/* $OpenBSD: if_ether.c,v 1.45 2002/06/09 16:26:10 itojun Exp $ */ /* $NetBSD: if_ether.c,v 1.31 1996/05/11 12:59:58 mycroft Exp $ */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.c 8.1 (Berkeley) 6/10/93 */ /* * Ethernet address resolution protocol. * TODO: * add "inuse/lock" bit (or ref. count) along with valid bit */ #ifdef INET #include "bridge.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SIN(s) ((struct sockaddr_in *)s) #define SDL(s) ((struct sockaddr_dl *)s) #define SRP(s) ((struct sockaddr_inarp *)s) /* * ARP trailer negotiation. Trailer protocol is not IP specific, * but ARP request/response use IP addresses. */ #define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL /* timer values */ int arpt_prune = (5*60*1); /* walk list every 5 minutes */ int arpt_keep = (20*60); /* once resolved, good for 20 more minutes */ int arpt_down = 20; /* once declared down, don't send for 20 secs */ #define rt_expire rt_rmx.rmx_expire void arptfree(struct llinfo_arp *); void arptimer(void *); struct llinfo_arp *arplookup(u_int32_t, int, int); void in_arpinput(struct mbuf *); LIST_HEAD(, llinfo_arp) llinfo_arp; struct ifqueue arpintrq = {0, 0, 0, 50}; int arp_inuse, arp_allocated, arp_intimer; int arp_maxtries = 5; int useloopback = 1; /* use loopback interface for local traffic */ int arpinit_done = 0; /* revarp state */ static struct in_addr myip, srv_ip; static int myip_initialized = 0; static int revarp_in_progress = 0; struct ifnet *myip_ifp = NULL; #ifdef DDB #include void db_print_sa(struct sockaddr *); void db_print_ifa(struct ifaddr *); void db_print_llinfo(caddr_t); int db_show_radix_node(struct radix_node *, void *); #endif /* * Timeout routine. Age arp_tab entries periodically. */ /* ARGSUSED */ void arptimer(arg) void *arg; { struct timeout *to = (struct timeout *)arg; int s; struct llinfo_arp *la, *nla; s = splsoftnet(); timeout_add(to, arpt_prune * hz); for (la = LIST_FIRST(&llinfo_arp); la != LIST_END(&llinfo_arp); la = nla) { register struct rtentry *rt = la->la_rt; nla = LIST_NEXT(la, la_list); if (rt->rt_expire && rt->rt_expire <= time.tv_sec) arptfree(la); /* timer has expired; clear */ } splx(s); } /* * Parallel to llc_rtrequest. */ void arp_rtrequest(req, rt, info) int req; register struct rtentry *rt; struct rt_addrinfo *info; { register struct sockaddr *gate = rt->rt_gateway; register struct llinfo_arp *la = (struct llinfo_arp *)rt->rt_llinfo; static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; if (!arpinit_done) { static struct timeout arptimer_to; arpinit_done = 1; /* * We generate expiration times from time.tv_sec * so avoid accidently creating permanent routes. */ if (time.tv_sec == 0) { time.tv_sec++; } timeout_set(&arptimer_to, arptimer, &arptimer_to); timeout_add(&arptimer_to, hz); } if (rt->rt_flags & RTF_GATEWAY) { if (req != RTM_ADD) return; /* * linklayers with particular link MTU limitation. it is a bit * awkward to have FDDI handling here, we should split ARP from * netinet/if_ether.c like NetBSD does. */ switch (rt->rt_ifp->if_type) { case IFT_FDDI: if (rt->rt_ifp->if_mtu > FDDIIPMTU) rt->rt_rmx.rmx_mtu = FDDIIPMTU; break; } return; } switch (req) { case RTM_ADD: /* * XXX: If this is a manually added route to interface * such as older version of routed or gated might provide, * restore cloning bit. */ if ((rt->rt_flags & RTF_HOST) == 0 && SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) rt->rt_flags |= RTF_CLONING; if (rt->rt_flags & RTF_CLONING) { /* * Case 1: This route should come from a route to iface. */ rt_setgate(rt, rt_key(rt), (struct sockaddr *)&null_sdl); gate = rt->rt_gateway; SDL(gate)->sdl_type = rt->rt_ifp->if_type; SDL(gate)->sdl_index = rt->rt_ifp->if_index; /* * Give this route an expiration time, even though * it's a "permanent" route, so that routes cloned * from it do not need their expiration time set. */ rt->rt_expire = time.tv_sec; /* * linklayers with particular link MTU limitation. */ switch (rt->rt_ifp->if_type) { case IFT_FDDI: if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 && (rt->rt_rmx.rmx_mtu > FDDIIPMTU || (rt->rt_rmx.rmx_mtu == 0 && rt->rt_ifp->if_mtu > FDDIIPMTU))) rt->rt_rmx.rmx_mtu = FDDIIPMTU; break; } break; } /* Announce a new entry if requested. */ if (rt->rt_flags & RTF_ANNOUNCE) arprequest(rt->rt_ifp, &SIN(rt_key(rt))->sin_addr.s_addr, &SIN(rt_key(rt))->sin_addr.s_addr, (u_char *)LLADDR(SDL(gate))); /*FALLTHROUGH*/ case RTM_RESOLVE: if (gate->sa_family != AF_LINK || gate->sa_len < sizeof(null_sdl)) { log(LOG_DEBUG, "arp_rtrequest: bad gateway value\n"); break; } SDL(gate)->sdl_type = rt->rt_ifp->if_type; SDL(gate)->sdl_index = rt->rt_ifp->if_index; if (la != 0) break; /* This happens on a route change */ /* * Case 2: This route may come from cloning, or a manual route * add with a LL address. */ R_Malloc(la, struct llinfo_arp *, sizeof(*la)); rt->rt_llinfo = (caddr_t)la; if (la == 0) { log(LOG_DEBUG, "arp_rtrequest: malloc failed\n"); break; } arp_inuse++, arp_allocated++; Bzero(la, sizeof(*la)); la->la_rt = rt; rt->rt_flags |= RTF_LLINFO; LIST_INSERT_HEAD(&llinfo_arp, la, la_list); if (SIN(rt_key(rt))->sin_addr.s_addr == (IA_SIN(rt->rt_ifa))->sin_addr.s_addr) { /* * This test used to be * if (lo0ifp->if_flags & IFF_UP) * It allowed local traffic to be forced through * the hardware by configuring the loopback down. * However, it causes problems during network * configuration for boards that can't receive * packets they send. It is now necessary to clear * "useloopback" and remove the route to force * traffic out to the hardware. */ rt->rt_expire = 0; Bcopy(((struct arpcom *)rt->rt_ifp)->ac_enaddr, LLADDR(SDL(gate)), SDL(gate)->sdl_alen = ETHER_ADDR_LEN); if (useloopback) rt->rt_ifp = lo0ifp; } break; case RTM_DELETE: if (la == 0) break; arp_inuse--; LIST_REMOVE(la, la_list); rt->rt_llinfo = 0; rt->rt_flags &= ~RTF_LLINFO; if (la->la_hold) m_freem(la->la_hold); Free((caddr_t)la); } } /* * Broadcast an ARP request. Caller specifies: * - arp header source ip address * - arp header target ip address * - arp header source ethernet address */ void arprequest(ifp, sip, tip, enaddr) register struct ifnet *ifp; register u_int32_t *sip, *tip; register u_int8_t *enaddr; { register struct mbuf *m; register struct ether_header *eh; register struct ether_arp *ea; struct sockaddr sa; if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) return; m->m_len = sizeof(*ea); m->m_pkthdr.len = sizeof(*ea); MH_ALIGN(m, sizeof(*ea)); ea = mtod(m, struct ether_arp *); eh = (struct ether_header *)sa.sa_data; bzero((caddr_t)ea, sizeof (*ea)); bcopy((caddr_t)etherbroadcastaddr, (caddr_t)eh->ether_dhost, sizeof(eh->ether_dhost)); eh->ether_type = htons(ETHERTYPE_ARP); /* if_output will not swap */ ea->arp_hrd = htons(ARPHRD_ETHER); ea->arp_pro = htons(ETHERTYPE_IP); ea->arp_hln = sizeof(ea->arp_sha); /* hardware address length */ ea->arp_pln = sizeof(ea->arp_spa); /* protocol address length */ ea->arp_op = htons(ARPOP_REQUEST); bcopy((caddr_t)enaddr, (caddr_t)eh->ether_shost, sizeof(eh->ether_shost)); bcopy((caddr_t)enaddr, (caddr_t)ea->arp_sha, sizeof(ea->arp_sha)); bcopy((caddr_t)sip, (caddr_t)ea->arp_spa, sizeof(ea->arp_spa)); bcopy((caddr_t)tip, (caddr_t)ea->arp_tpa, sizeof(ea->arp_tpa)); sa.sa_family = AF_UNSPEC; sa.sa_len = sizeof(sa); (*ifp->if_output)(ifp, m, &sa, (struct rtentry *)0); } /* * Resolve an IP address into an ethernet address. If success, * desten is filled in. If there is no entry in arptab, * set one up and broadcast a request for the IP address. * Hold onto this mbuf and resend it once the address * is finally resolved. A return value of 1 indicates * that desten has been filled in and the packet should be sent * normally; a 0 return indicates that the packet has been * taken over here, either now or for later transmission. */ int arpresolve(ac, rt, m, dst, desten) register struct arpcom *ac; register struct rtentry *rt; struct mbuf *m; register struct sockaddr *dst; register u_char *desten; { register struct llinfo_arp *la; struct sockaddr_dl *sdl; if (m->m_flags & M_BCAST) { /* broadcast */ bcopy((caddr_t)etherbroadcastaddr, (caddr_t)desten, sizeof(etherbroadcastaddr)); return (1); } if (m->m_flags & M_MCAST) { /* multicast */ ETHER_MAP_IP_MULTICAST(&SIN(dst)->sin_addr, desten); return (1); } if (rt) la = (struct llinfo_arp *)rt->rt_llinfo; else { if ((la = arplookup(SIN(dst)->sin_addr.s_addr, 1, 0)) != NULL) rt = la->la_rt; } if (la == 0 || rt == 0) { log(LOG_DEBUG, "arpresolve: can't allocate llinfo\n"); m_freem(m); return (0); } sdl = SDL(rt->rt_gateway); /* * Check the address family and length is valid, the address * is resolved; otherwise, try to resolve. */ if ((rt->rt_expire == 0 || rt->rt_expire > time.tv_sec) && sdl->sdl_family == AF_LINK && sdl->sdl_alen != 0) { bcopy(LLADDR(sdl), desten, sdl->sdl_alen); return 1; } if (((struct ifnet *)ac)->if_flags & IFF_NOARP) return 0; /* * There is an arptab entry, but no ethernet address * response yet. Replace the held mbuf with this * latest one. */ if (la->la_hold) m_freem(la->la_hold); la->la_hold = m; /* * Re-send the ARP request when appropriate. */ #ifdef DIAGNOSTIC if (rt->rt_expire == 0) { /* This should never happen. (Should it? -gwr) */ printf("arpresolve: unresolved and rt_expire == 0\n"); /* Set expiration time to now (expired). */ rt->rt_expire = time.tv_sec; } #endif if (rt->rt_expire) { rt->rt_flags &= ~RTF_REJECT; if (la->la_asked == 0 || rt->rt_expire != time.tv_sec) { rt->rt_expire = time.tv_sec; if (la->la_asked++ < arp_maxtries) arprequest(&ac->ac_if, &(SIN(rt->rt_ifa->ifa_addr)->sin_addr.s_addr), &(SIN(dst)->sin_addr.s_addr), ac->ac_enaddr); else { rt->rt_flags |= RTF_REJECT; rt->rt_expire += arpt_down; la->la_asked = 0; } } } return (0); } /* * Common length and type checks are done here, * then the protocol-specific routine is called. */ void arpintr() { register struct mbuf *m; register struct arphdr *ar; int s, len; while (arpintrq.ifq_head) { s = splimp(); IF_DEQUEUE(&arpintrq, m); splx(s); if (m == 0 || (m->m_flags & M_PKTHDR) == 0) panic("arpintr"); len = sizeof(struct arphdr); if (m->m_len < len && (m = m_pullup(m, len)) == NULL) continue; ar = mtod(m, struct arphdr *); if (ntohs(ar->ar_hrd) != ARPHRD_ETHER) continue; len += 2 * (ar->ar_hln + ar->ar_pln); if (m->m_len < len && (m = m_pullup(m, len)) == NULL) continue; switch (ntohs(ar->ar_pro)) { case ETHERTYPE_IP: case ETHERTYPE_IPTRAILERS: in_arpinput(m); continue; } m_freem(m); } } /* * ARP for Internet protocols on Ethernet. * Algorithm is that given in RFC 826. * In addition, a sanity check is performed on the sender * protocol address, to catch impersonators. * We no longer handle negotiations for use of trailer protocol: * Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent * along with IP replies if we wanted trailers sent to us, * and also sent them in response to IP replies. * This allowed either end to announce the desire to receive * trailer packets. * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, * but formerly didn't normally send requests. */ void in_arpinput(m) struct mbuf *m; { register struct ether_arp *ea; register struct arpcom *ac = (struct arpcom *)m->m_pkthdr.rcvif; struct ether_header *eh; register struct llinfo_arp *la = 0; register struct rtentry *rt; struct in_ifaddr *ia; #if NBRIDGE > 0 struct in_ifaddr *bridge_ia = NULL; #endif struct sockaddr_dl *sdl; struct sockaddr sa; struct in_addr isaddr, itaddr, myaddr; int op; ea = mtod(m, struct ether_arp *); op = ntohs(ea->arp_op); if ((op != ARPOP_REQUEST) && (op != ARPOP_REPLY)) goto out; #if notyet if ((op == ARPOP_REPLY) && (m->m_flags & (M_BCAST|M_MCAST))) { log(LOG_ERR, "arp: received reply to broadcast or multicast address\n"); goto out; } #endif bcopy((caddr_t)ea->arp_tpa, (caddr_t)&itaddr, sizeof(itaddr)); bcopy((caddr_t)ea->arp_spa, (caddr_t)&isaddr, sizeof(isaddr)); TAILQ_FOREACH(ia, &in_ifaddr, ia_list) { if (itaddr.s_addr != ia->ia_addr.sin_addr.s_addr) continue; if (ia->ia_ifp == m->m_pkthdr.rcvif) break; #if NBRIDGE > 0 /* * If the interface we received the packet on * is part of a bridge, check to see if we need * to "bridge" the packet to ourselves at this * layer. Note we still prefer a perfect match, * but allow this weaker match if necessary. */ if (m->m_pkthdr.rcvif->if_bridge != NULL && m->m_pkthdr.rcvif->if_bridge == ia->ia_ifp->if_bridge) bridge_ia = ia; #endif } #if NBRIDGE > 0 if (ia == NULL && bridge_ia != NULL) { ia = bridge_ia; ac = (struct arpcom *)bridge_ia->ia_ifp; } #endif if (ia == NULL) { TAILQ_FOREACH(ia, &in_ifaddr, ia_list) { if (isaddr.s_addr != ia->ia_addr.sin_addr.s_addr) continue; if (ia->ia_ifp == m->m_pkthdr.rcvif) break; } } if (ia == NULL) { struct ifaddr *ifa; TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family == AF_INET) break; } if (ifa) ia = (struct in_ifaddr *)ifa; } if (ia == NULL) goto out; myaddr = ia->ia_addr.sin_addr; if (!bcmp((caddr_t)ea->arp_sha, (caddr_t)ac->ac_enaddr, sizeof (ea->arp_sha))) goto out; /* it's from me, ignore it. */ if (ETHER_IS_MULTICAST (&ea->arp_sha[0])) { if (!bcmp((caddr_t)ea->arp_sha, (caddr_t)etherbroadcastaddr, sizeof (ea->arp_sha))) log(LOG_ERR, "arp: ether address is broadcast for IP address %s!\n", inet_ntoa(isaddr)); else log(LOG_ERR, "arp: ether address is multicast for IP address %s!