/* $OpenBSD: if_ether.h,v 1.69 2016/03/16 11:48:27 dlg Exp $ */ /* $NetBSD: if_ether.h,v 1.22 1996/05/11 13:00:00 mycroft Exp $ */ /* * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.h 8.1 (Berkeley) 6/10/93 */ #ifndef _NETINET_IF_ETHER_H_ #define _NETINET_IF_ETHER_H_ /* * Some basic Ethernet constants. */ #define ETHER_ADDR_LEN 6 /* Ethernet address length */ #define ETHER_TYPE_LEN 2 /* Ethernet type field length */ #define ETHER_CRC_LEN 4 /* Ethernet CRC length */ #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN) #define ETHER_MIN_LEN 64 /* Minimum frame length, CRC included */ #define ETHER_MAX_LEN 1518 /* Maximum frame length, CRC included */ #define ETHER_MAX_DIX_LEN 1536 /* Maximum DIX frame length */ /* * Some Ethernet extensions. */ #define ETHER_VLAN_ENCAP_LEN 4 /* len of 802.1Q VLAN encapsulation */ /* * Mbuf adjust factor to force 32-bit alignment of IP header. * Drivers should do m_adj(m, ETHER_ALIGN) when setting up a * receive so the upper layers get the IP header properly aligned * past the 14-byte Ethernet header. */ #define ETHER_ALIGN 2 /* driver adjust for IP hdr alignment */ /* * Ethernet address - 6 octets */ struct ether_addr { u_int8_t ether_addr_octet[ETHER_ADDR_LEN]; }; /* * The length of the combined header. */ struct ether_header { u_int8_t ether_dhost[ETHER_ADDR_LEN]; u_int8_t ether_shost[ETHER_ADDR_LEN]; u_int16_t ether_type; }; /* * VLAN headers. */ struct ether_vlan_header { u_char evl_dhost[ETHER_ADDR_LEN]; u_char evl_shost[ETHER_ADDR_LEN]; u_int16_t evl_encap_proto; u_int16_t evl_tag; u_int16_t evl_proto; }; #define EVL_VLID_MASK 0xFFF #define EVL_VLID_NULL 0x000 /* 0x000 and 0xfff are reserved */ #define EVL_VLID_MIN 0x001 #define EVL_VLID_MAX 0xFFE #define EVL_VLANOFTAG(tag) ((tag) & EVL_VLID_MASK) #define EVL_PRIO_MAX 7 #define EVL_PRIO_BITS 13 #define EVL_PRIOFTAG(tag) (((tag) >> EVL_PRIO_BITS) & 7) #define EVL_ENCAPLEN 4 /* length in octets of encapsulation */ #include #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */ #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) /* * Ethernet CRC32 polynomials (big- and little-endian verions). */ #define ETHER_CRC_POLY_LE 0xedb88320 #define ETHER_CRC_POLY_BE 0x04c11db6 /* * Ethernet Address Resolution Protocol. * * See RFC 826 for protocol description. Structure below is adapted * to resolving internet addresses. Field names used correspond to * RFC 826. */ struct ether_arp { struct arphdr ea_hdr; /* fixed-size header */ u_int8_t arp_sha[ETHER_ADDR_LEN]; /* sender hardware address */ u_int8_t arp_spa[4]; /* sender protocol address */ u_int8_t arp_tha[ETHER_ADDR_LEN]; /* target hardware address */ u_int8_t arp_tpa[4]; /* target protocol address */ }; #define arp_hrd ea_hdr.ar_hrd #define arp_pro ea_hdr.ar_pro #define arp_hln ea_hdr.ar_hln #define arp_pln ea_hdr.ar_pln #define arp_op ea_hdr.ar_op struct sockaddr_inarp { u_int8_t sin_len; u_int8_t sin_family; u_int16_t sin_port; struct in_addr sin_addr; struct in_addr sin_srcaddr; u_int16_t sin_tos; u_int16_t sin_other; #define SIN_PROXY 1 }; /* * IP and ethernet specific routing flags */ #define RTF_USETRAILERS RTF_PROTO1 /* use trailers */ #define RTF_ANNOUNCE RTF_PROTO2 /* announce new arp entry */ #define RTF_PERMANENT_ARP RTF_PROTO3 /* only manual overwrite of entry */ #ifdef _KERNEL /* * Macro to map an IP multicast address to an Ethernet multicast address. * The high-order 25 bits of the Ethernet address are statically assigned, * and the low-order 23 bits are taken from the low end of the IP address. */ #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \ /* struct in_addr *ipaddr; */ \ /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ do { \ (enaddr)[0] = 0x01; \ (enaddr)[1] = 0x00; \ (enaddr)[2] = 0x5e; \ (enaddr)[3] = ((u_int8_t *)ipaddr)[1] & 0x7f; \ (enaddr)[4] = ((u_int8_t *)ipaddr)[2]; \ (enaddr)[5] = ((u_int8_t *)ipaddr)[3]; \ } while (/* CONSTCOND */ 0) /* * Macro to map an IPv6 multicast address to an Ethernet multicast address. * The high-order 16 bits of the Ethernet address are statically assigned, * and the low-order 32 bits are taken from the low end of the IPv6 address. */ #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \ /* struct in6_addr *ip6addr; */ \ /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ do { \ (enaddr)[0] = 0x33; \ (enaddr)[1] = 0x33; \ (enaddr)[2] = ((u_int8_t *)ip6addr)[12]; \ (enaddr)[3] = ((u_int8_t *)ip6addr)[13]; \ (enaddr)[4] = ((u_int8_t *)ip6addr)[14]; \ (enaddr)[5] = ((u_int8_t *)ip6addr)[15]; \ } while (/* CONSTCOND */ 0) #include /* for "struct ifnet" */ /* * Structure shared between the ethernet driver modules and * the address resolution code. For example, each ec_softc