* * set defaults */ if (xcp->xc_pwsize == 0) xcp->xc_pwsize = DEFAULT_WINDOW_SIZE; if (xcp->xc_psize == 0) xcp->xc_psize = X25_PS128; /* * Allocate logical channel descriptor vector */ (void) pk_resize(pkp); return (pkp); } int pk_dellink(pkp) struct pkcb *pkp; { int i; struct protosw *pp; /* * Essentially we have the choice to * (a) go ahead and let the route be deleted and * leave the pkcb associated with that route * as it is, i.e. the connections stay open * (b) do a pk_disconnect() on all channels associated * with the route via the pkcb and then proceed. * * For the time being we stick with (b) */ for (i = 1; i < pkp->pk_maxlcn; ++i) if (pkp->pk_chan[i]) pk_disconnect(pkp->pk_chan[i]); /* * Free the pkcb */ /* * First find the protoswitch to get hold of the link level * protocol to be notified that the packet level entity is * dissolving ... */ pp = pffindproto(AF_CCITT, (int) pkp->pk_xcp->xc_lproto, 0); if (pp == 0 || pp->pr_output == 0) { pk_message(0, pkp->pk_xcp, "link level protosw error"); return (EPROTONOSUPPORT); } pkp->pk_refcount--; if (!pkp->pk_refcount) { struct dll_ctlinfo ctlinfo; remque(pkp); if (pkp->pk_rt->rt_llinfo == (caddr_t) pkp) pkp->pk_rt->rt_llinfo = (caddr_t) NULL; /* * Tell the link level that the pkcb is dissolving */ if (pp->pr_ctlinput && pkp->pk_llnext) { ctlinfo.dlcti_pcb = pkp->pk_llnext; ctlinfo.dlcti_rt = pkp->pk_rt; (*pp->pr_ctlinput) (PRC_DISCONNECT_REQUEST, (struct sockaddr *)pkp->pk_xcp, &ctlinfo); } free((caddr_t) pkp->pk_chan, M_IFADDR); free((caddr_t) pkp, M_PCB); } return (0); } int pk_resize(pkp) struct pkcb *pkp; { struct pklcd *dev_lcp = 0; struct x25config *xcp = pkp->pk_xcp; if (pkp->pk_chan && (pkp->pk_maxlcn != xcp->xc_maxlcn)) { pk_restart(pkp, X25_RESTART_NETWORK_CONGESTION); dev_lcp = pkp->pk_chan[0]; free((caddr_t) pkp->pk_chan, M_IFADDR); pkp->pk_chan = 0; } if (pkp->pk_chan == 0) { unsigned size; pkp->pk_maxlcn = xcp->xc_maxlcn; size = (pkp->pk_maxlcn + 1) * sizeof(struct pklcd *); pkp->pk_chan = malloc(size, M_IFADDR, M_WAITOK); bzero((caddr_t) pkp->pk_chan, size); /* * Allocate a logical channel descriptor for lcn 0 */ if (dev_lcp == 0 && (dev_lcp = pk_attach((struct socket *) 0)) == 0) return (ENOBUFS); dev_lcp->lcd_state = READY; dev_lcp->lcd_pkp = pkp; pkp->pk_chan[0] = dev_lcp; } return 0; } /* * This procedure is called by the link level whenever the link becomes * operational, is reset, or when the link goes down. */ /* VARARGS */ void * pk_ctlinput(code, src, addr) int code; struct sockaddr *src; void *addr; { struct pkcb *pkp = (struct pkcb *) addr; struct rtentry *llrt; switch (code) { case PRC_LINKUP: if (pkp->pk_state == DTE_WAITING) pk_restart(pkp, X25_RESTART_NETWORK_CONGESTION); break; case PRC_LINKDOWN: pk_restart(pkp, -1); /* Clear all active circuits */ pkp->pk_state = DTE_WAITING; break; case PRC_LINKRESET: pk_restart(pkp, X25_RESTART_NETWORK_CONGESTION); break; case