\n", inet_ntoa(isaddr)); goto out; } if (myaddr.s_addr && isaddr.s_addr == myaddr.s_addr) { log(LOG_ERR, "duplicate IP address %s sent from ethernet address %s\n", inet_ntoa(isaddr), ether_sprintf(ea->arp_sha)); itaddr = myaddr; goto reply; } la = arplookup(isaddr.s_addr, itaddr.s_addr == myaddr.s_addr, 0); if (la && (rt = la->la_rt) && (sdl = SDL(rt->rt_gateway))) { if (sdl->sdl_alen) { if (bcmp((caddr_t)ea->arp_sha, LLADDR(sdl), sdl->sdl_alen)) { if (rt->rt_flags & RTF_PERMANENT_ARP) { log(LOG_WARNING, "arp: attempt to overwrite permanent " "entry for %s by %s on %s\n", inet_ntoa(isaddr), ether_sprintf(ea->arp_sha), ac->ac_if.if_xname); goto out; } else if (rt->rt_ifp != &ac->ac_if) { log(LOG_WARNING, "arp: attempt to overwrite entry for %s " "on %s by %s on %s\n", inet_ntoa(isaddr), rt->rt_ifp->if_xname, ether_sprintf(ea->arp_sha), ac->ac_if.if_xname); goto out; } else { log(LOG_INFO, "arp info overwritten for %s by %s on %s\n", inet_ntoa(isaddr), ether_sprintf(ea->arp_sha), ac->ac_if.if_xname); rt->rt_expire = 1; /* no longer static */ } } } else if (rt->rt_ifp != &ac->ac_if && !(ac->ac_if.if_bridge && (rt->rt_ifp->if_bridge == ac->ac_if.if_bridge))) { log(LOG_WARNING, "arp: attempt to add entry for %s " "on %s by %s on %s\n", inet_ntoa(isaddr), rt->rt_ifp->if_xname, ether_sprintf(ea->arp_sha), ac->ac_if.if_xname); goto out; } bcopy((caddr_t)ea->arp_sha, LLADDR(sdl), sdl->sdl_alen = sizeof(ea->arp_sha)); if (rt->rt_expire) rt->rt_expire = time.tv_sec + arpt_keep; rt->rt_flags &= ~RTF_REJECT; la->la_asked = 0; if (la->la_hold) { (*ac->ac_if.if_output)(&ac->ac_if, la->la_hold, rt_key(rt), rt); la->la_hold = 0; } } reply: if (op != ARPOP_REQUEST) { out: m_freem(m); return; } if (itaddr.s_addr == myaddr.s_addr) { /* I am the target */ bcopy((caddr_t)ea->arp_sha, (caddr_t)ea->arp_tha, sizeof(ea->arp_sha)); bcopy((caddr_t)ac->ac_enaddr, (caddr_t)ea->arp_sha, sizeof(ea->arp_sha)); } else { la = arplookup(itaddr.s_addr, 0, SIN_PROXY); if (la == 0) goto out; rt = la->la_rt; bcopy((caddr_t)ea->arp_sha, (caddr_t)ea->arp_tha, sizeof(ea->arp_sha)); sdl = SDL(rt->rt_gateway); bcopy(LLADDR(sdl), (caddr_t)ea->arp_sha, sizeof(ea->arp_sha)); } bcopy((caddr_t)ea->arp_spa, (caddr_t)ea->arp_tpa, sizeof(ea->arp_spa)); bcopy((caddr_t)&itaddr, (caddr_t)ea->arp_spa, sizeof(ea->arp_spa)); ea->arp_op = htons(ARPOP_REPLY); ea->arp_pro = htons(ETHERTYPE_IP); /* let's be sure! */ eh = (struct ether_header *)sa.sa_data; bcopy((caddr_t)ea->arp_tha, (caddr_t)eh->ether_dhost, sizeof(eh->ether_dhost)); bcopy((caddr_t)ac->ac_enaddr, (caddr_t)eh->ether_shost, sizeof(eh->ether_shost)); eh->ether_type = htons(ETHERTYPE_ARP); sa.sa_family = AF_UNSPEC; sa.sa_len = sizeof(sa); (*ac->ac_if.if_output)(&ac->ac_if, m, &sa, (struct rtentry *)0); return; } /* * Free an arp entry. */ void arptfree(la) register struct llinfo_arp *la; { register struct rtentry *rt = la->la_rt; register struct sockaddr_dl *sdl; if (rt == 0) panic("arptfree"); if (rt->rt_refcnt > 0 && (sdl = SDL(rt->rt_gateway)) && sdl->sdl_family == AF_LINK) { sdl->sdl_alen = 0; la->la_asked = 0; rt->rt_flags &= ~RTF_REJECT; return; } rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, rt_mask(rt), 0, (struct rtentry **)0); } /* * Lookup or enter a new address in arptab. */ struct llinfo_arp * arplookup(addr, create, proxy) u_int32_t addr; int create, proxy; { register struct rtentry *rt; static struct sockaddr_inarp sin; sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; sin.sin_addr.s_addr = addr; sin.sin_other = proxy ? SIN_PROXY : 0; rt = rtalloc1(sintosa(&sin), create); if (rt == 0) return (0); rt->rt_refcnt--; if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || rt->rt_gateway->sa_family != AF_LINK) { if (create) log(LOG_DEBUG, "arplookup: unable to enter address for %s\n", inet_ntoa(sin.sin_addr)); return (0); } return ((struct llinfo_arp *)rt->rt_llinfo); } int arpioctl(cmd, data) u_long cmd; caddr_t data; { return (EOPNOTSUPP); } void arp_ifinit(ac, ifa) struct arpcom *ac; struct ifaddr *ifa; { /* Warn the user if another station has this IP address. */ arprequest(&ac->ac_if, &(IA_SIN(ifa)->sin_addr.s_addr), &(IA_SIN(ifa)->sin_addr.s_addr), ac->ac_enaddr); ifa->ifa_rtrequest = arp_rtrequest; ifa->ifa_flags |= RTF_CLONING; } /* * Called from Ethernet interrupt handlers * when ether packet type ETHERTYPE_REVARP * is received. Common length and type checks are done here, * then the protocol-specific routine is called. */ void revarpinput(m) struct mbuf *m; { struct arphdr *ar; if (m->m_len < sizeof(struct arphdr)) goto out; ar = mtod(m, struct arphdr *); if (ntohs(ar->ar_hrd) != ARPHRD_ETHER) goto out; if (m->m_len < sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln)) goto out; switch (ntohs(ar->ar_pro)) { case ETHERTYPE_IP: case ETHERTYPE_IPTRAILERS: in_revarpinput(m); return; default: break; } out: m_freem(m); } /* * RARP for Internet protocols on Ethernet. * Algorithm is that given in RFC 903. * We are only using for bootstrap purposes to get an ip address for one of * our interfaces. Thus we support no user-interface. * * Since the contents of the RARP reply are specific to the interface that * sent the request, this code must ensure that they are properly associated. * * Note: also supports ARP via RARP packets, per the RFC. */ void in_revarpinput(m) struct mbuf *m; { struct ifnet *ifp; struct ether_arp *ar; int op; ar = mtod(m, struct ether_arp *); op = ntohs(ar->arp_op); switch (op) { case ARPOP_REQUEST: case ARPOP_REPLY: /* per RFC */ in_arpinput(m); return; case ARPOP_REVREPLY: break; case ARPOP_REVREQUEST: /* handled by rarpd(8) */ default: goto out; } if (!revarp_in_progress) goto out; ifp = m->m_pkthdr.rcvif; if (ifp != myip_ifp) /* !same interface */ goto out; if (myip_initialized) goto wake; if (bcmp(ar->arp_tha, ((struct arpcom *)ifp)->ac_enaddr, sizeof(ar->arp_tha))) goto out; bcopy((caddr_t)ar->arp_spa, (caddr_t)&srv_ip, sizeof(srv_ip)); bcopy((caddr_t)ar->arp_tpa, (caddr_t)&myip, sizeof(myip)); myip_initialized = 1; wake: /* Do wakeup every time in case it was missed. */ wakeup((caddr_t)&myip); out: m_freem(m); } /* * Send a RARP request for the ip address of the specified interface. * The request should be RFC 903-compliant. */ void revarprequest(ifp) struct ifnet *ifp; { struct sockaddr sa; struct mbuf *m; struct ether_header *eh; struct ether_arp *ea; struct arpcom *ac = (struct arpcom *)ifp; if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL) return; m->m_len = sizeof(*ea); m->m_pkthdr.len = sizeof(*ea); MH_ALIGN(m, sizeof(*ea)); ea = mtod(m, struct ether_arp *); eh = (struct ether_header *)sa.sa_data; bzero((caddr_t)ea, sizeof(*ea)); bcopy((caddr_t)etherbroadcastaddr, (caddr_t)eh->ether_dhost, sizeof(eh->ether_dhost)); eh->ether_type = htons(ETHERTYPE_REVARP); ea->arp_hrd = htons(ARPHRD_ETHER); ea->arp_pro = htons(ETHERTYPE_IP); ea->arp_hln = sizeof(ea->arp_sha); /* hardware