/* $OpenBSD: in_pcb.c,v 1.305 2024/11/05 22:44:20 bluhm Exp $ */ /* $NetBSD: in_pcb.c,v 1.25 1996/02/13 23:41:53 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995 * * NRL grants permission for redistribution and use in source and binary * forms, with or without modification, of the software and documentation * created at NRL provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgements: * This product includes software developed by the University of * California, Berkeley and its contributors. * This product includes software developed at the Information * Technology Division, US Naval Research Laboratory. * 4. Neither the name of the NRL nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as representing * official policies, either expressed or implied, of the US Naval * Research Laboratory (NRL). */ #include "pf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #endif /* IPSEC */ #include "stoeplitz.h" #if NSTOEPLITZ > 0 #include #endif const struct in_addr zeroin_addr; const union inpaddru zeroin46_addr; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_firstauto = IPPORT_RESERVED; int ipport_lastauto = IPPORT_USERRESERVED; int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; int ipport_hilastauto = IPPORT_HILASTAUTO; struct baddynamicports baddynamicports; struct baddynamicports rootonlyports; struct pool inpcb_pool; void in_pcbhash_insert(struct inpcb *); struct inpcb *in_pcbhash_lookup(struct inpcbtable *, uint64_t, u_int, const struct in_addr *, u_short, const struct in_addr *, u_short); int in_pcbresize(struct inpcbtable *, int); #define INPCBHASH_LOADFACTOR(_x) (((_x) * 3) / 4) uint64_t in_pcbhash(struct inpcbtable *, u_int, const struct in_addr *, u_short, const struct in_addr *, u_short); uint64_t in_pcblhash(struct inpcbtable *, u_int, u_short); struct inpcb *in_pcblookup_lock(struct inpcbtable *, struct in_addr, u_int, struct in_addr, u_int, u_int, int); int in_pcbaddrisavail_lock(const struct inpcb *, struct sockaddr_in *, int, struct proc *, int); int in_pcbpickport(u_int16_t *, const void *, int, const struct inpcb *, struct proc *); /* * in_pcb is used for inet and inet6. in6_pcb only contains special * IPv6 cases. So the internet initializer is used for both domains. */ void in_init(void) { pool_init(&inpcb_pool, sizeof(struct inpcb), 0, IPL_SOFTNET, 0, "inpcb", NULL); } uint64_t in_pcbhash(struct inpcbtable *table, u_int rdomain, const struct in_addr *faddr, u_short fport, const struct in_addr *laddr, u_short lport) { SIPHASH_CTX ctx; u_int32_t nrdom = htonl(rdomain); SipHash24_Init(&ctx, &table->inpt_key); SipHash24_Update(&ctx, &nrdom, sizeof(nrdom)); SipHash24_Update(&ctx, faddr, sizeof(*faddr)); SipHash24_Update(&ctx, &fport, sizeof(fport)); SipHash24_Update(&ctx, laddr, sizeof(*laddr)); SipHash24_Update(&ctx, &lport, sizeof(lport)); return SipHash24_End(&ctx); } uint64_t in_pcblhash(struct inpcbtable *table, u_int rdomain, u_short lport) { SIPHASH_CTX ctx; u_int32_t nrdom = htonl(rdomain); SipHash24_Init(&ctx, &table->inpt_lkey); SipHash24_Update(&ctx, &nrdom, sizeof(nrdom)); SipHash24_Update(&ctx, &lport, sizeof(lport)); return SipHash24_End(&ctx); } void in_pcbinit(struct inpcbtable *table, int hashsize) { mtx_init(&table->inpt_mtx, IPL_SOFTNET); rw_init(&table->inpt_notify, "inpnotify"); TAILQ_INIT(&table->inpt_queue); table->inpt_hashtbl = hashinit(hashsize, M_PCB, M_WAITOK, &table->inpt_mask); table->inpt_lhashtbl = hashinit(hashsize, M_PCB, M_WAITOK, &table->inpt_lmask); table->inpt_count = 0; table->inpt_size = hashsize; arc4random_buf(&table->inpt_key, sizeof(table->inpt_key)); arc4random_buf(&table->inpt_lkey, sizeof(table->inpt_lkey)); } /* * Check if the specified