PRC_CONNECT_INDICATION: if ((llrt = rtalloc1(src, 0)) == 0) return 0; else llrt->rt_refcnt--; pkp = (((struct npaidbentry *) llrt->rt_llinfo)->np_rt) ? (struct pkcb *) (((struct npaidbentry *) llrt->rt_llinfo)->np_rt->rt_llinfo) : (struct pkcb *) 0; if (pkp == (struct pkcb *) 0) return 0; pkp->pk_llnext = addr; return ((caddr_t) pkp); case PRC_DISCONNECT_INDICATION: pk_restart(pkp, -1); /* Clear all active circuits */ pkp->pk_state = DTE_WAITING; pkp->pk_llnext = (caddr_t) 0; break; } return (0); } struct ifqueue pkintrq; /* * This routine is called if there are semi-smart devices that do HDLC * in hardware and want to queue the packet and call level 3 directly */ void pkintr() { struct mbuf *m; int s; for (;;) { s = splimp(); IF_DEQUEUE(&pkintrq, m); splx(s); if (m == 0) break; if (m->m_len < PKHEADERLN) { printf("pkintr: packet too short (len=%d)\n", m->m_len); m_freem(m); continue; } pk_input(m); } } struct mbuf *pk_bad_packet; struct mbuf_cache pk_input_cache = {0}; /* * X.25 PACKET INPUT * * This procedure is called by a link level procedure whenever an information * frame is received. It decodes the packet and demultiplexes based on the * logical channel number. * * We change the original conventions of the UBC code here -- since there may be * multiple pkcb's for a given interface of type 802.2 class 2, we retrieve * which one it is from m_pkthdr.rcvif (which has been overwritten by lower * layers); That field is then restored for the benefit of upper layers which * may make use of it, such as CLNP. * */ #define RESTART_DTE_ORIGINATED(xp) \ (((xp)->packet_cause == X25_RESTART_DTE_ORIGINATED) || \ ((xp)->packet_cause >= X25_RESTART_DTE_ORIGINATED2)) void pk_input(struct mbuf *m, ...) { struct x25_packet *xp; struct pklcd *lcp; struct socket *so = 0; struct pkcb *pkp; int ptype, lcn, lcdstate = LISTEN; if (pk_input_cache.mbc_size || pk_input_cache.mbc_oldsize) mbuf_cache(&pk_input_cache, m); if ((m->m_flags & M_PKTHDR) == 0) panic("pkintr"); if ((pkp = (struct pkcb *) m->m_pkthdr.rcvif) == 0) return; xp = mtod(m, struct x25_packet *); ptype = pk_decode(xp); lcn = LCN(xp); lcp = pkp->pk_chan[lcn]; /* * If the DTE is in Restart state, then it will ignore data, * interrupt, call setup and clearing, flow control and reset * packets. */ if (lcn < 0 || lcn > pkp->pk_maxlcn) { pk_message(lcn, pkp->pk_xcp, "illegal lcn"); m_freem(m); return; } pk_trace(pkp->pk_xcp, m, "P-In"); if (pkp->pk_state != DTE_READY && ptype != PK_RESTART && ptype != PK_RESTART_CONF) { m_freem(m); return; } if (lcp) { so = lcp->lcd_so; lcdstate = lcp->lcd_state; } else { if (ptype == PK_CLEAR) {/* idle line probe (Datapac specific) */ /* send response on lcd 0's output queue */ lcp = pkp->pk_chan[0]; lcp->lcd_template = pk_template(lcn, X25_CLEAR_CONFIRM); pk_output(lcp); m_freem(m); return; } if (ptype != PK_CALL) ptype = PK_INVALID_PACKET; } if (lcn == 0 && ptype != PK_RESTART && ptype != PK_RESTART_CONF) { pk_message(0, pkp->pk_xcp, "illegal ptype (%d, %s) on lcn 0", ptype, pk_name[ptype / MAXSTATES]); if (pk_bad_packet) m_freem(pk_bad_packet); pk_bad_packet = m; return; } m->m_pkthdr.rcvif = pkp->pk_ia->ia_ifp; switch (ptype + lcdstate) { /* * Incoming Call packet received. */ case PK_CALL + LISTEN: pk_incoming_call(pkp, m); break; /* * Call collision: Just throw this "incoming call" away since * the DCE will ignore it anyway. */ case PK_CALL + SENT_CALL: pk_message((int) lcn, pkp->pk_xcp, "incoming call collision"); break; /* * Call confirmation packet received. This usually means our * previous connect request is now complete. */ case PK_CALL_ACCEPTED + SENT_CALL: MCHTYPE(m, MT_CONTROL); pk_call_accepted(lcp, m); break; /* * This condition can only happen if the previous state was * SENT_CALL. Just ignore the packet, eventually a clear * confirmation should arrive. */ case PK_CALL_ACCEPTED + SENT_CLEAR: break; /* * Clear packet received. This requires a complete tear down * of the virtual circuit. Free buffers and control blocks. * and send a clear confirmation. */ case PK_CLEAR + READY: case PK_CLEAR + RECEIVED_CALL: case PK_CLEAR + SENT_CALL: case PK_CLEAR + DATA_TRANSFER: lcp->lcd_state = RECEIVED_CLEAR; lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_CLEAR_CONFIRM); pk_output(lcp); pk_clearcause(pkp, xp); if (lcp->lcd_upper) { MCHTYPE(m, MT_CONTROL); (*lcp->lcd_upper)(m, lcp); } pk_close(lcp); lcp = 0; break; /* * Clear collision: Treat this clear packet as a * confirmation. */ case PK_CLEAR + SENT_CLEAR: pk_close(lcp); break; /* * Clear confirmation received. This usually means the * virtual circuit is now completely removed. */ case PK_CLEAR_CONF + SENT_CLEAR: pk_close(lcp); break; /* * A clear confirmation on an unassigned logical channel - * just ignore it. Note: All other packets on an unassigned * channel results in a clear. */ case PK_CLEAR_CONF + READY: case PK_CLEAR_CONF + LISTEN: break; /* * Data packet received. Pass on to next level. Move the Q * and M bits into the data portion for the next level. */ case PK_DATA + DATA_TRANSFER: if (lcp->lcd_reset_condition) { ptype = PK_DELETE_PACKET; break; } /* * Process the P(S) flow control information in this Data * packet. Check that the packets arrive in the correct * sequence and that they are within the "lcd_input_window". * Input window rotation is initiated by the receive * interface. */ if (PS(xp) != ((lcp->lcd_rsn + 1) % MODULUS) || PS(xp) == ((lcp->lcd_input_window + lcp->lcd_windowsize) % MODULUS)) { m_freem(m); pk_procerror(PK_RESET, lcp, "p(s) flow control error", 1); break; } lcp->lcd_rsn = PS(xp); if (pk_ack(lcp, PR(xp)) != PACKET_OK) { m_freem(m); break; } m->m_data += PKHEADERLN; m->m_len -= PKHEADERLN; m->m_pkthdr.len -= PKHEADERLN; lcp->lcd_rxcnt++; if (lcp->lcd_flags & X25_MBS_HOLD) { struct mbuf *n = lcp->lcd_cps; int mbit = MBIT(xp); octet q_and_d_bits; if (n) { n->m_pkthdr.len += m->m_pkthdr.len; while (n->m_next) n = n->m_next; n->m_next = m; m = lcp->lcd_cps; if (lcp->lcd_cpsmax && n->m_pkthdr.len > lcp->lcd_cpsmax) { pk_procerror(PK_RESET, lcp, "C.P.S. overflow", 128); return; } q_and_d_bits = 0xc0 & *(octet *) xp; xp = (struct x25_packet *) (mtod(m, octet *) - PKHEADERLN); *(octet *) xp |= q_and_d_bits; } if (mbit) { lcp->lcd_cps = m; pk_flowcontrol(lcp, 0, 1); return; } lcp->lcd_cps = 0; } if (so == 0) break; if (lcp->lcd_flags & X25_MQBIT) { octet t = (X25GBITS(xp->bits, q_bit)) ? t = 0x80 : 0; if (MBIT(xp)) t |= 0x40; m->m_data -= 1; m->m_len += 1; m->m_pkthdr.len += 1; *mtod(m, octet *) = t; } /* * Discard Q-BIT packets if the application * doesn't want to be informed of M and Q bit status */ if (X25GBITS(xp->bits, q_bit) && (lcp->lcd_flags & X25_MQBIT) == 0) { m_freem(m); /* * NB. This is dangerous: sending a RR here can * cause sequence number errors if a previous data * packet has not yet been passed up to the application * (RR's are normally generated via PRU_RCVD). */ pk_flowcontrol(lcp, 0, 1); } else { sbappendrecord(&so->so_rcv, m); sorwakeup(so); } break; /* * Interrupt packet received. */ case PK_INTERRUPT + DATA_TRANSFER: if (lcp->lcd_reset_condition) break; lcp->lcd_intrdata = xp->packet_data; lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_INTERRUPT_CONFIRM); pk_output(lcp); m->m_data += PKHEADERLN; m->m_len -= PKHEADERLN; m->m_pkthdr.len -= PKHEADERLN; MCHTYPE(m, MT_OOBDATA); if (so) { if (so->so_options & SO_OOBINLINE) sbinsertoob(&so->so_rcv, m); else m_freem(m); sohasoutofband(so); } break; /* * Interrupt confirmation packet received. */ case PK_INTERRUPT_CONF + DATA_TRANSFER: if (lcp->lcd_reset_condition) break; if (lcp->lcd_intrconf_pending == TRUE) lcp->lcd_intrconf_pending = FALSE; else pk_procerror(PK_RESET, lcp, "unexpected packet", 43); break; /* * Receiver ready received. Rotate the output window and * output any data packets waiting transmission. */ case PK_RR + DATA_TRANSFER: if (lcp->lcd_reset_condition || pk_ack(lcp, PR(xp)) != PACKET_OK) { ptype = PK_DELETE_PACKET; break; } if (lcp->lcd_rnr_condition == TRUE) lcp->lcd_rnr_condition = FALSE; pk_output(lcp); break; /* * Receiver Not Ready received. Packets up to the P(R) can be * be sent. Condition is cleared with a RR. */ case PK_RNR + DATA_TRANSFER: if (lcp->lcd_reset_condition || pk_ack(lcp, PR(xp)) != PACKET_OK) { ptype = PK_DELETE_PACKET; break; } lcp->lcd_rnr_condition = TRUE; break; /* * Reset packet received. Set state to FLOW_OPEN. The Input * and Output window edges ar set to zero. Both the send and * receive numbers are reset. A confirmation is returned. */ case PK_RESET + DATA_TRANSFER: if (lcp->lcd_reset_condition) /* Reset collision. Just ignore packet. */ break; pk_resetcause(pkp, xp); lcp->lcd_window_condition = lcp->lcd_rnr_condition = lcp->lcd_intrconf_pending = FALSE; lcp->lcd_output_window = lcp->lcd_input_window = lcp->lcd_last_transmitted_pr = 0; lcp->lcd_ssn = 0; lcp->lcd_rsn = MODULUS - 1; lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_RESET_CONFIRM); pk_output(lcp); pk_flush(lcp); if (so == 0) break; wakeup((caddr_t) & so->so_timeo); sorwakeup(so); sowwakeup(so); break; /* * Reset confirmation received. */ case PK_RESET_CONF + DATA_TRANSFER: if (lcp->lcd_reset_condition) { lcp->lcd_reset_condition = FALSE; pk_output(lcp); } else pk_procerror(PK_RESET, lcp, "unexpected packet", 32); break; case PK_DATA + SENT_CLEAR: ptype = PK_DELETE_PACKET; case PK_RR + SENT_CLEAR: case PK_RNR + SENT_CLEAR: case PK_INTERRUPT + SENT_CLEAR: case PK_INTERRUPT_CONF + SENT_CLEAR: case PK_RESET + SENT_CLEAR: case PK_RESET_CONF + SENT_CLEAR: /* * Just ignore p if we have sent a CLEAR already. */ break; /* * Restart sets all the permanent virtual circuits to the * "Data Transfer" stae and all the switched virtual * circuits to the "Ready" state. */ case PK_RESTART + READY: switch (pkp->pk_state) { case DTE_SENT_RESTART: /* * Restart collision. If case the restart cause is * "DTE originated" we have a DTE-DTE situation and * are trying to resolve who is going to play DTE/DCE * [ISO 8208:4.2-4.5] */ if (RESTART_DTE_ORIGINATED(xp)) { pk_restart(pkp, X25_RESTART_DTE_ORIGINATED); pk_message(0, pkp->pk_xcp, "RESTART collision"); if ((pkp->pk_restartcolls++) > MAXRESTARTCOLLISIONS) { pk_message(0, pkp->pk_xcp, "excessive RESTART collisions"); pkp->pk_restartcolls = 0; } break; } pkp->pk_state = DTE_READY; pkp->pk_dxerole |= DTE_PLAYDTE; pkp->pk_dxerole &= ~DTE_PLAYDCE; pk_message(0, pkp->pk_xcp, "Packet level operational"); pk_message(0, pkp->pk_xcp, "Assuming DTE role"); if (pkp->pk_dxerole & DTE_CONNECTPENDING) pk_callcomplete(pkp); break; default: pk_restart(pkp, -1); pk_restartcause(pkp, xp); pkp->pk_chan[0]->lcd_template = pk_template(0, X25_RESTART_CONFIRM); pk_output(pkp->pk_chan[0]); pkp->pk_state = DTE_READY; pkp->pk_dxerole |= RESTART_DTE_ORIGINATED(xp) ? DTE_PLAYDCE : DTE_PLAYDTE; if (pkp->pk_dxerole & DTE_PLAYDTE) { pkp->pk_dxerole &= ~DTE_PLAYDCE; pk_message(0, pkp->pk_xcp, "Assuming DTE role"); } else { pkp->pk_dxerole &= ~DTE_PLAYDTE; pk_message(0, pkp->pk_xcp, "Assuming DCE role"); } if (pkp->pk_dxerole & DTE_CONNECTPENDING) pk_callcomplete(pkp); } break; /* * Restart confirmation received. All logical channels are * set to READY. */ case PK_RESTART_CONF + READY: switch (pkp->pk_state) { case DTE_SENT_RESTART: pkp->pk_state = DTE_READY; pkp->pk_dxerole |= DTE_PLAYDTE; pkp->pk_dxerole &= ~DTE_PLAYDCE; pk_message(0, pkp->pk_xcp, "Packet level operational"); pk_message(0, pkp->pk_xcp, "Assuming DTE role"); if (pkp->pk_dxerole & DTE_CONNECTPENDING) pk_callcomplete(pkp); break; default: /* Restart local procedure error. */ pk_restart(pkp, X25_RESTART_LOCAL_PROCEDURE_ERROR); pkp->pk_state = DTE_SENT_RESTART; pkp->pk_dxerole &= ~(DTE_PLAYDTE | DTE_PLAYDCE); } break; default: if (lcp) { pk_procerror(PK_CLEAR, lcp, "unknown packet error", 33); pk_message(lcn, pkp->pk_xcp, "\"%s\" unexpected in \"%s\" state", pk_name[ptype / MAXSTATES], pk_state[lcdstate]); } else pk_message(lcn, pkp->pk_xcp, "packet arrived on unassigned lcn"); break; } if (so == 0 && lcp && lcp->lcd_upper && lcdstate == DATA_TRANSFER) { if (ptype != PK_DATA && ptype != PK_INTERRUPT) MCHTYPE(m, MT_CONTROL); lcp->lcd_upper(m, lcp); } else if (ptype != PK_DATA && ptype != PK_INTERRUPT) m_freem(m); } static void prune_dnic(from, to, dnicname, xcp) char *from, *to, *dnicname; struct x25config *xcp; { char *cp1 = from, *cp2 = from; if (xcp->xc_prepnd0 && *cp1 == '0') { from = ++cp1; goto copyrest; } if (xcp->xc_nodnic) { for (cp1 = dnicname; (*cp2 = *cp1++) != '\0';) cp2++; cp1 = from; } copyrest: for (cp1 = dnicname; (*cp2 = *cp1++) != '\0';) cp2++; } void pk_simple_bsd(from, to, lower, len) octet *from, *to; int len, lower; { int c; while (--len >= 0) { c = *from; if (lower & 0x01) from++; else c >>= 4; c &= 0x0f; c |= 0x30; *to++ = c; lower++; } *to = 0; } void pk_from_bcd(a, iscalling, sa, xcp) struct x25_calladdr *a; int iscalling; struct sockaddr_x25 *sa; struct x25config *xcp; { octet buf[MAXADDRLN + 1]; octet *cp; unsigned count; bzero((caddr_t) sa, sizeof(*sa)); sa->x25_len = sizeof(*sa); sa->x25_family = AF_CCITT; if (iscalling) { cp = a->address_field + (X25GBITS(a->addrlens, called_addrlen) / 2); count = X25GBITS(a->addrlens, calling_addrlen); pk_simple_bsd(cp, buf, X25GBITS(a->addrlens, called_addrlen), count); } else { count = X25GBITS(a->addrlens, called_addrlen); pk_simple_bsd(a->address_field, buf, 0, count); } if (xcp->xc_addr.x25_net && (xcp->xc_nodnic || xcp->xc_prepnd0)) { octet dnicname[sizeof(long) * NBBY / 3 + 2]; sprintf((char *) dnicname, "%d", xcp->xc_addr.x25_net); prune_dnic((char *) buf, sa->x25_addr, dnicname, xcp); } else bcopy((caddr_t) buf, (caddr_t) sa->x25_addr, count + 1); } static void save_extra(m0, fp, so) struct mbuf *m0; octet *fp; struct socket *so; { struct mbuf *m; struct cmsghdr cmsghdr; /* XXX: christos: * used to be m_copy(m, 0, ...) * I think it is supposed to be m_copy(m0, */ if ((m = m_copy(m0, 0, (int) M_COPYALL)) != NULL) { int off = fp - mtod(m0, octet *); int len = m->m_pkthdr.len - off + sizeof(cmsghdr); cmsghdr.cmsg_len = len; cmsghdr.cmsg_level = AF_CCITT; cmsghdr.cmsg_type = PK_FACILITIES; m_adj(m, off); M_PREPEND(m, sizeof(cmsghdr), M_DONTWAIT); if (m == 0) return; bcopy((caddr_t) & cmsghdr, mtod(m, caddr_t), sizeof(cmsghdr)); MCHTYPE(m, MT_CONTROL); sbappendrecord(&so->so_rcv, m); } } /* * This routine handles incoming call packets. It matches the protocol field * on the Call User Data field (usually the first four bytes) with sockets * awaiting connections. */ void