/* $OpenBSD: if_ether.c,v 1.251 2022/07/16 15:25:30 bluhm Exp $ */ /* $NetBSD: if_ether.c,v 1.31 1996/05/11 12:59:58 mycroft Exp $ */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.c 8.1 (Berkeley) 6/10/93 */ /* * Ethernet address resolution protocol. * TODO: * add "inuse/lock" bit (or ref. count) along with valid bit */ #include "carp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NCARP > 0 #include #endif /* * Locks used to protect struct members in this file: * a atomic operations * I immutable after creation * K kernel lock * m arp mutex, needed when net lock is shared * N net lock */ struct llinfo_arp { LIST_ENTRY(llinfo_arp) la_list; /* [mN] global arp_list */ struct rtentry *la_rt; /* [I] backpointer to rtentry */ struct mbuf_queue la_mq; /* packet hold queue */ time_t la_refreshed; /* when was refresh sent */ int la_asked; /* number of queries sent */ }; #define LA_HOLD_QUEUE 10 #define LA_HOLD_TOTAL 100 /* timer values */ int arpt_prune = (5 * 60); /* [I] walk list every 5 minutes */ int arpt_keep = (20 * 60); /* [a] once resolved, cache for 20 minutes */ int arpt_down = 20; /* [a] once declared down, don't send for 20 secs */ struct mbuf *arppullup(struct mbuf *m); void arpinvalidate(struct rtentry *); void arptfree(struct rtentry *); void arptimer(void *); struct rtentry *arplookup(struct in_addr *, int, int, unsigned int); void in_arpinput(struct ifnet *, struct mbuf *); void in_revarpinput(struct ifnet *, struct mbuf *); int arpcache(struct ifnet *, struct ether_arp *, struct rtentry *); void arpreply(struct ifnet *, struct mbuf *, struct in_addr *, uint8_t *, unsigned int); struct niqueue arpinq = NIQUEUE_INITIALIZER(50, NETISR_ARP); /* llinfo_arp live time, rt_llinfo and RTF_LLINFO are protected by arp_mtx */ struct mutex arp_mtx = MUTEX_INITIALIZER(IPL_SOFTNET); LIST_HEAD(, llinfo_arp) arp_list; /* [mN] list of all llinfo_arp structures */ struct pool arp_pool; /* [I] pool for llinfo_arp structures */ int arp_maxtries = 5; /* [I] arp requests before set to rejected */ int la_hold_total; /* [a] packets currently in the arp queue */ #ifdef NFSCLIENT /* revarp state */ struct in_addr revarp_myip, revarp_srvip; int revarp_finished; unsigned int revarp_ifidx; #endif /* NFSCLIENT */ /* * Timeout routine. Age arp_tab entries periodically. */ /* ARGSUSED */ void arptimer(void *arg) { struct timeout *to = arg; struct llinfo_arp *la, *nla; time_t uptime; NET_LOCK(); uptime = getuptime(); timeout_add_sec(to, arpt_prune); /* Net lock is exclusive, no arp mutex needed for arp_list here. */ LIST_FOREACH_SAFE(la, &arp_list, la_list, nla) { struct rtentry *rt = la->la_rt; if (rt->rt_expire && rt->rt_expire < uptime) arptfree(rt); /* timer has expired; clear */ } NET_UNLOCK(); } void arpinit(void) { static struct timeout arptimer_to; pool_init(&arp_pool, sizeof(struct llinfo_arp), 0, IPL_SOFTNET, 0, "arp", NULL); timeout_set_proc(&arptimer_to, arptimer, &arptimer_to); timeout_add_sec(&arptimer_to, arpt_prune); } void arp_rtrequest(struct ifnet *ifp, int req, struct rtentry *rt) { struct sockaddr *gate = rt->rt_gateway; struct llinfo_arp *la; time_t uptime; NET_ASSERT_LOCKED(); if (ISSET(rt->rt_flags, RTF_GATEWAY|RTF_BROADCAST|RTF_MULTICAST|RTF_MPLS)) return; uptime = getuptime(); switch (req) { case RTM_ADD: if (rt->rt_flags & RTF_CLONING) { rt->rt_expire = 0; break; } if ((rt->rt_flags & RTF_LOCAL) && rt->rt_llinfo == NULL) rt->rt_expire = 0; /* * Announce a new entry if requested or warn the user * if another station has this IP address. */ if (rt->rt_flags & (RTF_ANNOUNCE|RTF_LOCAL)) arprequest(ifp, &satosin(rt_key(rt))->sin_addr.s_addr, &satosin(rt_key(rt))->sin_addr.s_addr, (u_char *)LLADDR(satosdl(gate))); /*FALLTHROUGH*/ case RTM_RESOLVE: if (gate->sa_family != AF_LINK || gate->sa_len < sizeof(struct sockaddr_dl)) { log(LOG_DEBUG, "%s: bad gateway value: %s\n", __func__, ifp->if_xname); break; } satosdl(gate)->sdl_type = ifp->if_type; satosdl(gate)->sdl_index = ifp->if_index; /* * Case 2: This route may come from cloning, or a manual route * add with a LL address. */ la = pool_get(&arp_pool, PR_NOWAIT | PR_ZERO); if (la == NULL) { log(LOG_DEBUG, "%s: pool get failed\n", __func__); break; } mtx_enter(&arp_mtx); if (rt->rt_llinfo != NULL) { /* we lost the race, another thread has entered it */ mtx_leave(&arp_mtx); pool_put(&arp_pool, la); break; } mq_init(&la->la_mq, LA_HOLD_QUEUE, IPL_SOFTNET); rt->rt_llinfo = (caddr_t)la; la->la_rt = rt; rt->rt_flags |= RTF_LLINFO; LIST_INSERT_HEAD(&arp_list, la, la_list); if ((rt->rt_flags & RTF_LOCAL) == 0) rt->rt_expire = uptime; mtx_leave(&arp_mtx); break; case RTM_DELETE: mtx_enter(&arp_mtx); la = (struct llinfo_arp *)rt->rt_llinfo; if (la == NULL) { /* we lost the race, another thread has removed it */ mtx_leave(&arp_mtx); break; } LIST_REMOVE(la, la_list); rt->rt_llinfo = NULL; rt->rt_flags &= ~RTF_LLINFO; atomic_sub_int(&la_hold_total, mq_purge(&la->la_mq)); mtx_leave(&arp_mtx); pool_put(&arp_pool, la); break; case RTM_INVALIDATE: if (!ISSET(rt->rt_flags, RTF_LOCAL)) arpinvalidate(rt); break; } } /* * Broadcast an ARP request. Caller specifies: * - arp header source ip address * - arp header target ip address * - arp header source ethernet address */ void arprequest(struct ifnet *ifp, u_int32_t *sip, u_int32_t *tip, u_int8_t *enaddr) { struct mbuf *m; struct ether_header *eh; struct ether_arp *ea; struct sockaddr sa; if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) return; m->m_len = sizeof(*ea); m->m_pkthdr.len = sizeof(*ea); m->m_pkthdr.ph_rtableid = ifp->if_rdomain; m->m_pkthdr.pf.prio = ifp->if_llprio; m_align(m, sizeof(*ea)); ea = mtod(m, struct ether_arp *); eh = (struct ether_header *)sa.sa_data; memset(ea, 0, sizeof(*ea)); memcpy(eh->ether_dhost, etherbroadcastaddr, sizeof(eh->ether_dhost)); eh->ether_type = htons(ETHERTYPE_ARP); /* if_output will not swap */ ea->arp_hrd = htons(ARPHRD_ETHER); ea->arp_pro = htons(ETHERTYPE_IP); ea->arp_hln = sizeof(ea->arp_sha); /* hardware address length */ ea->arp_pln = sizeof(ea->arp_spa); /* protocol address length */ ea->arp_op = htons(ARPOP_REQUEST); memcpy(eh->ether_shost, enaddr, sizeof(eh->ether_shost)); memcpy(ea->arp_sha, enaddr, sizeof(ea->arp_sha)); memcpy(ea->arp_spa, sip, sizeof(ea->arp_spa)); memcpy(ea->arp_tpa, tip, sizeof(ea->arp_tpa)); sa.sa_family = pseudo_AF_HDRCMPLT; sa.sa_len = sizeof(sa); m->m_flags |= M_BCAST; ifp->if_output(ifp, m, &sa, NULL); } void arpreply(struct ifnet *ifp, struct mbuf *m, struct in_addr *sip, uint8_t *eaddr, unsigned int rdomain) { struct ether_header *eh; struct ether_arp *ea; struct sockaddr sa; m_resethdr(m); m->m_pkthdr.ph_rtableid = rdomain; ea = mtod(m, struct ether_arp *); ea->arp_op = htons(ARPOP_REPLY); ea->arp_pro = htons(ETHERTYPE_IP); /* let's be sure! */ /* We're replying to a request. */ memcpy(ea->arp_tha, ea->arp_sha, sizeof(ea->arp_sha)); memcpy(ea->arp_tpa, ea->arp_spa, sizeof(ea->arp_spa)); memcpy(ea->arp_sha, eaddr, sizeof(ea->arp_sha)); memcpy(ea->arp_spa, sip, sizeof(ea->arp_spa)); eh = (struct ether_header *)sa.sa_data; memcpy(eh->ether_dhost, ea->arp_tha, sizeof(eh->ether_dhost)); memcpy(eh->ether_shost, eaddr, sizeof(eh->ether_shost)); eh->ether_type = htons(ETHERTYPE_ARP); sa.sa_family = pseudo_AF_HDRCMPLT; sa.sa_len = sizeof(sa); ifp->if_output(ifp, m, &sa, NULL); } /* * Resolve an IP address into an ethernet address. If success, * desten is filled in. If there is no entry in arptab, * set one up and broadcast a request for the IP address. * Hold onto this mbuf and resend it once the address * is finally resolved. A return value of 0 indicates * that desten has been filled in and the packet should be sent * normally; A return value of EAGAIN indicates that the packet * has been taken over here, either now or for later transmission. * Any other return value indicates an error. */ int arpresolve(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m, struct sockaddr *dst, u_char *desten) { struct arpcom *ac = (struct arpcom *)ifp; struct llinfo_arp *la; struct sockaddr_dl *sdl; struct rtentry *rt = NULL; char addr[INET_ADDRSTRLEN]; time_t uptime; if (m->m_flags & M_BCAST) { /* broadcast */ memcpy(desten, etherbroadcastaddr, sizeof(etherbroadcastaddr)); return (0); } if (m->m_flags & M_MCAST) { /* multicast */ ETHER_MAP_IP_MULTICAST(&satosin(dst)->sin_addr, desten); return (0); } uptime = getuptime(); rt = rt_getll(rt0); if (ISSET(rt->rt_flags, RTF_REJECT) && (rt->rt_expire == 0 || rt->rt_expire > uptime)) { m_freem(m); return (rt == rt0 ? EHOSTDOWN : EHOSTUNREACH); } if (!ISSET(rt->rt_flags, RTF_LLINFO)) { log(LOG_DEBUG, "%s: %s: route contains no arp information\n", __func__, inet_ntop(AF_INET, &satosin(rt_key(rt))->sin_addr, addr, sizeof(addr))); goto bad; } sdl = satosdl(rt->rt_gateway); if (sdl->sdl_alen > 0 && sdl->sdl_alen != ETHER_ADDR_LEN) { log(LOG_DEBUG, "%s: %s: incorrect arp information\n", __func__, inet_ntop(AF_INET, &satosin(dst)->sin_addr, addr, sizeof(addr))); goto bad; } /* * Check the address family and length is valid, the address * is resolved; otherwise, try to resolve. */ if ((rt->rt_expire == 0 || rt->rt_expire > uptime) && sdl->sdl_family == AF_LINK && sdl->sdl_alen != 0) { int refresh = 0; memcpy(desten, LLADDR(sdl), sdl->sdl_alen); /* refresh ARP entry when timeout gets close */ if (rt->rt_expire != 0 && rt->rt_expire - arpt_keep / 8 < uptime) { mtx_enter(&arp_mtx); if (ISSET(rt->rt_flags, RTF_LLINFO)) { la = (struct llinfo_arp *)rt->rt_llinfo; KASSERT(la != NULL); if (la->la_refreshed + 30 < uptime) { la->la_refreshed = uptime; refresh = 1; } } mtx_leave(&arp_mtx); } if (refresh) { arprequest(ifp, &satosin(rt->rt_ifa->ifa_addr)->sin_addr.s_addr, &satosin(dst)->sin_addr.s_addr, ac->ac_enaddr); } return (0); } if (ifp->if_flags & (IFF_NOARP|IFF_STATICARP)) goto bad; KERNEL_LOCK(); /* * Re-check since we grab the kernel lock after the first check. * rtrequest_delete() can be called with shared netlock. From * there arp_rtrequest() is reached which