/* $OpenBSD: ip_input.c,v 1.242 2014/11/20 11:05:19 mpi Exp $ */ /* $NetBSD: ip_input.c,v 1.30 1996/03/16 23:53:58 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 */ #include "pf.h" #include "carp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NPF > 0 #include #endif #ifdef MROUTING #include #endif #ifdef IPSEC #include #endif /* IPSEC */ #if NCARP > 0 #include #include #endif struct ipqhead ipq; int encdebug = 0; int ipsec_keep_invalid = IPSEC_DEFAULT_EMBRYONIC_SA_TIMEOUT; int ipsec_require_pfs = IPSEC_DEFAULT_PFS; int ipsec_soft_allocations = IPSEC_DEFAULT_SOFT_ALLOCATIONS; int ipsec_exp_allocations = IPSEC_DEFAULT_EXP_ALLOCATIONS; int ipsec_soft_bytes = IPSEC_DEFAULT_SOFT_BYTES; int ipsec_exp_bytes = IPSEC_DEFAULT_EXP_BYTES; int ipsec_soft_timeout = IPSEC_DEFAULT_SOFT_TIMEOUT; int ipsec_exp_timeout = IPSEC_DEFAULT_EXP_TIMEOUT; int ipsec_soft_first_use = IPSEC_DEFAULT_SOFT_FIRST_USE; int ipsec_exp_first_use = IPSEC_DEFAULT_EXP_FIRST_USE; int ipsec_expire_acquire = IPSEC_DEFAULT_EXPIRE_ACQUIRE; char ipsec_def_enc[20]; char ipsec_def_auth[20]; char ipsec_def_comp[20]; /* values controllable via sysctl */ int ipforwarding = 0; int ipmforwarding = 0; int ipmultipath = 0; int ipsendredirects = 1; int ip_dosourceroute = 0; int ip_defttl = IPDEFTTL; int ip_mtudisc = 1; u_int ip_mtudisc_timeout = IPMTUDISCTIMEOUT; int ip_directedbcast = 0; struct rttimer_queue *ip_mtudisc_timeout_q = NULL; /* Keep track of memory used for reassembly */ int ip_maxqueue = 300; int ip_frags = 0; int *ipctl_vars[IPCTL_MAXID] = IPCTL_VARS; struct in_ifaddrhead in_ifaddr; struct ifqueue ipintrq; struct pool ipqent_pool; struct pool ipq_pool; struct ipstat ipstat; void ip_ours(struct mbuf *); int ip_dooptions(struct mbuf *, struct ifnet *); int in_ouraddr(struct mbuf *, struct ifnet *, struct in_addr); void ip_forward(struct mbuf *, struct ifnet *, int); /* * Used to save the IP options in case a protocol wants to respond * to an incoming packet over the same route if the packet got here * using IP source routing. This allows connection establishment and * maintenance when the remote end is on a network that is not known * to us. */ struct ip_srcrt { int isr_nhops; /* number of hops */ struct in_addr isr_dst; /* final destination */ char isr_nop; /* one NOP to align */ char isr_hdr[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN & OFFSET */ struct in_addr isr_routes[MAX_IPOPTLEN/sizeof(struct in_addr)]; }; void save_rte(struct mbuf *, u_char *, struct in_addr); /* * IP initialization: fill in IP protocol switch table. * All protocols not implemented in kernel go to raw IP protocol handler. */ void ip_init(void) { struct protosw *pr; int i; const u_int16_t defbaddynamicports_tcp[] = DEFBADDYNAMICPORTS_TCP; const u_int16_t defbaddynamicports_udp[] = DEFBADDYNAMICPORTS_UDP; pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqe", NULL); pool_init(&ipq_pool, sizeof(struct ipq), 0, 0, 0, "ipq", NULL); pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == 0) panic("ip_init"); for (i = 0; i < IPPROTO_MAX; i++) ip_protox[i] = pr - inetsw; for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW && pr->pr_protocol < IPPROTO_MAX) ip_protox[pr->pr_protocol] = pr - inetsw; LIST_INIT(&ipq); IFQ_SET_MAXLEN(&ipintrq, IFQ_MAXLEN); TAILQ_INIT(&in_ifaddr); if (ip_mtudisc != 0) ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout); /* Fill in list of ports not to allocate dynamically. */ memset(&baddynamicports, 