pk_incoming_call(pkp, m0) struct pkcb *pkp; struct mbuf *m0; { struct pklcd *lcp = 0, *l; struct sockaddr_x25 *sa; struct x25_calladdr *a; struct socket *so = 0; struct x25_packet *xp = mtod(m0, struct x25_packet *); struct mbuf *m; struct x25config *xcp = pkp->pk_xcp; int len = m0->m_pkthdr.len; unsigned udlen; char *errstr = "server unavailable"; octet *u, *facp; int lcn = LCN(xp); /* * First, copy the data from the incoming call packet to a X25 * address descriptor. It is to be regretted that you have to parse * the facilities into a sockaddr to determine if reverse charging is * being requested */ if ((m = m_get(M_DONTWAIT, MT_SONAME)) == 0) return; sa = mtod(m, struct sockaddr_x25 *); a = (struct x25_calladdr *) & xp->packet_data; facp = u = (octet *) (a->address_field + ((X25GBITS(a->addrlens, called_addrlen) + X25GBITS(a->addrlens, calling_addrlen) + 1) / 2)); u += *u + 1; udlen = min(16, ((octet *) xp) + len - u); #if 0 /* Cannot happen; udlen is unsigned */ if (udlen < 0) udlen = 0; #endif pk_from_bcd(a, 1, sa, pkp->pk_xcp); /* get calling address */ pk_parse_facilities(facp, sa); bcopy((caddr_t) u, sa->x25_udata, udlen); sa->x25_udlen = udlen; /* * Now, loop through the listen sockets looking for a match on the * PID. That is the first few octets of the user data field. * This is the closest thing to a port number for X.25 packets. * It does provide a way of multiplexing services at the user level. */ for (l = pk_listenhead; l; l = l->lcd_listen) { struct sockaddr_x25 *sxp = l->lcd_ceaddr; if (bcmp(sxp->x25_udata, u, sxp->x25_udlen)) continue; if (sxp->x25_net && sxp->x25_net != xcp->xc_addr.x25_net) continue; /* * don't accept incoming calls with the D-Bit on * unless the server agrees */ if (X25GBITS(xp->bits, d_bit) && !(sxp->x25_opts.op_flags & X25_DBIT)) { errstr = "incoming D-Bit mismatch"; break; } /* * don't accept incoming collect calls unless * the server sets the reverse charging option. */ if ((sxp->x25_opts.op_flags & (X25_OLDSOCKADDR | X25_REVERSE_CHARGE)) == 0 && sa->x25_opts.op_flags & X25_REVERSE_CHARGE) { errstr = "incoming collect call refused"; break; } if (l->lcd_so) { so = sonewconn(l->lcd_so, SS_ISCONNECTED); if (so) lcp = (struct pklcd *) so->so_pcb; } else lcp = pk_attach((struct socket *) 0); if (lcp == 0) { /* * Insufficient space or too many unaccepted * connections. Just throw the call away. */ errstr = "server malfunction"; break; } lcp->lcd_upper = l->lcd_upper; lcp->lcd_upnext = l->lcd_upnext; lcp->lcd_lcn = lcn; lcp->lcd_state = RECEIVED_CALL; sa->x25_opts.op_flags |= (sxp->x25_opts.op_flags & ~X25_REVERSE_CHARGE) | l->lcd_flags; pk_assoc(pkp, lcp, sa); lcp->lcd_faddr = *sa; lcp->lcd_laddr.x25_udlen = sxp->x25_udlen; lcp->lcd_craddr = &lcp->lcd_faddr; lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_CALL_ACCEPTED); if (lcp->lcd_flags & X25_DBIT) { if (X25GBITS(xp->bits, d_bit)) X25SBITS(mtod(lcp->lcd_template, struct