touches RTF_LLINFO * and rt_llinfo. As this is called with kernel lock we grab the * kernel lock here and are safe. XXXSMP */ if (!ISSET(rt->rt_flags, RTF_LLINFO)) { KERNEL_UNLOCK(); goto bad; } la = (struct llinfo_arp *)rt->rt_llinfo; KASSERT(la != NULL); /* * There is an arptab entry, but no ethernet address * response yet. Insert mbuf in hold queue if below limit * if above the limit free the queue without queuing the new packet. */ if (atomic_inc_int_nv(&la_hold_total) <= LA_HOLD_TOTAL) { if (mq_push(&la->la_mq, m) != 0) atomic_dec_int(&la_hold_total); } else { atomic_sub_int(&la_hold_total, mq_purge(&la->la_mq) + 1); m_freem(m); } /* * Re-send the ARP request when appropriate. */ #ifdef DIAGNOSTIC if (rt->rt_expire == 0) { /* This should never happen. (Should it? -gwr) */ printf("%s: unresolved and rt_expire == 0\n", __func__); /* Set expiration time to now (expired). */ rt->rt_expire = uptime; } #endif if (rt->rt_expire) { rt->rt_flags &= ~RTF_REJECT; if (la->la_asked == 0 || rt->rt_expire != uptime) { rt->rt_expire = uptime; if (la->la_asked++ < arp_maxtries) arprequest(ifp, &satosin(rt->rt_ifa->ifa_addr)->sin_addr.s_addr, &satosin(dst)->sin_addr.s_addr, ac->ac_enaddr); else { rt->rt_flags |= RTF_REJECT; rt->rt_expire += arpt_down; la->la_asked = 0; la->la_refreshed = 0; atomic_sub_int(&la_hold_total, mq_purge(&la->la_mq)); } } } KERNEL_UNLOCK(); return (EAGAIN); bad: m_freem(m); return (EINVAL); } struct mbuf * arppullup(struct mbuf *m) { struct arphdr *ar; int len; #ifdef DIAGNOSTIC if ((m->m_flags & M_PKTHDR) == 0) panic("arp without packet header"); #endif len = sizeof(struct arphdr); if (m->m_len < len && (m = m_pullup(m, len)) == NULL) return NULL; ar = mtod(m, struct arphdr *); if (ntohs(ar->ar_hrd) != ARPHRD_ETHER || ntohs(ar->ar_pro) != ETHERTYPE_IP || ar->ar_hln != ETHER_ADDR_LEN || ar->ar_pln != sizeof(struct in_addr)) { m_freem(m); return NULL; } len += 2 * (ar->ar_hln + ar->ar_pln); if (m->m_len < len && (m = m_pullup(m, len)) == NULL) return NULL; return m; } /* * Common length and type checks are done here, * then the protocol-specific routine is called. */ void arpinput(struct ifnet *ifp, struct mbuf *m) { if ((m = arppullup(m)) == NULL) return; niq_enqueue(&arpinq, m); } void arpintr(void) { struct mbuf_list ml; struct mbuf *m; struct ifnet *ifp; niq_delist(&arpinq, &ml); while ((m = ml_dequeue(&ml)) != NULL) { ifp = if_get(m->m_pkthdr.ph_ifidx); if (ifp != NULL) in_arpinput(ifp, m); else m_freem(m); if_put(ifp); } } /* * ARP for Internet protocols on Ethernet, RFC 826. * In addition, a sanity check is performed on the sender * protocol address, to catch impersonators. */ void in_arpinput(struct ifnet *ifp, struct mbuf *m) { struct ether_arp *ea; struct rtentry *rt = NULL; struct sockaddr_in sin; struct in_addr isaddr, itaddr; char addr[INET_ADDRSTRLEN]; int op, target = 0; unsigned int rdomain; rdomain = rtable_l2(m->m_pkthdr.ph_rtableid); ea = mtod(m, struct ether_arp *); op = ntohs(ea->arp_op); if ((op != ARPOP_REQUEST) && (op != ARPOP_REPLY)) goto out; memcpy(&itaddr, ea->arp_tpa, sizeof(itaddr)); memcpy(&isaddr, ea->arp_spa, sizeof(isaddr)); memset(&sin, 0, sizeof(sin)); sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; if (ETHER_IS_MULTICAST(ea->arp_sha) && ETHER_IS_BROADCAST(ea->arp_sha)) { inet_ntop(AF_INET, &isaddr, addr, sizeof(addr)); log(LOG_ERR, "arp: ether address is broadcast for IP address " "%s!