/* $OpenBSD: in_pcb.c,v 1.17 1997/07/27 08:11:10 deraadt Exp $ */ /* $NetBSD: in_pcb.c,v 1.25 1996/02/13 23:41:53 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct in_addr zeroin_addr; extern u_char ipsec_auth_default_level; extern u_char ipsec_esp_trans_default_level; extern u_char ipsec_esp_network_default_level; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_firstauto = IPPORT_RESERVED; /* 1024 */ int ipport_lastauto = IPPORT_USERRESERVED; /* 5000 */ int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 40000 */ int ipport_hilastauto = IPPORT_HILASTAUTO; /* 44999 */ #define INPCBHASH(table, faddr, fport, laddr, lport) \ &(table)->inpt_hashtbl[(ntohl((faddr)->s_addr) + ntohs((fport)) + ntohs((lport))) & (table->inpt_hash)] static int baddynamic __P((u_int16_t)); void in_pcbinit(table, hashsize) struct inpcbtable *table; int hashsize; { CIRCLEQ_INIT(&table->inpt_queue); table->inpt_hashtbl = hashinit(hashsize, M_PCB, &table->inpt_hash); table->inpt_lastport = 0; } /* * List of standard locked-down reserved ports. * XXX need to be able to modify this from userland. */ static u_int16_t baddynamicports[] = { 765, 749, 750, 751, 760, 761, 871, 0 /* terminator */ }; /* * Check if the specified port is invalid for dynamic allocation. */ static int baddynamic(port) u_int16_t port; { int i; for (i = 0; baddynamicports[i] != 0; i++) if (baddynamicports[i] == port) return (1); return (0); } int in_pcballoc(so, v) struct socket *so; void *v; { struct inpcbtable *table = v; register struct inpcb *inp; int s; MALLOC(inp, struct inpcb *, sizeof(*inp), M_PCB, M_NOWAIT); if (inp == NULL) return (ENOBUFS); bzero((caddr_t)inp, sizeof(*inp)); inp->inp_table = table; inp->inp_socket = so; inp->inp_seclevel[SL_AUTH] = ipsec_auth_default_level; inp->inp_seclevel[SL_ESP_TRANS] = ipsec_esp_trans_default_level; inp->inp_seclevel[SL_ESP_NETWORK] = ipsec_esp_network_default_level; s = splnet(); CIRCLEQ_INSERT_HEAD(&table->inpt_queue, inp, inp_queue); LIST_INSERT_HEAD(INPCBHASH(table, &inp->inp_faddr, inp->inp_fport, &inp->inp_laddr, inp->inp_lport), inp, inp_hash); splx(s); so->so_pcb = inp; return (0); } int in_pcbbind(v, nam) register void *v; struct mbuf *nam; { register struct inpcb *inp = v; register struct socket *so = inp->inp_socket; register struct inpcbtable *table = inp->inp_table; u_int16_t *lastport = &inp->inp_table->inpt_lastport; register struct sockaddr_in *sin; struct proc *p = curproc; /* XXX */ u_int16_t lport = 0; int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); int error; if (in_ifaddr.tqh_first == 0) return (EADDRNOTAVAIL); if (inp->inp_lport || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 && ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 || (so->so_options & SO_ACCEPTCONN) == 0)) wild = INPLOOKUP_WILDCARD; if (nam) { sin = mtod(nam, struct sockaddr_in *); if (nam->m_len != sizeof (*sin)) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif lport = sin->sin_port; if (IN_MULTICAST(sin->sin_addr.s_addr)) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ if (ifa_ifwithaddr(sintosa(sin)) == 0) return (EADDRNOTAVAIL); } if (lport) { struct inpcb *t; /* GROSS */ if (ntohs(lport) < IPPORT_RESERVED && (error = suser(p->p_ucred, &p->p_acflag))) return (EACCES); if (so->so_uid) { t = in_pcblookup(table, zeroin_addr, 0, sin->sin_addr, lport, INPLOOKUP_WILDCARD); if (t && (so->so_uid != t->inp_socket->so_uid)) return (EADDRINUSE); } t = in_pcblookup(table, zeroin_addr, 0, sin->sin_addr, lport, wild); if (t && (reuseport & t->inp_socket->so_options) == 0) return (EADDRINUSE); } inp->inp_laddr = sin->sin_addr; } if (lport == 0) { u_int16_t first, last, old = 0; int count; int loopcount = 0; if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; } else if (inp->inp_flags & INP_LOWPORT) { if ((error = suser(p->p_ucred, &p->p_acflag))) return (EACCES); first = IPPORT_RESERVED-1; /* 1023 */ last = 600; /* not IPPORT_RESERVED/2 */ } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; } /* * Simple check to ensure all ports are not used up causing * a deadlock here. * * We split the two cases (up and down) so that the direction * is not being tested on each round of the loop. */ portloop: if (first > last) { /* * counting down */ if (loopcount == 0) { /* only do this once. */ old = first; first -= (arc4random() % (first - last)); } count = first - last; *lastport = first; /* restart each time */ do { if (count-- <= 0) { /* completely used? */ if (loopcount == 0) { last = old; loopcount++; goto portloop; } return (EADDRNOTAVAIL); } --*lastport; if (*lastport > first || *lastport < last) *lastport = first; lport = htons(*lastport); } while (baddynamic(*lastport) || in_pcblookup(table, zeroin_addr, 0, inp->inp_laddr, lport, wild)); } else { /* * counting up */ if (loopcount == 0) { /* only do this once. */ old = first; first += (arc4random() % (last - first)); } count = last - first; *lastport = first; /* restart each time */ do { if (count-- <= 0) { /* completely used? */ if (loopcount == 0) { first = old; loopcount++; goto portloop; } return (EADDRNOTAVAIL); } ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); } while (baddynamic(*lastport) || in_pcblookup(table, zeroin_addr, 0, inp->inp_laddr, lport, wild)); } } inp->inp_lport = lport; in_pcbrehash(inp); return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(v, nam) register void *v; struct mbuf *nam; { register struct inpcb *inp = v; struct in_ifaddr *ia; struct sockaddr_in *ifaddr = NULL; register struct sockaddr_in *sin = mtod(nam, struct sockaddr_in *); if (nam->m_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); if (in_ifaddr.tqh_first != 0) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (sin->sin_addr.s_addr == INADDR_ANY) sin->sin_addr = in_ifaddr.tqh_first->ia_addr.sin_addr; else if (sin->sin_addr.s_addr == INADDR_BROADCAST && (in_ifaddr.tqh_first->ia_ifp->if_flags & IFF_BROADCAST)) sin->sin_addr = in_ifaddr.tqh_first->ia_broadaddr.sin_addr; } if (inp->inp_laddr.s_addr == INADDR_ANY) { register struct route *ro; ia = (struct in_ifaddr *)0; /* * If route is known or can be allocated now, * our src addr is taken from the i/f, else punt. */ ro = &inp->inp_route; if (ro->ro_rt && (satosin(&ro->ro_dst)->sin_addr.s_addr != sin->sin_addr.s_addr || inp->inp_socket->so_options & SO_DONTROUTE)) { RTFREE(ro->ro_rt); ro->ro_rt = (struct rtentry *)0; } if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0 && /*XXX*/ (ro->ro_rt == (struct rtentry *)0 || ro->ro_rt->rt_ifp == (struct ifnet *)0)) { /* No route yet, so try to acquire one */ ro->ro_dst.sa_family = AF_INET; ro->ro_dst.sa_len = sizeof(struct sockaddr_in); satosin(&ro->ro_dst)->sin_addr = sin->sin_addr; rtalloc(ro); } /* * If we found a route, use the address * corresponding to the outgoing interface * unless it is the loopback (in case a route * to our address on another net goes to loopback). */ if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) ia = ifatoia(ro->ro_rt->rt_ifa); if (ia == 0) { u_int16_t fport = sin->sin_port; sin->sin_port = 0; ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin))); if (ia == 0) ia = ifatoia(ifa_ifwithnet(sintosa(sin))); sin->sin_port = fport; if (ia == 0) ia = in_ifaddr.tqh_first; if (ia == 0) return (EADDRNOTAVAIL); } /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(sin->sin_addr.s_addr) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; for (ia = in_ifaddr.tqh_first; ia != 0; ia = ia->ia_list.tqe_next) if (ia->ia_ifp == ifp) break; if (ia == 0) return (EADDRNOTAVAIL); } } ifaddr = satosin(&ia->ia_addr); } if (in_pcbhashlookup(inp->inp_table, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr, inp->inp_lport) != 0) return (EADDRINUSE); if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_lport == 0) (void)in_pcbbind(inp, (struct mbuf *)0); inp->inp_laddr = ifaddr->sin_addr; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbrehash(inp); return (0); } void in_pcbdisconnect(v) void *v; { struct inpcb *inp = v; inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); if (inp->inp_socket->so_state & SS_NOFDREF) in_pcbdetach(inp); } void in_pcbdetach(v) void *v; { struct inpcb *inp = v; struct socket *so = inp->inp_socket; int s; so->so_pcb = 0; sofree(so); if (inp->inp_options) (void)m_free(inp->inp_options); if (inp->inp_route.ro_rt) rtfree(inp->inp_route.ro_rt); ip_freemoptions(inp->inp_moptions); #ifdef IPSEC /* XXX IPsec cleanup here */ #endif s = splnet(); LIST_REMOVE(inp, inp_hash); CIRCLEQ_REMOVE(&inp->inp_table->inpt_queue, inp, inp_queue); splx(s); FREE(inp, M_PCB); } void in_setsockaddr(inp, nam) register struct inpcb *inp; struct mbuf *nam; { register struct sockaddr_in *sin; nam->m_len = sizeof (*sin); sin = mtod(nam, struct sockaddr_in *); bzero((caddr_t)sin, sizeof (*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; } void in_setpeeraddr(inp, nam) struct inpcb *inp; struct mbuf *nam; { register struct sockaddr_in *sin; nam->m_len = sizeof (*sin); sin = mtod(nam, struct sockaddr_in *); bzero((caddr_t)sin, sizeof (*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; } /* * Pass some notification to all connections of a protocol * associated with address dst. The local address and/or port numbers * may be specified to limit the search. The "usual action" will be * taken, depending on the ctlinput cmd. The caller must filter any * cmds that are uninteresting (e.g., no error in the map). * Call the protocol specific routine (if any) to report * any errors for each matching socket. * * Must be called at splsoftnet. */ void in_pcbnotify(table, dst, fport_arg, laddr, lport_arg, errno, notify) struct inpcbtable *table; struct sockaddr *dst; u_int fport_arg, lport_arg; struct in_addr laddr; int errno; void (*notify) __P((struct inpcb *, int)); { register struct inpcb *inp, *oinp; struct in_addr faddr; u_int16_t fport = fport_arg, lport = lport_arg; if (dst->sa_family != AF_INET) return; faddr = satosin(dst)->sin_addr; if (faddr.s_addr == INADDR_ANY) return; for (inp = table->inpt_queue.cqh_first; inp != (struct inpcb *)&table->inpt_queue;) { if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == 0 || inp->inp_fport != fport || inp->inp_lport != lport || inp->inp_laddr.s_addr != laddr.s_addr) { inp = inp->inp_queue.cqe_next; continue; } oinp = inp; inp = inp->inp_queue.cqe_next; if (notify) (*notify)(oinp, errno); } } void in_pcbnotifyall(table, dst, errno, notify) struct inpcbtable *table; struct sockaddr *dst; int errno; void (*notify) __P((struct inpcb *, int)); { register struct inpcb *inp, *oinp; struct in_addr faddr; if (dst->sa_family != AF_INET) return; faddr = satosin(dst)->sin_addr; if (faddr.s_addr == INADDR_ANY) return; for (inp = table->inpt_queue.cqh_first; inp != (struct inpcb *)&table->inpt_queue;) { if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == 0) { inp = inp->inp_queue.cqe_next; continue; } oinp = inp; inp = inp->inp_queue.cqe_next; if (notify) (*notify)(oinp, errno); } } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(inp) struct inpcb *inp; { register struct rtentry *rt; struct rt_addrinfo info; if ((rt = inp->inp_route.ro_rt)) { inp->inp_route.ro_rt = 0; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = &inp->inp_route.ro_dst; info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0); if (rt->rt_flags & RTF_DYNAMIC) (void) rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, (struct rtentry **)0); else /* * A new route can be allocated * the next time output is attempted. */ rtfree(rt); } } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ void in_rtchange(inp, errno) register struct inpcb *inp; int errno; { if (inp->inp_route.ro_rt) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = 0; /* * A new route can be allocated the next time * output is attempted. */ } } struct inpcb * in_pcblookup(table, faddr, fport_arg, laddr, lport_arg, flags) struct inpcbtable *table; struct in_addr faddr, laddr; u_int fport_arg, lport_arg; int flags; { register struct inpcb *inp, *match = 0; int matchwild = 3, wildcard; u_int16_t fport = fport_arg, lport = lport_arg; for (inp = table->inpt_queue.cqh_first; inp != (struct inpcb *)&table->inpt_queue; inp = inp->inp_queue.cqe_next) { if (inp->inp_lport != lport) continue; wildcard = 0; if (inp->inp_faddr.s_addr != INADDR_ANY) { if (faddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_fport != fport) continue; } else { if (faddr.s_addr != INADDR_ANY) wildcard++; } if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard && (flags & INPLOOKUP_WILDCARD) == 0) continue; if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } return (match); } void in_pcbrehash(inp) struct inpcb *inp; { struct inpcbtable *table = inp->inp_table; int s; s = splnet(); LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(INPCBHASH(table, &inp->inp_faddr, inp->inp_fport, &inp->inp_laddr, inp->inp_lport), inp, inp_hash); splx(s); } #ifdef DIAGNOSTIC int in_pcbnotifymiss = 0; #endif struct inpcb * in_pcbhashlookup(table, faddr, fport_arg, laddr, lport_arg) struct inpcbtable *table; struct in_addr faddr, laddr; u_int fport_arg, lport_arg; { struct inpcbhead *head; register struct inpcb *inp; u_int16_t fport = fport_arg, lport = lport_arg; head = INPCBHASH(table, &faddr, fport, &laddr, lport); for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) { if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport && inp->inp_laddr.s_addr == laddr.s_addr) { /* * Move this PCB to the head of hash chain so that * repeated accesses are quicker. This is analogous to * the historic single-entry PCB cache. */ if (inp != head->lh_first) { LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); } break; } } #ifdef DIAGNOSTIC if (inp == NULL && in_pcbnotifymiss) { printf("in_pcbhashlookup: faddr=%08x fport=%d laddr=%08x lport=%d\n", ntohl(faddr.s_addr), ntohs(fport), ntohl(laddr.s_addr), ntohs(lport)); } #endif return (inp); }