or il_softc * begins with this structure. */ struct arpcom { struct ifnet ac_if; /* network-visible interface */ u_int8_t ac_enaddr[ETHER_ADDR_LEN]; /* ethernet hardware address */ char ac__pad[2]; /* pad for some machines */ LIST_HEAD(, ether_multi) ac_multiaddrs; /* list of multicast addrs */ int ac_multicnt; /* length of ac_multiaddrs */ int ac_multirangecnt; /* number of mcast ranges */ }; extern u_int8_t etherbroadcastaddr[ETHER_ADDR_LEN]; extern u_int8_t etheranyaddr[ETHER_ADDR_LEN]; extern u_int8_t ether_ipmulticast_min[ETHER_ADDR_LEN]; extern u_int8_t ether_ipmulticast_max[ETHER_ADDR_LEN]; #ifdef NFSCLIENT extern unsigned int revarp_ifidx; #endif /* NFSCLIENT */ void revarpinput(struct mbuf *); void revarprequest(struct ifnet *); int revarpwhoarewe(struct ifnet *, struct in_addr *, struct in_addr *); int revarpwhoami(struct in_addr *, struct ifnet *); void arpinput(struct mbuf *); void arprequest(struct ifnet *, u_int32_t *, u_int32_t *, u_int8_t *); void arpwhohas(struct arpcom *, struct in_addr *); int arpproxy(struct in_addr, unsigned int); int arpresolve(struct ifnet *, struct rtentry *, struct mbuf *, struct sockaddr *, u_char *); void arp_rtrequest(struct ifnet *, int, struct rtentry *); void ether_fakeaddr(struct ifnet *); int ether_addmulti(struct ifreq *, struct arpcom *); int ether_delmulti(struct ifreq *, struct arpcom *); int ether_multiaddr(struct sockaddr *, u_int8_t[], u_int8_t[]); void ether_ifattach(struct ifnet *); void ether_ifdetach(struct ifnet *); int ether_ioctl(struct ifnet *, struct arpcom *, u_long, caddr_t); int ether_input(struct ifnet *, struct mbuf *, void *); int ether_output(struct ifnet *, struct mbuf *, struct sockaddr *, struct rtentry *); void ether_rtrequest(struct ifnet *, int, struct rtentry *); char *ether_sprintf(u_char *); /* * Ethernet multicast address structure. There is one of these for each * multicast address or range of multicast addresses that we are supposed * to listen to on a particular interface. They are kept in a linked list, * rooted in the interface's arpcom structure. (This really has nothing to * do with ARP, or with the Internet address family, but this appears to be * the minimally-disrupting place to put it.) */ struct ether_multi { u_int8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */ u_int8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */ u_int enm_refcount; /* no. claims to this addr/range */ LIST_ENTRY(ether_multi) enm_list; }; /* * Structure used by macros below to remember position when stepping through * all of the ether_multi records. */ struct ether_multistep { struct ether_multi *e_enm; }; /* * Macro for looking up the ether_multi record for a given range of Ethernet * multicast addresses connected to a given arpcom structure. If no matching * record is found, "enm" returns NULL. */ #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \ /* u_int8_t addrlo[ETHER_ADDR_LEN]; */ \ /* u_int8_t addrhi[ETHER_ADDR_LEN]; */ \ /* struct arpcom *ac; */ \ /* struct ether_multi *enm; */ \ do { \ for ((enm) = LIST_FIRST(&(ac)->ac_multiaddrs); \ (enm) != NULL && \ (memcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 ||\ memcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \ (enm) = LIST_NEXT((enm), enm_list)); \ } while (/* CONSTCOND */ 0) /* * Macro to step through all of the ether_multi records, one at a time. * The current position is remembered in "step", which the caller must * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step" * and get the first record. Both macros return a NULL "enm" when there * are no remaining records. */ #define ETHER_NEXT_MULTI(step, enm) \ /* struct ether_multistep step; */ \ /* struct ether_multi *enm; */ \ do { \ if (((enm) = (step).e_enm) != NULL) \ (step).e_enm = LIST_NEXT((enm), enm_list); \ } while (/* CONSTCOND */ 0) #define ETHER_FIRST_MULTI(step, ac, enm) \ /* struct ether_multistep step; */ \ /* struct arpcom *ac; */ \ /* struct ether_multi *enm; */ \ do { \ (step).e_enm = LIST_FIRST(&(ac)->ac_multiaddrs); \ ETHER_NEXT_MULTI((step), (enm)); \ } while (/* CONSTCOND */ 0) u_int32_t ether_crc32_le_update(u_int32_t crc, const u_int8_t *, size_t); u_int32_t ether_crc32_be_update(u_int32_t crc, const u_int8_t *, size_t); u_int32_t ether_crc32_le(const u_int8_t *, size_t); u_int32_t ether_crc32_be(const u_int8_t *, size_t); #else /* _KERNEL */ __BEGIN_DECLS char *ether_ntoa(struct ether_addr *); struct ether_addr *ether_aton(const char *); int ether_ntohost(char *, struct ether_addr *); int ether_hostton(const char *, struct ether_addr *); int ether_line(const char *, struct ether_addr *, char *); __END_DECLS #endif /* _KERNEL */ #endif /* _NETINET_IF_ETHER_H_ */