\n", addr); goto out; } if (!memcmp(ea->arp_sha, LLADDR(ifp->if_sadl), sizeof(ea->arp_sha))) goto out; /* it's from me, ignore it. */ /* Check target against our interface addresses. */ sin.sin_addr = itaddr; rt = rtalloc(sintosa(&sin), 0, rdomain); if (rtisvalid(rt) && ISSET(rt->rt_flags, RTF_LOCAL) && rt->rt_ifidx == ifp->if_index) target = 1; rtfree(rt); rt = NULL; #if NCARP > 0 if (target && op == ARPOP_REQUEST && ifp->if_type == IFT_CARP && !carp_iamatch(ifp)) goto out; #endif /* Do we have an ARP cache for the sender? Create if we are target. */ rt = arplookup(&isaddr, target, 0, rdomain); /* Check sender against our interface addresses. */ if (rtisvalid(rt) && ISSET(rt->rt_flags, RTF_LOCAL) && rt->rt_ifidx == ifp->if_index && isaddr.s_addr != INADDR_ANY) { inet_ntop(AF_INET, &isaddr, addr, sizeof(addr)); log(LOG_ERR, "duplicate IP address %s sent from ethernet " "address %s\n", addr, ether_sprintf(ea->arp_sha)); itaddr = isaddr; } else if (rt != NULL) { int error; KERNEL_LOCK(); error = arpcache(ifp, ea, rt); KERNEL_UNLOCK(); if (error) goto out; } if (op == ARPOP_REQUEST) { uint8_t *eaddr; if (target) { /* We already have all info for the reply */ eaddr = LLADDR(ifp->if_sadl); } else { rtfree(rt); rt = arplookup(&itaddr, 0, SIN_PROXY, rdomain); /* * Protect from possible duplicates, only owner * should respond */ if ((rt == NULL) || (rt->rt_ifidx != ifp->if_index)) goto out; eaddr = LLADDR(satosdl(rt->rt_gateway)); } arpreply(ifp, m, &itaddr, eaddr, rdomain); rtfree(rt); return; } out: rtfree(rt); m_freem(m); } int arpcache(struct ifnet *ifp, struct ether_arp *ea, struct rtentry *rt) { struct llinfo_arp *la = (struct llinfo_arp *)rt->rt_llinfo; struct sockaddr_dl *sdl = satosdl(rt->rt_gateway); struct in_addr *spa = (struct in_addr *)ea->arp_spa; char addr[INET_ADDRSTRLEN]; struct ifnet *rifp; struct mbuf_list ml; struct mbuf *m; time_t uptime; unsigned int len; int changed = 0; KERNEL_ASSERT_LOCKED(); KASSERT(sdl != NULL); /* * This can happen if the entry has been deleted by another CPU * after we found it. */ if (la == NULL) return (0); uptime = getuptime(); if (sdl->sdl_alen > 0) { if (memcmp(ea->arp_sha, LLADDR(sdl), sdl->sdl_alen)) { if (ISSET(rt->rt_flags, RTF_PERMANENT_ARP|RTF_LOCAL)) { inet_ntop(AF_INET, spa, addr, sizeof(addr)); log(LOG_WARNING, "arp: attempt to overwrite " "permanent entry for %s by %s on %s\n", addr, ether_sprintf(ea->arp_sha), ifp->if_xname); return (-1); } else if (rt->rt_ifidx != ifp->if_index) { #if NCARP > 0 if (ifp->if_type != IFT_CARP) #endif { rifp = if_get(rt->rt_ifidx); if (rifp == NULL) return (-1); inet_ntop(AF_INET, spa, addr, sizeof(addr)); log(LOG_WARNING, "arp: attempt to " "overwrite entry for %s on %s by " "%s on %s\n", addr, rifp->if_xname, ether_sprintf(ea->arp_sha), ifp->if_xname); if_put(rifp); } return (-1); } else { inet_ntop(AF_INET, spa, addr, sizeof(addr)); log(LOG_INFO, "arp info overwritten for %s by " "%s on %s\n", addr, ether_sprintf(ea->arp_sha), ifp->if_xname); rt->rt_expire = 1;/* no longer static */ } changed = 1; } } else if (!if_isconnected(ifp, rt->rt_ifidx)) { rifp = if_get(rt->rt_ifidx); if (rifp == NULL) return (-1); inet_ntop(AF_INET, spa, addr, sizeof(addr)); log(LOG_WARNING, "arp: attempt