address length */ ea->arp_pln = sizeof(ea->arp_spa); /* protocol address length */ ea->arp_op = htons(ARPOP_REVREQUEST); bcopy((caddr_t)ac->ac_enaddr, (caddr_t)eh->ether_shost, sizeof(ea->arp_tha)); bcopy((caddr_t)ac->ac_enaddr, (caddr_t)ea->arp_sha, sizeof(ea->arp_sha)); bcopy((caddr_t)ac->ac_enaddr, (caddr_t)ea->arp_tha, sizeof(ea->arp_tha)); sa.sa_family = AF_UNSPEC; sa.sa_len = sizeof(sa); ifp->if_output(ifp, m, &sa, (struct rtentry *)0); } /* * RARP for the ip address of the specified interface, but also * save the ip address of the server that sent the answer. * Timeout if no response is received. */ int revarpwhoarewe(ifp, serv_in, clnt_in) struct ifnet *ifp; struct in_addr *serv_in; struct in_addr *clnt_in; { int result, count = 20; if (myip_initialized) return EIO; myip_ifp = ifp; revarp_in_progress = 1; while (count--) { revarprequest(ifp); result = tsleep((caddr_t)&myip, PSOCK, "revarp", hz/2); if (result != EWOULDBLOCK) break; } revarp_in_progress = 0; if (!myip_initialized) return ENETUNREACH; bcopy((caddr_t)&srv_ip, serv_in, sizeof(*serv_in)); bcopy((caddr_t)&myip, clnt_in, sizeof(*clnt_in)); return 0; } /* For compatibility: only saves interface address. */ int revarpwhoami(in, ifp) struct in_addr *in; struct ifnet *ifp; { struct in_addr server; return (revarpwhoarewe(ifp, &server, in)); } #ifdef DDB #include #include #include void db_print_sa(sa) struct sockaddr *sa; { int len; u_char *p; if (sa == 0) { db_printf("[NULL]"); return; } p = (u_char *)sa; len = sa->sa_len; db_printf("["); while (len > 0) { db_printf("%d", *p); p++; len--; if (len) db_printf(","); } db_printf("]\n"); } void db_print_ifa(ifa) struct ifaddr *ifa; { if (ifa == 0) return; db_printf(" ifa_addr="); db_print_sa(ifa->ifa_addr); db_printf(" ifa_dsta="); db_print_sa(ifa->ifa_dstaddr); db_printf(" ifa_mask="); db_print_sa(ifa->ifa_netmask); db_printf(" flags=0x%x, refcnt=%d, metric=%d\n", ifa->ifa_flags, ifa->ifa_refcnt, ifa->ifa_metric); } void db_print_llinfo(li) caddr_t li; { struct llinfo_arp *la; if (li == 0) return; la = (struct llinfo_arp *)li; db_printf(" la_rt=%p la_hold=%p, la_asked=0x%lx\n", la->la_rt, la->la_hold, la->la_asked); } /* * Function to pass to rn_walktree(). * Return non-zero error to abort walk. */ int db_show_radix_node(rn, w) struct radix_node *rn; void *w; { struct rtentry *rt = (struct rtentry *)rn; db_printf("rtentry=%p", rt); db_printf(" flags=0x%x refcnt=%d use=%ld expire=%ld\n", rt->rt_flags, rt->rt_refcnt, rt->rt_use, rt->rt_expire); db_printf(" key="); db_print_sa(rt_key(rt)); db_printf(" mask="); db_print_sa(rt_mask(rt)); db_printf(" gw="); db_print_sa(rt->rt_gateway); db_printf(" ifp=%p ", rt->rt_ifp); if (rt->rt_ifp) db_printf("(%s)", rt->rt_ifp->if_xname); else db_printf("(NULL)"); db_printf(" ifa=%p\n", rt->rt_ifa); db_print_ifa(rt->rt_ifa); db_printf(" genmask="); db_print_sa(rt->rt_genmask); db_printf(" gwroute=%p llinfo=%p\n", rt->rt_gwroute, rt->rt_llinfo); db_print_llinfo(rt->rt_llinfo); return (0); } /* * Function to print all the route trees. * Use this from ddb: "call db_show_arptab" */ int db_show_arptab() { struct radix_node_head *rnh; rnh = rt_tables[AF_INET]; db_printf("Route tree for AF_INET\n"); if (rnh == NULL) { db_printf(" (not initialized)\n"); return (0); } rn_walktree(rnh, db_show_radix_node, NULL); return (0); } #endif #endif /* INET */