0, sizeof(baddynamicports)); for (i = 0; defbaddynamicports_tcp[i] != 0; i++) DP_SET(baddynamicports.tcp, defbaddynamicports_tcp[i]); for (i = 0; defbaddynamicports_udp[i] != 0; i++) DP_SET(baddynamicports.udp, defbaddynamicports_udp[i]); strlcpy(ipsec_def_enc, IPSEC_DEFAULT_DEF_ENC, sizeof(ipsec_def_enc)); strlcpy(ipsec_def_auth, IPSEC_DEFAULT_DEF_AUTH, sizeof(ipsec_def_auth)); strlcpy(ipsec_def_comp, IPSEC_DEFAULT_DEF_COMP, sizeof(ipsec_def_comp)); } struct route ipforward_rt; void ipintr(void) { struct mbuf *m; int s; for (;;) { /* * Get next datagram off input queue and get IP header * in first mbuf. */ s = splnet(); IF_DEQUEUE(&ipintrq, m); splx(s); if (m == NULL) return; #ifdef DIAGNOSTIC if ((m->m_flags & M_PKTHDR) == 0) panic("ipintr no HDR"); #endif ipv4_input(m); } } /* * IPv4 input routine. * * Checksum and byte swap header. Process options. Forward or deliver. */ void ipv4_input(struct mbuf *m) { struct ifnet *ifp; struct ip *ip; int hlen, len; in_addr_t pfrdr = 0; #ifdef IPSEC int error; struct tdb *tdb; struct tdb_ident *tdbi; struct m_tag *mtag; #endif /* IPSEC */ ifp = m->m_pkthdr.rcvif; ipstat.ips_total++; if (m->m_len < sizeof (struct ip) && (m = m_pullup(m, sizeof (struct ip))) == NULL) { ipstat.ips_toosmall++; return; } ip = mtod(m, struct ip *); if (ip->ip_v != IPVERSION) { ipstat.ips_badvers++; goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) { /* minimum header length */ ipstat.ips_badhlen++; goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == NULL) { ipstat.ips_badhlen++; return; } ip = mtod(m, struct ip *); } /* 127/8 must not appear on wire - RFC1122 */ if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { if ((ifp->if_flags & IFF_LOOPBACK) == 0) { ipstat.ips_badaddr++; goto bad; } } if ((m->m_pkthdr.csum_flags & M_IPV4_CSUM_IN_OK) == 0) { if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_IN_BAD) { ipstat.ips_badsum++; goto bad; } ipstat.ips_inswcsum++; if (in_cksum(m, hlen) != 0) { ipstat.ips_badsum++; goto bad; } } /* Retrieve the packet length. */ len = ntohs(ip->ip_len); /* * Convert fields to host representation. */ if (len < hlen) { ipstat.ips_badlen++; goto bad; } /* * Check that the amount of data in the buffers * is at least as much as the IP header would have us expect. * Trim mbufs if longer than we expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < len) { ipstat.ips_tooshort++; goto bad; } if (m->m_pkthdr.len > len) { if (m->m_len == m->m_pkthdr.len) { m->m_len = len; m->m_pkthdr.len = len; } else m_adj(m, len - m->m_pkthdr.len); } #if NCARP > 0 if (ifp->if_type == IFT_CARP && ip->ip_p != IPPROTO_ICMP && carp_lsdrop(m, AF_INET, &ip->ip_src.s_addr, &ip->ip_dst.s_addr)) goto bad; #endif #if NPF > 0 /* * Packet filter */ pfrdr = ip->ip_dst.s_addr; if (pf_test(AF_INET, PF_IN, ifp, &m, NULL) != PF_PASS) goto bad; if (m == NULL) return; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; pfrdr = (pfrdr != ip->ip_dst.s_addr); #endif /* * Process options and, if not destined for us, * ship it on. ip_dooptions returns 1 when an * error was detected (causing an icmp message * to be sent and the original packet to be freed). */ if (hlen > sizeof (struct ip) && ip_dooptions(m, ifp)) { return; } if (in_ouraddr(m, ifp, ip->ip_dst)) { ip_ours(m); return; } if (IN_MULTICAST(ip->ip_dst.s_addr)) { struct in_multi *inm; /* * Make sure M_MCAST is set. It should theoretically * already be there, but let's play safe because upper * layers