to add entry for %s on %s by %s" " on %s\n", addr, rifp->if_xname, ether_sprintf(ea->arp_sha), ifp->if_xname); if_put(rifp); return (-1); } sdl->sdl_alen = sizeof(ea->arp_sha); memcpy(LLADDR(sdl), ea->arp_sha, sizeof(ea->arp_sha)); if (rt->rt_expire) rt->rt_expire = uptime + arpt_keep; rt->rt_flags &= ~RTF_REJECT; /* Notify userland that an ARP resolution has been done. */ if (la->la_asked || changed) { rtm_send(rt, RTM_RESOLVE, 0, ifp->if_rdomain); } la->la_asked = 0; la->la_refreshed = 0; mq_delist(&la->la_mq, &ml); len = ml_len(&ml); while ((m = ml_dequeue(&ml)) != NULL) ifp->if_output(ifp, m, rt_key(rt), rt); /* XXXSMP we discard if other CPU enqueues */ if (mq_len(&la->la_mq) > 0) { /* mbuf is back in queue. Discard. */ atomic_sub_int(&la_hold_total, len + mq_purge(&la->la_mq)); } else atomic_sub_int(&la_hold_total, len); return (0); } void arpinvalidate(struct rtentry *rt) { struct llinfo_arp *la; struct sockaddr_dl *sdl = satosdl(rt->rt_gateway); mtx_enter(&arp_mtx); la = (struct llinfo_arp *)rt->rt_llinfo; if (la == NULL) { mtx_leave(&arp_mtx); return; } atomic_sub_int(&la_hold_total, mq_purge(&la->la_mq)); sdl->sdl_alen = 0; la->la_asked = 0; mtx_leave(&arp_mtx); } /* * Free an arp entry. */ void arptfree(struct rtentry *rt) { struct ifnet *ifp; KASSERT(!ISSET(rt->rt_flags, RTF_LOCAL)); arpinvalidate(rt); ifp = if_get(rt->rt_ifidx); KASSERT(ifp != NULL); if (!ISSET(rt->rt_flags, RTF_STATIC|RTF_CACHED)) rtdeletemsg(rt, ifp, ifp->if_rdomain); if_put(ifp); } /* * Lookup or enter a new address in arptab. */ struct rtentry * arplookup(struct in_addr *inp, int create, int proxy, u_int tableid) { struct rtentry *rt; struct sockaddr_inarp sin; int flags; memset(&sin, 0, sizeof(sin)); sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; sin.sin_addr.s_addr = inp->s_addr; sin.sin_other = proxy ? SIN_PROXY : 0; flags = (create) ? RT_RESOLVE : 0; rt = rtalloc((struct sockaddr *)&sin, flags, tableid); if (!rtisvalid(rt) || ISSET(rt->rt_flags, RTF_GATEWAY) || !ISSET(rt->rt_flags, RTF_LLINFO) || rt->rt_gateway->sa_family != AF_LINK) { rtfree(rt); return (NULL); } if (proxy && !ISSET(rt->rt_flags, RTF_ANNOUNCE)) { while ((rt = rtable_iterate(rt)) != NULL) { if (ISSET(rt->rt_flags, RTF_ANNOUNCE)) { break; } } } return (rt); } /* * Check whether we do proxy ARP for this address and we point to ourselves. */ int arpproxy(struct in_addr in, unsigned int rtableid) { struct sockaddr_dl *sdl; struct rtentry *rt; struct ifnet *ifp; int found = 0; rt = arplookup(&in, 0, SIN_PROXY, rtableid); if (!rtisvalid(rt)) { rtfree(rt); return (0); } /* Check that arp information are correct. */ sdl = satosdl(rt->rt_gateway); if (sdl->sdl_alen != ETHER_ADDR_LEN) { rtfree(rt); return (0); } ifp = if_get(rt->rt_ifidx); if (ifp == NULL) { rtfree(rt); return (0); } if (!memcmp(LLADDR(sdl), LLADDR(ifp->if_sadl), sdl->sdl_alen)) found = 1; if_put(ifp); rtfree(rt); return (found); } /* * Called from Ethernet interrupt handlers * when ether packet type ETHERTYPE_REVARP * is received. Common length and type checks are done here, * then the protocol-specific routine is called. */ void revarpinput(struct ifnet *ifp, struct mbuf *m) { if ((m = arppullup(m)) == NULL) return; in_revarpinput(ifp, m); } /* * RARP for Internet protocols on Ethernet. * Algorithm is that given in RFC 903. * We