port is invalid for dynamic allocation. */ int in_baddynamic(u_int16_t port, u_int16_t proto) { switch (proto) { case IPPROTO_TCP: return (DP_ISSET(baddynamicports.tcp, port)); case IPPROTO_UDP: #ifdef IPSEC /* Cannot preset this as it is a sysctl */ if (port == udpencap_port) return (1); #endif return (DP_ISSET(baddynamicports.udp, port)); default: return (0); } } int in_rootonly(u_int16_t port, u_int16_t proto) { switch (proto) { case IPPROTO_TCP: return (port < IPPORT_RESERVED || DP_ISSET(rootonlyports.tcp, port)); case IPPROTO_UDP: return (port < IPPORT_RESERVED || DP_ISSET(rootonlyports.udp, port)); default: return (0); } } int in_pcballoc(struct socket *so, struct inpcbtable *table, int wait) { struct inpcb *inp; inp = pool_get(&inpcb_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) | PR_ZERO); if (inp == NULL) return (ENOBUFS); inp->inp_table = table; inp->inp_socket = so; refcnt_init_trace(&inp->inp_refcnt, DT_REFCNT_IDX_INPCB); inp->inp_seclevel.sl_auth = IPSEC_AUTH_LEVEL_DEFAULT; inp->inp_seclevel.sl_esp_trans = IPSEC_ESP_TRANS_LEVEL_DEFAULT; inp->inp_seclevel.sl_esp_network = IPSEC_ESP_NETWORK_LEVEL_DEFAULT; inp->inp_seclevel.sl_ipcomp = IPSEC_IPCOMP_LEVEL_DEFAULT; inp->inp_rtableid = curproc->p_p->ps_rtableid; inp->inp_hops = -1; #ifdef INET6 switch (so->so_proto->pr_domain->dom_family) { case PF_INET6: inp->inp_flags = INP_IPV6; break; case PF_INET: /* inp->inp_flags is initialized to 0 */ break; default: unhandled_af(so->so_proto->pr_domain->dom_family); } inp->inp_cksum6 = -1; #endif /* INET6 */ mtx_enter(&table->inpt_mtx); if (table->inpt_count++ > INPCBHASH_LOADFACTOR(table->inpt_size)) (void)in_pcbresize(table, table->inpt_size * 2); TAILQ_INSERT_HEAD(&table->inpt_queue, inp, inp_queue); in_pcbhash_insert(inp); mtx_leave(&table->inpt_mtx); so->so_pcb = inp; return (0); } int in_pcbbind_locked(struct inpcb *inp, struct mbuf *nam, const void *laddr, struct proc *p) { struct socket *so = inp->inp_socket; u_int16_t lport = 0; int wild = 0; int error; if (inp->inp_lport) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 && ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 || (so->so_options & SO_ACCEPTCONN) == 0)) wild = INPLOOKUP_WILDCARD; #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) { if (!IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6)) return (EINVAL); wild |= INPLOOKUP_IPV6; if (nam) { struct sockaddr_in6 *sin6; if ((error = in6_nam2sin6(nam, &sin6))) return (error); if ((error = in6_pcbaddrisavail_lock(inp, sin6, wild, p, IN_PCBLOCK_HOLD))) return (error); laddr = &sin6->sin6_addr; lport = sin6->sin6_port; } } else #endif { if (inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); if (nam) { struct sockaddr_in *sin; if ((error = in_nam2sin(nam, &sin))) return (error); if ((error = in_pcbaddrisavail_lock(inp, sin, wild, p, IN_PCBLOCK_HOLD))) return (error); laddr = &sin->sin_addr; lport = sin->sin_port; } } if (lport == 0) { if ((error = in_pcbpickport(&lport, laddr, wild, inp, p))) return (error); } else { if (in_rootonly(ntohs(lport), so->so_proto->pr_protocol) && suser(p) != 0) return (EACCES); } if (nam) { #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) inp->inp_laddr6 = *(struct in6_addr *)laddr; else #endif inp->inp_laddr = *(struct in_addr *)laddr; } inp->inp_lport = lport; in_pcbrehash(inp); return (0); } int in_pcbbind(struct inpcb *inp, struct mbuf *nam, struct proc *p) { struct inpcbtable *table = inp->inp_table; int error; /* keep lookup, modification, and rehash in sync */ mtx_enter(&table->inpt_mtx); error = in_pcbbind_locked(inp, nam, &zeroin46_addr, p); mtx_leave(&table->inpt_mtx); return error; } int in_pcbaddrisavail_lock(const struct inpcb *inp, struct sockaddr_in *sin, int wild, struct proc *p, int lock) { struct socket *so = inp->inp_socket; struct inpcbtable *table = inp->inp_table; u_int16_t lport = sin->sin_port; int reuseport = (so->so_options & SO_REUSEPORT); if (IN_MULTICAST(sin->sin_addr.s_addr)) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (sin->sin_addr.s_addr != INADDR_ANY) { /* * we must check that we are binding to an address we * own except when: * - SO_BINDANY is set or * - we are binding a UDP socket to 255.255.255.255 or * - we are binding a UDP socket to one of our broadcast * addresses */ if (!ISSET(so->so_options, SO_BINDANY) && !(so->so_type == SOCK_DGRAM && sin->sin_addr.s_addr == INADDR_BROADCAST) && !(so->so_type == SOCK_DGRAM && in_broadcast(sin->sin_addr, inp->inp_rtableid))) { struct ifaddr *ia; sin->sin_port = 0; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); ia = ifa_ifwithaddr(sintosa(sin), inp->inp_rtableid); sin->sin_port = lport; if (ia == NULL) return (EADDRNOTAVAIL); } } if (lport) { struct inpcb *t; int error = 0; if (so->so_euid && !IN_MULTICAST(sin->sin_addr.s_addr)) { t = in_pcblookup_local_lock(table, &sin->sin_addr, lport, INPLOOKUP_WILDCARD, inp->inp_rtableid, lock); if (t && (so->so_euid != t->inp_socket->so_euid)) error = EADDRINUSE; if (lock == IN_PCBLOCK_GRAB) in_pcbunref(t); if (error) return (error); } t = in_pcblookup_local_lock(table, &sin->sin_addr, lport, wild, inp->inp_rtableid, lock); if (t && (reuseport & t->inp_socket->so_options) == 0) error = EADDRINUSE; if (lock == IN_PCBLOCK_GRAB) in_pcbunref(t); if (error) return (error); } return (0); } int in_pcbaddrisavail(const struct inpcb *inp, struct sockaddr_in *sin, int wild, struct proc *p) { return in_pcbaddrisavail_lock(inp, sin, wild, p, IN_PCBLOCK_GRAB); } int in_pcbpickport(u_int16_t *lport, const void *laddr, int wild, const struct inpcb *inp, struct proc *p) { struct socket *so = inp->inp_socket; struct inpcbtable *table = inp->inp_table; struct inpcb *t; u_int16_t first, last, lower, higher, candidate, localport; int count; MUTEX_ASSERT_LOCKED(&table->inpt_mtx); if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; } else if (inp->inp_flags & INP_LOWPORT) { if (suser(p)) return (EACCES); first = IPPORT_RESERVED-1; /* 1023 */ last = 600; /* not IPPORT_RESERVED/2 */ } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; } if (first < last) { lower = first; higher = last; } else { lower = last; higher = first; } /* * Simple check to ensure all ports are not used up causing * a deadlock here. */ count = higher - lower; candidate = lower + arc4random_uniform(count); do { do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); ++candidate; if (candidate < lower || candidate > higher) candidate = lower; localport = htons(candidate); } while (in_baddynamic(candidate, so->so_proto->pr_protocol)); t = in_pcblookup_local_lock(table, laddr, localport, wild, inp->inp_rtableid, IN_PCBLOCK_HOLD); } while (t != NULL); *lport = localport; return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(struct inpcb *inp, struct mbuf *nam) { struct inpcbtable *table = inp->inp_table; struct in_addr ina; struct sockaddr_in *sin; struct inpcb *t; int error; #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) return (in6_pcbconnect(inp, nam)); #endif if ((error = in_nam2sin(nam, &sin))) return (error); if (sin->sin_port == 0) return (EADDRNOTAVAIL); error = in_pcbselsrc(&ina, sin, inp); if (error) return (error); /* keep lookup, modification, and rehash in sync */ mtx_enter(&table->inpt_mtx); t = in_pcblookup_lock(inp->inp_table, sin->sin_addr, sin->sin_port, ina, inp->inp_lport, inp->inp_rtableid, IN_PCBLOCK_HOLD); if (t != NULL) { mtx_leave(&table->inpt_mtx); return (EADDRINUSE); } KASSERT(inp->inp_laddr.s_addr == INADDR_ANY || inp->inp_lport); if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_lport == 0) { error = in_pcbbind_locked(inp, NULL, &ina, curproc); if (error) { mtx_leave(&table->inpt_mtx); return (error); } t = in_pcblookup_lock(inp->inp_table, sin->sin_addr, sin->sin_port, ina, inp->inp_lport, inp->inp_rtableid, IN_PCBLOCK_HOLD); if (t != NULL) { inp->inp_lport = 0; mtx_leave(&table->inpt_mtx); return (EADDRINUSE); } } inp->inp_laddr = ina; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbrehash(inp); mtx_leave(&table->inpt_mtx); #if NSTOEPLITZ > 0 inp->inp_flowid = stoeplitz_ip4port(inp->inp_faddr.s_addr, inp->inp_laddr.s_addr, inp->inp_fport, inp->inp_lport); #endif return (0); } void in_pcbdisconnect(struct inpcb *inp) { #if NPF > 0 pf_remove_divert_state(inp); pf_inp_unlink(inp); #endif inp->inp_flowid = 0; if (inp->inp_socket->so_state & SS_NOFDREF) in_pcbdetach(inp); } void in_pcbdetach(struct inpcb *inp) { struct socket *so = inp->inp_socket; struct inpcbtable *table = inp->inp_table; so->so_pcb = NULL; /* * As long as the NET_LOCK() is the default lock for Internet * sockets, do not release it to not introduce new sleeping * points. */ sofree(so, 1); if (inp->inp_route.ro_rt) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = NULL; } #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) { ip6_freepcbopts(inp->inp_outputopts6); ip6_freemoptions(inp->inp_moptions6); } else #endif { m_freem(inp->inp_options); ip_freemoptions(inp->inp_moptions); } #if NPF > 0 pf_remove_divert_state(inp); pf_inp_unlink(inp); #endif mtx_enter(&table->inpt_mtx); LIST_REMOVE(inp, inp_lhash); LIST_REMOVE(inp, inp_hash); TAILQ_REMOVE(&table->inpt_queue, inp, inp_queue); table->inpt_count--; mtx_leave(&table->inpt_mtx); in_pcbunref(inp); } struct inpcb * in_pcbref(struct inpcb *inp) { if (inp == NULL) return NULL; refcnt_take(&inp->inp_refcnt); return inp; } void in_pcbunref(struct inpcb *inp) { if (inp == NULL) return; if (refcnt_rele(&inp->inp_refcnt) == 0) return; KASSERT((LIST_NEXT(inp, inp_hash) == NULL) || (LIST_NEXT(inp, inp_hash) == _Q_INVALID)); KASSERT((LIST_NEXT(inp, inp_lhash) == NULL) || (LIST_NEXT(inp, inp_lhash) == _Q_INVALID)); KASSERT((TAILQ_NEXT(inp, inp_queue) == NULL) || (TAILQ_NEXT(inp, inp_queue) == _Q_INVALID)); pool_put(&inpcb_pool, inp); } struct inpcb * in_pcb_iterator(struct inpcbtable *table, struct inpcb *inp, struct inpcb_iterator *iter) { struct inpcb *tmp; MUTEX_ASSERT_LOCKED(&table->inpt_mtx); if (inp) tmp = TAILQ_NEXT((struct inpcb *)iter, inp_queue); else tmp = TAILQ_FIRST(&table->inpt_queue); while (tmp && tmp->inp_table == NULL) tmp = TAILQ_NEXT(tmp, inp_queue); if (inp) { TAILQ_REMOVE(&table->inpt_queue, (struct inpcb *)iter, inp_queue); in_pcbunref(inp); } if (tmp) { TAILQ_INSERT_AFTER(&table->inpt_queue, tmp, (struct inpcb *)iter, inp_queue); in_pcbref(tmp); } return tmp; } void in_pcb_iterator_abort(struct inpcbtable *table, struct inpcb *inp, struct inpcb_iterator *iter) { MUTEX_ASSERT_LOCKED(&table->inpt_mtx); if (inp) { TAILQ_REMOVE(&table->inpt_queue, (struct inpcb *)iter, inp_queue); in_pcbunref(inp); } } void in_setsockaddr(struct inpcb *inp, struct mbuf *nam) { struct sockaddr_in *sin; #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) { in6_setsockaddr(inp, nam); return; } #endif nam->m_len = sizeof(*sin); sin = mtod(nam, struct sockaddr_in *); memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; } void in_setpeeraddr(struct inpcb *inp, struct mbuf *nam) { struct sockaddr_in *sin; #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) { in6_setpeeraddr(inp, nam); return; } #endif nam->m_len = sizeof(*sin); sin = mtod(nam, struct sockaddr_in *); memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; } int in_sockaddr(struct socket *so, struct mbuf *nam) { struct inpcb *inp; inp = sotoinpcb(so); in_setsockaddr(inp, nam); return (0); } int in_peeraddr(struct socket *so, struct mbuf *nam) { struct inpcb *inp; inp = sotoinpcb(so); in_setpeeraddr(inp, nam); return (0); } /* * Pass some notification to all connections of a protocol * associated with address dst. The "usual action" will be * taken, depending on the ctlinput cmd. The caller must filter any * cmds that are uninteresting (e.g., no error in the map). * Call the protocol specific routine (if any) to report * any errors for each matching socket. */ void in_pcbnotifyall(struct inpcbtable *table, const struct sockaddr_in *dst, u_int rtable, int errno, void (*notify)(struct inpcb *, int)) { SIMPLEQ_HEAD(, inpcb) inpcblist; struct inpcb *inp; u_int rdomain; if (dst->sin_addr.s_addr == INADDR_ANY) return; if (notify == NULL) return; /* * Use a temporary notify list protected by rwlock to run over * selected PCB. This is necessary as the list of all PCB is * protected by a mutex. Notify may call ip_output() eventually * which may sleep as pf lock is a rwlock. Also the SRP * implementation of the routing table might sleep. * The same inp_notify list entry and inpt_notify rwlock are * used for UDP multicast and raw IP delivery. */ SIMPLEQ_INIT(&inpcblist); rdomain = rtable_l2(rtable); rw_enter_write(&table->inpt_notify); mtx_enter(&table->inpt_mtx); TAILQ_FOREACH(inp, &table->inpt_queue, inp_queue) { if (in_pcb_is_iterator(inp)) continue; KASSERT(!ISSET(inp->inp_flags, INP_IPV6)); if (inp->inp_faddr.s_addr != dst->sin_addr.s_addr || rtable_l2(inp->inp_rtableid) != rdomain) { continue; } in_pcbref(inp); SIMPLEQ_INSERT_TAIL(&inpcblist, inp, inp_notify); } mtx_leave(&table->inpt_mtx); while ((inp = SIMPLEQ_FIRST(&inpcblist)) != NULL) { SIMPLEQ_REMOVE_HEAD(&inpcblist, inp_notify); (*notify)(inp, errno); in_pcbunref(inp); } rw_exit_write(&table->inpt_notify); } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { struct rtentry *rt = inp->inp_route.ro_rt; if (rt) { inp->inp_route.ro_rt = NULL; if (rt->rt_flags & RTF_DYNAMIC) { struct ifnet *ifp; ifp = if_get(rt->rt_ifidx); /* * If the interface is gone, all its attached * route entries have been removed from the table, * so we're dealing with a stale cache and have * nothing to do. */ if (ifp != NULL) rtdeletemsg(rt, ifp, inp->inp_rtableid); if_put(ifp); } /* * A new route can be allocated * the next time output is attempted. * rtfree() needs to be called in anycase because the inp * is still holding a reference to rt. */ rtfree(rt); } } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ void in_rtchange(struct inpcb *inp, int errno) { if (inp->inp_route.ro_rt) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = NULL; /* * A new route can be allocated the next time * output is attempted. */ } } struct inpcb * in_pcblookup_local_lock(struct inpcbtable *table, const void *laddrp, u_int lport_arg, int flags, u_int rtable, int lock) { struct inpcb *inp, *match = NULL; int matchwild = 3, wildcard; u_int16_t lport = lport_arg; const struct in_addr laddr = *(const struct in_addr *)laddrp; #ifdef INET6 const struct in6_addr *laddr6 = (const struct in6_addr *)laddrp; #endif struct inpcbhead *head; uint64_t lhash; u_int rdomain; rdomain = rtable_l2(rtable); lhash = in_pcblhash(table, rdomain, lport); if (lock == IN_PCBLOCK_GRAB) { mtx_enter(&table->inpt_mtx); } else { KASSERT(lock == IN_PCBLOCK_HOLD); MUTEX_ASSERT_LOCKED(&table->inpt_mtx); } head = &table->inpt_lhashtbl[lhash & table->inpt_lmask]; LIST_FOREACH(inp, head, inp_lhash) { if (rtable_l2(inp->inp_rtableid) != rdomain) continue; if (inp->inp_lport != lport) continue; wildcard = 0; #ifdef INET6 if (ISSET(flags, INPLOOKUP_IPV6)) { KASSERT(ISSET(inp->inp_flags, INP_IPV6)); if (!IN6_IS_ADDR_UNSPECIFIED(&inp->inp_faddr6)) wildcard++; if (!IN6_ARE_ADDR_EQUAL(&inp->inp_laddr6, laddr6)) { if (IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6) || IN6_IS_ADDR_UNSPECIFIED(laddr6)) wildcard++; else continue; } } else #endif /* INET6 */ { KASSERT(!ISSET(inp->inp_flags, INP_IPV6)); if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != laddr.s_addr) { if (inp->inp_laddr.s_addr == INADDR_ANY || laddr.s_addr == INADDR_ANY) wildcard++; else continue; } } if ((!wildcard || (flags & INPLOOKUP_WILDCARD)) && wildcard < matchwild) { match = inp; if ((matchwild = wildcard) == 0) break; } } if (lock == IN_PCBLOCK_GRAB) { in_pcbref(match); mtx_leave(&table->inpt_mtx); } return (match); } struct rtentry * in_pcbrtentry(struct inpcb *inp) { #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) return in6_pcbrtentry(inp); #endif if (inp->inp_faddr.s_addr == INADDR_ANY) return (NULL); return (route_mpath(&inp->inp_route, &inp->inp_faddr, &inp->inp_laddr, inp->inp_rtableid)); } /* * Return an IPv4 address, which is the most appropriate for a given * destination. * If necessary, this function lookups the routing table and returns * an entry to the caller for later use. */ int in_pcbselsrc(struct in_addr *insrc, struct sockaddr_in *sin, struct inpcb *inp) { struct ip_moptions *mopts = inp->inp_moptions; struct rtentry *rt; const struct in_addr *laddr = &inp->inp_laddr; u_int rtableid = inp->inp_rtableid; struct sockaddr *ip4_source = NULL; struct in_ifaddr *ia = NULL; /* * If the socket(if any) is already bound, use that bound address * unless it is INADDR_ANY or INADDR_BROADCAST. */ if (laddr->s_addr != INADDR_ANY && laddr->s_addr != INADDR_BROADCAST) { *insrc = *laddr; return (0); } /* * If the destination address is multicast or limited * broadcast (255.255.255.255) and an outgoing interface has * been set as a multicast option, use the address of that * interface as our source address. */ if ((IN_MULTICAST(sin->sin_addr.s_addr) || sin->sin_addr.s_addr == INADDR_BROADCAST) && mopts != NULL) { struct ifnet *ifp; ifp = if_get(mopts->imo_ifidx); if (ifp != NULL) { if (ifp->if_rdomain == rtable_l2(rtableid)) IFP_TO_IA(ifp, ia); if (ia == NULL) { if_put(ifp); return (EADDRNOTAVAIL); } *insrc = ia->ia_addr.sin_addr; if_put(ifp); return (0); } } /* * If route is known or can be allocated now, * our src addr is taken from the i/f, else punt. */ rt = route_mpath(&inp->inp_route, &sin->sin_addr, NULL, rtableid); /* * If we found a route, use the address * corresponding to the outgoing interface. */ if (rt != NULL) ia = ifatoia(rt->rt_ifa); /* * Use preferred source address if : * - destination is not onlink * - preferred source address is set * - output interface is UP */ if (rt != NULL && !(rt->rt_flags & RTF_LLINFO) && !(rt->rt_flags & RTF_HOST)) { ip4_source = rtable_getsource(rtableid, AF_INET); if (ip4_source != NULL) { struct ifaddr *ifa; if ((ifa = ifa_ifwithaddr(ip4_source, rtableid)) != NULL && ISSET(ifa->ifa_ifp->if_flags, IFF_UP)) { *insrc = satosin(ip4_source)->sin_addr; return (0); } } } if (ia == NULL) return (EADDRNOTAVAIL); *insrc = ia->ia_addr.sin_addr; return (0); } void in_pcbrehash(struct inpcb *inp) { LIST_REMOVE(inp, inp_lhash); LIST_REMOVE(inp, inp_hash); in_pcbhash_insert(inp); } void in_pcbhash_insert(struct inpcb *inp) { struct inpcbtable *table = inp->inp_table; struct inpcbhead *head; uint64_t hash, lhash; MUTEX_ASSERT_LOCKED(&table->inpt_mtx); lhash = in_pcblhash(table, inp->inp_rtableid, inp->inp_lport); head = &table->inpt_lhashtbl[lhash & table->inpt_lmask]; LIST_INSERT_HEAD(head, inp, inp_lhash); #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) hash = in6_pcbhash(table, rtable_l2(inp->inp_rtableid), &inp->inp_faddr6, inp->inp_fport, &inp->inp_laddr6, inp->inp_lport); else #endif hash = in_pcbhash(table, rtable_l2(inp->inp_rtableid), &inp->inp_faddr, inp->inp_fport, &inp->inp_laddr, inp->inp_lport); head = &table->inpt_hashtbl[hash & table->inpt_mask]; LIST_INSERT_HEAD(head, inp, inp_hash); } struct inpcb * in_pcbhash_lookup(struct inpcbtable *table, uint64_t hash, u_int rdomain, const struct in_addr *faddr, u_short fport, const struct in_addr *laddr, u_short lport) { struct inpcbhead *head; struct inpcb *inp; MUTEX_ASSERT_LOCKED(&table->inpt_mtx); head = &table->inpt_hashtbl[hash & table->inpt_mask]; LIST_FOREACH(inp, head, inp_hash) { KASSERT(!ISSET(inp->inp_flags, INP_IPV6)); if (inp->inp_fport == fport && inp->inp_lport == lport && inp->inp_faddr.s_addr == faddr->s_addr && inp->inp_laddr.s_addr == laddr->s_addr && rtable_l2(inp->inp_rtableid) == rdomain) { break; } } if (inp != NULL) { /* * Move this PCB to the head of hash chain so that * repeated accesses are quicker. This is analogous to * the historic single-entry PCB cache. */ if (inp != LIST_FIRST(head)) { LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); } } return (inp); } int in_pcbresize(struct inpcbtable *table, int hashsize) { u_long nmask, nlmask; int osize; void *nhashtbl, *nlhashtbl, *ohashtbl, *olhashtbl; struct inpcb *inp; MUTEX_ASSERT_LOCKED(&table->inpt_mtx); ohashtbl = table->inpt_hashtbl; olhashtbl = table->inpt_lhashtbl; osize = table->inpt_size; nhashtbl = hashinit(hashsize, M_PCB, M_NOWAIT, &nmask); if (nhashtbl == NULL) return ENOBUFS; nlhashtbl = hashinit(hashsize, M_PCB, M_NOWAIT, &nlmask); if (nlhashtbl == NULL) { hashfree(nhashtbl, hashsize, M_PCB); return ENOBUFS; } table->inpt_hashtbl = nhashtbl; table->inpt_lhashtbl = nlhashtbl; table->inpt_mask = nmask; table->inpt_lmask = nlmask; table->inpt_size = hashsize; TAILQ_FOREACH(inp, &table->inpt_queue, inp_queue) { if (in_pcb_is_iterator(inp)) continue; LIST_REMOVE(inp, inp_lhash); LIST_REMOVE(inp, inp_hash); in_pcbhash_insert(inp); } hashfree(ohashtbl, osize, M_PCB); hashfree(olhashtbl, osize, M_PCB); return (0); } #ifdef DIAGNOSTIC int in_pcbnotifymiss = 0; #endif /* * The in(6)_pcblookup functions are used to locate connected sockets * quickly: * faddr.fport <-> laddr.lport * No wildcard matching is done so that listening sockets are not found. * If the functions return NULL in(6)_pcblookup_listen can be used to * find a listening/bound socket that may accept the connection. * After those two lookups no other are necessary. */ struct inpcb * in_pcblookup_lock(struct inpcbtable *table, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, u_int rtable, int lock) { struct inpcb *inp; uint64_t hash; u_int rdomain; rdomain = rtable_l2(rtable); hash = in_pcbhash(table, rdomain, &faddr, fport, &laddr, lport); if (lock == IN_PCBLOCK_GRAB) { mtx_enter(&table->inpt_mtx); } else { KASSERT(lock == IN_PCBLOCK_HOLD); MUTEX_ASSERT_LOCKED(&table->inpt_mtx); } inp = in_pcbhash_lookup(table, hash, rdomain, &faddr, fport, &laddr, lport); if (lock == IN_PCBLOCK_GRAB) { in_pcbref(inp); mtx_leave(&table->inpt_mtx); } #ifdef DIAGNOSTIC if (inp == NULL && in_pcbnotifymiss) { printf("%s: faddr=%08x fport=%d laddr=%08x lport=%d rdom=%u\n", __func__, ntohl(faddr.s_addr), ntohs(fport), ntohl(laddr.s_addr), ntohs(lport), rdomain); } #endif return (inp); } struct inpcb * in_pcblookup(struct inpcbtable *table, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, u_int rtable) { return in_pcblookup_lock(table, faddr, fport, laddr, lport, rtable, IN_PCBLOCK_GRAB); } /* * The in(6)_pcblookup_listen functions are used to locate listening * sockets quickly. This are sockets with unspecified foreign address * and port: * *.