/* $OpenBSD: in.c,v 1.160 2018/07/11 21:18:23 nayden Exp $ */ /* $NetBSD: in.c,v 1.26 1996/02/13 23:41:39 christos Exp $ */ /* * Copyright (C) 2001 WIDE Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.2 (Berkeley) 11/15/93 */ #include #include #include #include #include #include #include #include #include #include #include #include #ifdef MROUTING #include #endif #include "ether.h" void in_socktrim(struct sockaddr_in *); int in_ioctl_sifaddr(u_long, caddr_t, struct ifnet *, int); int in_ioctl_change_ifaddr(u_long, caddr_t, struct ifnet *, int); int in_ioctl_get(u_long, caddr_t, struct ifnet *); void in_purgeaddr(struct ifaddr *); int in_addhost(struct in_ifaddr *, struct sockaddr_in *); int in_scrubhost(struct in_ifaddr *, struct sockaddr_in *); int in_insert_prefix(struct in_ifaddr *); void in_remove_prefix(struct in_ifaddr *); /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(struct in_addr in) { u_int32_t net; if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr)) return (0); if (IN_CLASSA(in.s_addr)) { net = in.s_addr & IN_CLASSA_NET; if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT)) return (0); } return (1); } /* * Trim a mask in a sockaddr */ void in_socktrim(struct sockaddr_in *ap) { char *cplim = (char *) &ap->sin_addr; char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } int in_mask2len(struct in_addr *mask) { int x, y; u_char *p; p = (u_char *)mask; for (x = 0; x < sizeof(*mask); x++) { if (p[x] != 0xff) break; } y = 0; if (x < sizeof(*mask)) { for (y = 0; y < 8; y++) { if ((p[x] & (0x80 >> y)) == 0) break; } } return x * 8 + y; } void in_len2mask(struct in_addr *mask, int len) { int i; u_char *p; p = (u_char *)mask; bzero(mask, sizeof(*mask)); for (i = 0; i < len / 8; i++) p[i] = 0xff; if (len % 8) p[i] = (0xff00 >> (len % 8)) & 0xff; } int in_nam2sin(const struct mbuf *nam, struct sockaddr_in **sin) { struct sockaddr *sa = mtod(nam, struct sockaddr *); if (nam->m_len < offsetof(struct sockaddr, sa_data)) return EINVAL; if (sa->sa_family != AF_INET) return EAFNOSUPPORT; if (sa->sa_len != nam->m_len) return EINVAL; if (sa->sa_len != sizeof(struct sockaddr_in)) return EINVAL; *sin = satosin(sa); return 0; } int in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp) { int privileged; int error; privileged = 0; if ((so->so_state & SS_PRIV) != 0) privileged++; switch (cmd) { #ifdef MROUTING case SIOCGETVIFCNT: case SIOCGETSGCNT: error = mrt_ioctl(so, cmd, data); break; #endif /* MROUTING */ default: error = in_ioctl(cmd, data, ifp, privileged); break; } return error; } int in_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, int privileged) { struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa; struct in_ifaddr *ia = NULL; struct sockaddr_in oldaddr; int error = 0; if (ifp == NULL) return (ENXIO); switch (cmd) { case SIOCGIFADDR: case SIOCGIFNETMASK: case SIOCGIFDSTADDR: case SIOCGIFBRDADDR: return in_ioctl_get(cmd, data, ifp); case SIOCSIFADDR: return in_ioctl_sifaddr(cmd, data, ifp, privileged); case SIOCAIFADDR: case SIOCDIFADDR: return in_ioctl_change_ifaddr(cmd, data, ifp, privileged); case SIOCSIFNETMASK: case SIOCSIFDSTADDR: case SIOCSIFBRDADDR: break; default: return (EOPNOTSUPP); } NET_LOCK(); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family == AF_INET) { ia = ifatoia(ifa); break; } } if (ia && satosin(&ifr->ifr_addr)->sin_addr.s_addr) { for (; ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) { if ((ifa->ifa_addr->sa_family == AF_INET) && ifatoia(ifa)->ia_addr.sin_addr.s_addr == satosin(&ifr->ifr_addr)->sin_addr.s_addr) { ia = ifatoia(ifa); break; } } } if (ia == NULL) { NET_UNLOCK(); return (EADDRNOTAVAIL); } switch (cmd) { case SIOCSIFDSTADDR: if (!privileged) { error = EPERM; break; } if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; break; } oldaddr = ia->ia_dstaddr; ia->ia_dstaddr = *satosin(&ifr->ifr_dstaddr); error = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, (caddr_t)ia); if (error) { ia->ia_dstaddr = oldaddr; break; } in_scrubhost(ia, &oldaddr); in_addhost(ia, &ia->ia_dstaddr); break; case SIOCSIFBRDADDR: if (!privileged) { error = EPERM; break; } if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; break; } ifa_update_broadaddr(ifp, &ia->ia_ifa, &ifr->ifr_broadaddr); break; case SIOCSIFNETMASK: if (!privileged) { error = EPERM; break; } ia->ia_netmask = ia->ia_sockmask.sin_addr.s_addr = satosin(&ifr->ifr_addr)->sin_addr.s_addr; break; } NET_UNLOCK(); return (error); } int in_ioctl_sifaddr(u_long cmd, caddr_t data, struct ifnet *ifp, int privileged) { struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa; struct in_ifaddr *ia = NULL; int error = 0; int newifaddr; if (cmd != SIOCSIFADDR) panic("%s: invalid ioctl %lu", __func__, cmd); if (!privileged) return (EPERM); NET_LOCK(); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family == AF_INET) { ia = ifatoia(ifa); break; } } if (ia == NULL) { ia = malloc(sizeof *ia, M_IFADDR, M_WAITOK | M_ZERO); ia->ia_addr.sin_family = AF_INET; ia->ia_addr.sin_len = sizeof(ia->ia_addr); ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask); ia->ia_sockmask.sin_len = 8; if (ifp->if_flags & IFF_BROADCAST) { ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr); ia->ia_broadaddr.sin_family = AF_INET; } ia->ia_ifp = ifp; newifaddr = 1; } else newifaddr = 0; in_ifscrub(ifp, ia); error = in_ifinit(ifp, ia, satosin(&ifr->ifr_addr), newifaddr); if (!error) dohooks(ifp->if_addrhooks, 0); NET_UNLOCK(); return error; } int in_ioctl_change_ifaddr(u_long cmd, caddr_t data, struct ifnet *ifp, int privileged) { struct ifaddr *ifa; struct in_ifaddr *ia = NULL; struct in_aliasreq *ifra = (struct in_aliasreq *)data; int error = 0; int newifaddr; NET_LOCK(); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family == AF_INET) { ia = ifatoia(ifa); break; } } if (ifra->ifra_addr.sin_family == AF_INET) { for (; ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) { if ((ifa->ifa_addr->sa_family == AF_INET) && ifatoia(ifa)->ia_addr.sin_addr.s_addr == ifra->ifra_addr.sin_addr.s_addr) break; } ia = ifatoia(ifa); } switch (cmd) { case SIOCAIFADDR: { int needinit = 0; if (!privileged) { error = EPERM; break; } if (ia == NULL) { ia = malloc(sizeof *ia, M_IFADDR, M_WAITOK | M_ZERO); ia->ia_addr.sin_family = AF_INET; ia->ia_addr.sin_len = sizeof(ia->ia_addr); ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask); ia->ia_sockmask.sin_len = 8; if (ifp->if_flags & IFF_BROADCAST) { ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr); ia->ia_broadaddr.sin_family = AF_INET; } ia->ia_ifp = ifp; newifaddr = 1; } else newifaddr = 0; if (ia->ia_addr.sin_family == AF_INET) { if (ifra->ifra_addr.sin_len == 0) ifra->ifra_addr = ia->ia_addr; else if (ifra->ifra_addr.sin_addr.s_addr != ia->ia_addr.sin_addr.s_addr || newifaddr) needinit = 1; } if (ifra->ifra_mask.sin_len) { in_ifscrub(ifp, ia); ia->ia_sockmask = ifra->ifra_mask; ia->ia_netmask = ia->ia_sockmask.sin_addr.s_addr; needinit = 1; } if ((ifp->if_flags & IFF_POINTOPOINT) && (ifra->ifra_dstaddr.sin_family == AF_INET)) { in_ifscrub(ifp, ia); ia->ia_dstaddr = ifra->ifra_dstaddr; needinit = 1; } if ((ifp->if_flags & IFF_BROADCAST) && (ifra->ifra_broadaddr.sin_family == AF_INET)) { if (newifaddr) ia->ia_broadaddr = ifra->ifra_broadaddr; else ifa_update_broadaddr(ifp, &ia->ia_ifa, sintosa(&ifra->ifra_broadaddr)); } if (ifra->ifra_addr.sin_family == AF_INET && needinit) { error = in_ifinit(ifp, ia, &ifra->ifra_addr, newifaddr); } if (error) break; dohooks(ifp->if_addrhooks, 0); break; } case SIOCDIFADDR: if (!privileged) { error = EPERM; break; } if (ia == NULL) { error = EADDRNOTAVAIL; break; } /* * Even if the individual steps were safe, shouldn't * these kinds of changes happen atomically? What * should happen to a packet that was routed after * the scrub but before the other steps? */ in_purgeaddr(&ia->ia_ifa); dohooks(ifp->if_addrhooks, 0); break; default: panic("%s: invalid ioctl %lu", __func__, cmd); } NET_UNLOCK(); return (error); } int in_ioctl_get(u_long cmd, caddr_t data, struct ifnet *ifp) { struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa; struct in_ifaddr *ia = NULL; int error = 0; NET_RLOCK(); TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family == AF_INET) { ia = ifatoia(ifa); break; } } if (ia && satosin(&ifr->ifr_addr)->sin_addr.s_addr) { for (; ifa != NULL; ifa = TAILQ_NEXT(ifa, ifa_list)) { if ((ifa->ifa_addr->sa_family == AF_INET) && ifatoia(ifa)->ia_addr.sin_addr.s_addr == satosin(&ifr->ifr_addr)->sin_addr.s_addr) { ia = ifatoia(ifa); break; } } } if (ia == NULL) { error = EADDRNOTAVAIL; goto err; } switch(cmd) { case SIOCGIFADDR: *satosin(&ifr->ifr_addr) = ia->ia_addr; break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; break; } *satosin(&ifr->ifr_dstaddr) = ia->ia_broadaddr; break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; break; } *satosin(&ifr->ifr_dstaddr) = ia->ia_dstaddr; break; case SIOCGIFNETMASK: *satosin(&ifr->ifr_addr) = ia->ia_sockmask; break; default: panic("%s: invalid ioctl %lu", __func__, cmd); } err: NET_RUNLOCK(); return (error); } /* * Delete any existing route for an interface. */ void in_ifscrub(struct ifnet *ifp, struct in_ifaddr *ia) { if (ISSET(ifp->if_flags, IFF_POINTOPOINT)) in_scrubhost(ia, &ia->ia_dstaddr); else if (!ISSET(ifp->if_flags, IFF_LOOPBACK)) in_remove_prefix(ia); } /* * Initialize an interface's internet address * and routing table entry. */ int in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia, struct sockaddr_in *sin, int newaddr) { u_int32_t i = sin->sin_addr.s_addr; struct sockaddr_in oldaddr; int error = 0, rterror; NET_ASSERT_LOCKED(); /* * Always remove the address from the tree