are only using for bootstrap purposes to get an ip address for one of * our interfaces. Thus we support no user-interface. * * Since the contents of the RARP reply are specific to the interface that * sent the request, this code must ensure that they are properly associated. * * Note: also supports ARP via RARP packets, per the RFC. */ void in_revarpinput(struct ifnet *ifp, struct mbuf *m) { struct ether_arp *ar; int op; ar = mtod(m, struct ether_arp *); op = ntohs(ar->arp_op); switch (op) { case ARPOP_REQUEST: case ARPOP_REPLY: /* per RFC */ niq_enqueue(&arpinq, m); return; case ARPOP_REVREPLY: break; case ARPOP_REVREQUEST: /* handled by rarpd(8) */ default: goto out; } #ifdef NFSCLIENT if (revarp_ifidx == 0) goto out; if (revarp_ifidx != m->m_pkthdr.ph_ifidx) /* !same interface */ goto out; if (revarp_finished) goto wake; if (memcmp(ar->arp_tha, LLADDR(ifp->if_sadl), sizeof(ar->arp_tha))) goto out; memcpy(&revarp_srvip, ar->arp_spa, sizeof(revarp_srvip)); memcpy(&revarp_myip, ar->arp_tpa, sizeof(revarp_myip)); revarp_finished = 1; wake: /* Do wakeup every time in case it was missed. */ wakeup((caddr_t)&revarp_myip); #endif /* NFSCLIENT */ out: m_freem(m); } /* * Send a RARP request for the ip address of the specified interface. * The request should be RFC 903-compliant. */ void revarprequest(struct ifnet *ifp) { struct sockaddr sa; struct mbuf *m; struct ether_header *eh; struct ether_arp *ea; struct arpcom *ac = (struct arpcom *)ifp; if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) return; m->m_len = sizeof(*ea); m->m_pkthdr.len = sizeof(*ea); m->m_pkthdr.ph_rtableid = ifp->if_rdomain; m->m_pkthdr.pf.prio = ifp->if_llprio; m_align(m, sizeof(*ea)); ea = mtod(m, struct ether_arp *); eh = (struct ether_header *)sa.sa_data; memset(ea, 0, sizeof(*ea)); memcpy(eh->ether_dhost, etherbroadcastaddr, sizeof(eh->ether_dhost)); eh->ether_type = htons(ETHERTYPE_REVARP); ea->arp_hrd = htons(ARPHRD_ETHER); ea->arp_pro = htons(ETHERTYPE_IP); ea->arp_hln = sizeof(ea->arp_sha); /* hardware address length */ ea->arp_pln = sizeof(ea->arp_spa); /* protocol address length */ ea->arp_op = htons(ARPOP_REVREQUEST); memcpy(eh->ether_shost, ac->ac_enaddr, sizeof(ea->arp_tha)); memcpy(ea->arp_sha, ac->ac_enaddr, sizeof(ea->arp_sha)); memcpy(ea->arp_tha, ac->ac_enaddr, sizeof(ea->arp_tha)); sa.sa_family = pseudo_AF_HDRCMPLT; sa.sa_len = sizeof(sa); m->m_flags |= M_BCAST; ifp->if_output(ifp, m, &sa, NULL); } #ifdef NFSCLIENT /* * RARP for the ip address of the specified interface, but also * save the ip address of the server that sent the answer. * Timeout if no response is received. */ int revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in, struct in_addr *clnt_in) { int result, count = 20; if (revarp_finished) return EIO; revarp_ifidx = ifp->if_index; while (count--) { revarprequest(ifp); result = tsleep_nsec(&revarp_myip, PSOCK, "revarp", MSEC_TO_NSEC(500)); if (result != EWOULDBLOCK) break; } revarp_ifidx = 0; if (!revarp_finished) return ENETUNREACH; memcpy(serv_in, &revarp_srvip, sizeof(*serv_in)); memcpy(clnt_in, &revarp_myip, sizeof(*clnt_in)); return 0; } /* For compatibility: only saves interface address. */ int revarpwhoami(struct in_addr *in, struct ifnet *ifp) { struct in_addr server; return (revarpwhoarewe(ifp, &server, in)); } #endif /* NFSCLIENT */