* <-> laddr.lport * *.* <-> *.lport */ struct inpcb * in_pcblookup_listen(struct inpcbtable *table, struct in_addr laddr, u_int lport_arg, struct mbuf *m, u_int rtable) { const struct in_addr *key1, *key2; struct inpcb *inp; uint64_t hash; u_int16_t lport = lport_arg; u_int rdomain; key1 = &laddr; key2 = &zeroin_addr; #if NPF > 0 if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED) { struct pf_divert *divert; divert = pf_find_divert(m); KASSERT(divert != NULL); switch (divert->type) { case PF_DIVERT_TO: key1 = key2 = &divert->addr.v4; lport = divert->port; break; case PF_DIVERT_REPLY: return (NULL); default: panic("%s: unknown divert type %d, mbuf %p, divert %p", __func__, divert->type, m, divert); } } else if (m && m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST) { /* * Redirected connections should not be treated the same * as connections directed to 127.0.0.0/8 since localhost * can only be accessed from the host itself. * For example portmap(8) grants more permissions for * connections to the socket bound to 127.0.0.1 than * to the * socket. */ key1 = &zeroin_addr; key2 = &laddr; } #endif rdomain = rtable_l2(rtable); hash = in_pcbhash(table, rdomain, &zeroin_addr, 0, key1, lport); mtx_enter(&table->inpt_mtx); inp = in_pcbhash_lookup(table, hash, rdomain, &zeroin_addr, 0, key1, lport); if (inp == NULL && key1->s_addr != key2->s_addr) { hash = in_pcbhash(table, rdomain, &zeroin_addr, 0, key2, lport); inp = in_pcbhash_lookup(table, hash, rdomain, &zeroin_addr, 0, key2, lport); } in_pcbref(inp); mtx_leave(&table->inpt_mtx); #ifdef DIAGNOSTIC if (inp == NULL && in_pcbnotifymiss) { printf("%s: laddr=%08x lport=%d rdom=%u\n", __func__, ntohl(laddr.s_addr), ntohs(lport), rdomain); } #endif return (inp); } int in_pcbset_rtableid(struct inpcb *inp, u_int rtableid) { struct inpcbtable *table = inp->inp_table; /* table must exist */ if (!rtable_exists(rtableid)) return (EINVAL); mtx_enter(&table->inpt_mtx); if (inp->inp_lport) { mtx_leave(&table->inpt_mtx); return (EBUSY); } inp->inp_rtableid = rtableid; in_pcbrehash(inp); mtx_leave(&table->inpt_mtx); return (0); } void in_pcbset_laddr(struct inpcb *inp, const struct sockaddr *sa, u_int rtableid) { struct inpcbtable *table = inp->inp_table; mtx_enter(&table->inpt_mtx); inp->inp_rtableid = rtableid; #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) { const struct sockaddr_in6 *sin6; KASSERT(sa->sa_family == AF_INET6); sin6 = satosin6_const(sa); inp->inp_lport = sin6->sin6_port; inp->inp_laddr6 = sin6->sin6_addr; } else #endif { const struct sockaddr_in *sin; KASSERT(sa->sa_family == AF_INET); sin = satosin_const(sa); inp->inp_lport = sin->sin_port; inp->inp_laddr = sin->sin_addr; } in_pcbrehash(inp); mtx_leave(&table->inpt_mtx); } void in_pcbunset_faddr(struct inpcb *inp) { struct inpcbtable *table = inp->inp_table; mtx_enter(&table->inpt_mtx); #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) inp->inp_faddr6 = in6addr_any; else #endif inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); mtx_leave(&table->inpt_mtx); } void in_pcbunset_laddr(struct inpcb *inp) { struct inpcbtable *table = inp->inp_table; mtx_enter(&table->inpt_mtx); #ifdef INET6 if (ISSET(inp->inp_flags, INP_IPV6)) { inp->inp_faddr6 = in6addr_any; inp->inp_laddr6 = in6addr_any; } else #endif { inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_laddr.s_addr = INADDR_ANY; } inp->inp_fport = 0; in_pcbrehash(inp); mtx_leave(&table->inpt_mtx); }