check for this flag. */ m->m_flags |= M_MCAST; #ifdef MROUTING if (ipmforwarding && ip_mrouter) { if (m->m_flags & M_EXT) { if ((m = m_pullup(m, hlen)) == NULL) { ipstat.ips_toosmall++; return; } ip = mtod(m, struct ip *); } /* * If we are acting as a multicast router, all * incoming multicast packets are passed to the * kernel-level multicast forwarding function. * The packet is returned (relatively) intact; if * ip_mforward() returns a non-zero value, the packet * must be discarded, else it may be accepted below. * * (The IP ident field is put in the same byte order * as expected when ip_mforward() is called from * ip_output().) */ if (ip_mforward(m, ifp) != 0) { ipstat.ips_cantforward++; goto bad; } /* * The process-level routing daemon needs to receive * all multicast IGMP packets, whether or not this * host belongs to their destination groups. */ if (ip->ip_p == IPPROTO_IGMP) { ip_ours(m); return; } ipstat.ips_forward++; } #endif /* * See if we belong to the destination multicast group on the * arrival interface. */ IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm); if (inm == NULL) { ipstat.ips_notmember++; if (!IN_LOCAL_GROUP(ip->ip_dst.s_addr)) ipstat.ips_cantforward++; goto bad; } ip_ours(m); return; } if (ip->ip_dst.s_addr == INADDR_BROADCAST || ip->ip_dst.s_addr == INADDR_ANY) { ip_ours(m); return; } #if NCARP > 0 if (ifp->if_type == IFT_CARP && ip->ip_p == IPPROTO_ICMP && carp_lsdrop(m, AF_INET, &ip->ip_src.s_addr, &ip->ip_dst.s_addr)) goto bad; #endif /* * Not for us; forward if possible and desirable. */ if (ipforwarding == 0) { ipstat.ips_cantforward++; goto bad; } #ifdef IPSEC if (ipsec_in_use) { /* * IPsec policy check for forwarded packets. Look at * inner-most IPsec SA used. */ mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL); if (mtag != NULL) { tdbi = (struct tdb_ident *)(mtag + 1); tdb = gettdb(tdbi->rdomain, tdbi->spi, &tdbi->dst, tdbi->proto); } else tdb = NULL; ipsp_spd_lookup(m, AF_INET, hlen, &error, IPSP_DIRECTION_IN, tdb, NULL, 0); /* Error or otherwise drop-packet indication */ if (error) { ipstat.ips_cantforward++; goto bad; } /* * Fall through, forward packet. Outbound IPsec policy * checking will occur in ip_output(). */ } #endif /* IPSEC */ ip_forward(m, ifp, pfrdr); return; bad: m_freem(m); } /* * IPv4 local-delivery routine. * * If fragmented try to reassemble. Pass to next level. */ void ip_ours(struct mbuf *m) { struct ip *ip = mtod(m, struct ip *); struct ipq *fp; struct ipqent *ipqe; int mff, hlen; #ifdef IPSEC int error; struct tdb *tdb; struct tdb_ident *tdbi; struct m_tag *mtag; #endif /* IPSEC */ hlen = ip->ip_hl << 2; /* pf might have modified stuff, might have to chksum */ in_proto_cksum_out(m, NULL); /* * If offset or IP_MF are set, must reassemble. * Otherwise, nothing need be done. * (We could look in the reassembly queue to see * if the packet was previously fragmented, * but it's not worth the time; just let them time out.) */ if (ip->ip_off &~ htons(IP_DF | IP_RF)) { if (m->m_flags & M_EXT) { /* XXX */ if ((m = m_pullup(m, hlen)) == NULL) { ipstat.ips_toosmall++; return; } ip = mtod(m, struct ip *); } /* * Look for queue of fragments * of this datagram. */ LIST_FOREACH(fp, &ipq, ipq_q) if (ip->ip_id == fp->ipq_id && ip->ip_src.s_addr == fp->ipq_src.s_addr && ip->ip_dst.s_addr == fp->ipq_dst.s_addr && ip->ip_p == fp->ipq_p) goto found; fp = 0; found: /* * Adjust ip_len to not reflect header, * set ipqe_mff if more fragments