x25_packet *)->bits, d_bit, 1); else lcp->lcd_flags &= ~X25_DBIT; } if (so) { pk_output(lcp); soisconnected(so); if (so->so_options & SO_OOBINLINE) save_extra(m0, facp, so); } else if (lcp->lcd_upper) { (*lcp->lcd_upper) (m0, lcp); } (void) m_free(m); return; } /* * If the call fails for whatever reason, we still need to build a * skeleton LCD in order to be able to properly receive the CLEAR * CONFIRMATION. */ #ifdef WATERLOO /* be explicit */ if (l == 0 && bcmp(sa->x25_udata, "ean", 3) == 0) pk_message(lcn, pkp->pk_xcp, "host=%s ean%c: %s", sa->x25_addr, sa->x25_udata[3] & 0xff, errstr); else if (l == 0 && bcmp(sa->x25_udata, "\1\0\0\0", 4) == 0) pk_message(lcn, pkp->pk_xcp, "host=%s x29d: %s", sa->x25_addr, errstr); else #endif pk_message(lcn, pkp->pk_xcp, "host=%s pid=%x %x %x %x: %s", sa->x25_addr, sa->x25_udata[0] & 0xff, sa->x25_udata[1] & 0xff, sa->x25_udata[2] & 0xff, sa->x25_udata[3] & 0xff, errstr); if ((lcp = pk_attach((struct socket *) 0)) == 0) { (void) m_free(m); return; } lcp->lcd_lcn = lcn; lcp->lcd_state = RECEIVED_CALL; pk_assoc(pkp, lcp, sa); (void) m_free(m); pk_clear(lcp, 0, 1); } void pk_call_accepted(lcp, m) struct pklcd *lcp; struct mbuf *m; { struct x25_calladdr *ap; octet *fcp; struct x25_packet *xp = mtod(m, struct x25_packet *); int len = m->m_len; lcp->lcd_state = DATA_TRANSFER; if (lcp->lcd_so) soisconnected(lcp->lcd_so); if ((lcp->lcd_flags & X25_DBIT) && (X25GBITS(xp->bits, d_bit) == 0)) lcp->lcd_flags &= ~X25_DBIT; if (len > 3) { ap = (struct x25_calladdr *) & xp->packet_data; fcp = (octet *) ap->address_field + (X25GBITS(ap->addrlens, calling_addrlen) + X25GBITS(ap->addrlens, called_addrlen) + 1) / 2; if (fcp + *fcp <= ((octet *) xp) + len) pk_parse_facilities(fcp, lcp->lcd_ceaddr); } pk_assoc(lcp->lcd_pkp, lcp, lcp->lcd_ceaddr); if (lcp->lcd_so == 0 && lcp->lcd_upper) (*lcp->lcd_upper)(m, lcp); } void pk_parse_facilities(fcp, sa) octet *fcp; struct sockaddr_x25 *sa; { octet *maxfcp; maxfcp = fcp + *fcp; fcp++; while (fcp < maxfcp) { /* * Ignore national DCE or DTE facilities */ if (*fcp == 0 || *fcp == 0xff) break; switch (*fcp) { case FACILITIES_WINDOWSIZE: sa->x25_opts.op_wsize = fcp[1]; fcp += 3; break; case FACILITIES_PACKETSIZE: sa->x25_opts.op_psize = fcp[1]; fcp += 3; break; case FACILITIES_THROUGHPUT: sa->x25_opts.op_speed = fcp[1]; fcp += 2; break; case FACILITIES_REVERSE_CHARGE: if (fcp[1] & 01) sa->x25_opts.op_flags |= X25_REVERSE_CHARGE; /* * Datapac specific: for a X.25(1976) DTE, bit 2 * indicates a "hi priority" (eg. international) call. */ if (fcp[1] & 02 && sa->x25_opts.op_psize == 0) sa->x25_opts.op_psize = X25_PS128; fcp += 2; break; default: /* * printf("unknown facility %x, class=%d\n", *fcp, * (*fcp & 0xc0) >> 6); */ switch ((*fcp & 0xc0) >> 6) { case 0:/* class A */ fcp += 2; break; case 1: fcp += 3; break; case 2: fcp += 4; break; case 3: fcp++; fcp += *fcp; } } } }