to make sure its * position gets updated in case the key changes. */ if (!newaddr) { rt_ifa_dellocal(&ia->ia_ifa); ifa_del(ifp, &ia->ia_ifa); } oldaddr = ia->ia_addr; ia->ia_addr = *sin; if (ia->ia_netmask == 0) { if (IN_CLASSA(i)) ia->ia_netmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_netmask = IN_CLASSB_NET; else ia->ia_netmask = IN_CLASSC_NET; ia->ia_sockmask.sin_addr.s_addr = ia->ia_netmask; } /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ if ((error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { ia->ia_addr = oldaddr; } /* * Add the address to the local list and the global tree. If an * error occured, put back the original address. */ ifa_add(ifp, &ia->ia_ifa); rterror = rt_ifa_addlocal(&ia->ia_ifa); if (rterror) { if (!newaddr) ifa_del(ifp, &ia->ia_ifa); if (!error) error = rterror; goto out; } if (error) goto out; ia->ia_net = i & ia->ia_netmask; in_socktrim(&ia->ia_sockmask); /* * Add route for the network. */ ia->ia_ifa.ifa_metric = ifp->if_metric; if (ISSET(ifp->if_flags, IFF_BROADCAST)) { if (IN_RFC3021_SUBNET(ia->ia_netmask)) ia->ia_broadaddr.sin_addr.s_addr = 0; else { ia->ia_broadaddr.sin_addr.s_addr = ia->ia_net | ~ia->ia_netmask; } } if (ISSET(ifp->if_flags, IFF_POINTOPOINT)) { /* XXX We should not even call in_ifinit() in this case. */ if (ia->ia_dstaddr.sin_family != AF_INET) goto out; error = in_addhost(ia, &ia->ia_dstaddr); } else if (!ISSET(ifp->if_flags, IFF_LOOPBACK)) { error = in_insert_prefix(ia); } /* * If the interface supports multicast, join the "all hosts" * multicast group on that interface. */ if ((ifp->if_flags & IFF_MULTICAST) && ia->ia_allhosts == NULL) { struct in_addr addr; addr.s_addr = INADDR_ALLHOSTS_GROUP; ia->ia_allhosts = in_addmulti(&addr, ifp); } out: if (error && newaddr) in_purgeaddr(&ia->ia_ifa); return (error); } void in_purgeaddr(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct in_ifaddr *ia = ifatoia(ifa); extern int ifatrash; NET_ASSERT_LOCKED(); in_ifscrub(ifp, ia); rt_ifa_dellocal(&ia->ia_ifa); rt_ifa_purge(&ia->ia_ifa); ifa_del(ifp, &ia->ia_ifa); if (ia->ia_allhosts != NULL) { in_delmulti(ia->ia_allhosts); ia->ia_allhosts = NULL; } ifatrash++; ia->ia_ifp = NULL; ifafree(&ia->ia_ifa); } int in_addhost(struct in_ifaddr *ia, struct sockaddr_in *dst) { return rt_ifa_add(&ia->ia_ifa, RTF_HOST, sintosa(dst)); } int in_scrubhost(struct in_ifaddr *ia, struct sockaddr_in *dst) { return rt_ifa_del(&ia->ia_ifa, RTF_HOST, sintosa(dst)); } /* * Insert the cloning and broadcast routes for this subnet. */ int in_insert_prefix(struct in_ifaddr *ia) { struct ifaddr *ifa = &ia->ia_ifa; int error; error = rt_ifa_add(ifa, RTF_CLONING | RTF_CONNECTED, ifa->ifa_addr); if (error) return (error); if (ia->ia_broadaddr.sin_addr.s_addr != 0) error = rt_ifa_add(ifa, RTF_HOST | RTF_BROADCAST, ifa->ifa_broadaddr); return (error); } void in_remove_prefix(struct in_ifaddr *ia) { struct ifaddr *ifa = &ia->ia_ifa; rt_ifa_del(ifa, RTF_CLONING | RTF_CONNECTED, ifa->ifa_addr); if (ia->ia_broadaddr.sin_addr.s_addr != 0) rt_ifa_del(ifa, RTF_HOST | RTF_BROADCAST, ifa->ifa_broadaddr); } /* * Return 1 if the address is a local broadcast address. */ int in_broadcast(struct in_addr in, u_int rtableid) { struct ifnet *ifn; struct ifaddr *ifa; u_int rdomain; rdomain = rtable_l2(rtableid); #define ia (ifatoia(ifa)) TAILQ_FOREACH(ifn, &ifnet, if_list) { if (ifn->if_rdomain != rdomain) continue; if ((ifn->if_flags & IFF_BROADCAST) == 0) continue; TAILQ_FOREACH(ifa, &ifn->if_addrlist, ifa_list) if (ifa->ifa_addr->sa_family == AF_INET && in.s_addr != ia->ia_addr.sin_addr.s_addr && in.s_addr == ia->ia_broadaddr.sin_addr.s_addr) return 1; } return (0); #undef ia } /* * Add an address to the list of IP multicast addresses for a given interface. */ struct in_multi * in_addmulti(struct in_addr *ap, struct ifnet *ifp) { struct in_multi *inm; struct ifreq ifr; /* * See if address already in list. */ IN_LOOKUP_MULTI(*ap, ifp, inm); if (inm != NULL) { /* * Found it; just increment the reference count. */ ++inm->inm_refcnt; } else { /* * New address; allocate a new multicast record * and link it into the interface's multicast list. */ inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); if (inm == NULL) return (NULL); inm->inm_sin.sin_len = sizeof(struct sockaddr_in); inm->inm_sin.sin_family = AF_INET; inm->inm_sin.sin_addr = *ap; inm->inm_refcnt = 1; inm->inm_ifidx = ifp->if_index; inm->inm_ifma.ifma_addr = sintosa(&inm->inm_sin); /* * Ask the network driver to update its multicast reception * filter appropriately for the new address. */ memset(&ifr, 0, sizeof(ifr)); memcpy(&ifr.ifr_addr, &inm->inm_sin, sizeof(inm->inm_sin)); if ((*ifp->if_ioctl)(ifp, SIOCADDMULTI,(caddr_t)&ifr) != 0) { free(inm, M_IPMADDR, sizeof(*inm)); return (NULL); } TAILQ_INSERT_HEAD(&ifp->if_maddrlist, &inm->inm_ifma, ifma_list); /* * Let IGMP know that we have joined a new IP multicast group. */ igmp_joingroup(inm); } return (inm); } /* * Delete a multicast address record. */ void in_delmulti(struct in_multi *inm) { struct ifreq ifr; struct ifnet *ifp; NET_ASSERT_LOCKED(); if (--inm->inm_refcnt == 0) { /* * No remaining claims to this record; let IGMP know that * we are leaving the multicast group. */ igmp_leavegroup(inm); ifp = if_get(inm->inm_ifidx); /* * Notify the network driver to update its multicast * reception filter. */ if (ifp != NULL) { memset(&ifr, 0, sizeof(ifr)); satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); satosin(&ifr.ifr_addr)->sin_family = AF_INET; satosin(&ifr.ifr_addr)->sin_addr = inm->inm_addr; (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr); TAILQ_REMOVE(&ifp->if_maddrlist, &inm->inm_ifma, ifma_list); } if_put(ifp); free(inm, M_IPMADDR, sizeof(*inm)); } } /* * Return 1 if the multicast group represented by ``ap'' has been * joined by interface ``ifp'', 0 otherwise. */ int in_hasmulti(struct in_addr *ap, struct ifnet *ifp) { struct in_multi *inm; int joined; IN_LOOKUP_MULTI(*ap, ifp, inm); joined = (inm != NULL); return (joined); } void in_ifdetach(struct ifnet *ifp) { struct ifaddr *ifa, *next; /* nuke any of IPv4 addresses we have */ TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrlist, ifa_list, next) { if (ifa->ifa_addr->sa_family != AF_INET) continue; in_purgeaddr(ifa); dohooks(ifp->if_addrhooks, 0); } } void in_prefixlen2mask(struct in_addr *maskp, int plen) { if (plen == 0) maskp->s_addr = 0; else maskp->s_addr = htonl(0xffffffff << (32 - plen)); }