are expected, * convert offset of this to bytes. */ ip->ip_len = htons(ntohs(ip->ip_len) - hlen); mff = (ip->ip_off & htons(IP_MF)) != 0; if (mff) { /* * Make sure that fragments have a data length * that's a non-zero multiple of 8 bytes. */ if (ntohs(ip->ip_len) == 0 || (ntohs(ip->ip_len) & 0x7) != 0) { ipstat.ips_badfrags++; goto bad; } } ip->ip_off = htons(ntohs(ip->ip_off) << 3); /* * If datagram marked as having more fragments * or if this is not the first fragment, * attempt reassembly; if it succeeds, proceed. */ if (mff || ip->ip_off) { ipstat.ips_fragments++; if (ip_frags + 1 > ip_maxqueue) { ip_flush(); ipstat.ips_rcvmemdrop++; goto bad; } ipqe = pool_get(&ipqent_pool, PR_NOWAIT); if (ipqe == NULL) { ipstat.ips_rcvmemdrop++; goto bad; } ip_frags++; ipqe->ipqe_mff = mff; ipqe->ipqe_m = m; ipqe->ipqe_ip = ip; m = ip_reass(ipqe, fp); if (m == 0) { return; } ipstat.ips_reassembled++; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; ip->ip_len = htons(ntohs(ip->ip_len) + hlen); } else if (fp) ip_freef(fp); } #ifdef IPSEC if (!ipsec_in_use) goto skipipsec; /* * If it's a protected packet for us, skip the policy check. * That's because we really only care about the properties of * the protected packet, and not the intermediate versions. * While this is not the most paranoid setting, it allows * some flexibility in handling nested tunnels (in setting up * the policies). */ if ((ip->ip_p == IPPROTO_ESP) || (ip->ip_p == IPPROTO_AH) || (ip->ip_p == IPPROTO_IPCOMP)) goto skipipsec; /* * If the protected packet was tunneled, then we need to * verify the protected packet's information, not the * external headers. Thus, skip the policy lookup for the * external packet, and keep the IPsec information linked on * the packet header (the encapsulation routines know how * to deal with that). */ if ((ip->ip_p == IPPROTO_IPIP) || (ip->ip_p == IPPROTO_IPV6)) goto skipipsec; /* * If the protected packet is TCP or UDP, we'll do the * policy check in the respective input routine, so we can * check for bypass sockets. */ if ((ip->ip_p == IPPROTO_TCP) || (ip->ip_p == IPPROTO_UDP)) goto skipipsec; /* * IPsec policy check for local-delivery packets. Look at the * inner-most SA that protected the packet. This is in fact * a bit too restrictive (it could end up causing packets to * be dropped that semantically follow the policy, e.g., in * certain SA-bundle configurations); but the alternative is * very complicated (and requires keeping track of what * kinds of tunneling headers have been seen in-between the * IPsec headers), and I don't think we lose much functionality * that's needed in the real world (who uses bundles anyway ?). */ mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL); if (mtag) { tdbi = (struct tdb_ident *)(mtag + 1); tdb = gettdb(tdbi->rdomain, tdbi->spi, &tdbi->dst, tdbi->proto); } else tdb = NULL; ipsp_spd_lookup(m, AF_INET, hlen, &error, IPSP_DIRECTION_IN, tdb, NULL, 0); /* Error or otherwise drop-packet indication. */ if (error) { ipstat.ips_cantforward++; goto bad; } skipipsec: /* Otherwise, just fall through and deliver the packet */ #endif /* IPSEC */ /* * Switch out to protocol's input routine. */ ipstat.ips_delivered++; (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, NULL, 0); return; bad: m_freem(m); } int in_ouraddr(struct mbuf *m, struct ifnet *ifp, struct in_addr ina) { struct in_ifaddr *ia = NULL; struct rtentry *rt; struct sockaddr_in sin; #if NPF > 0 struct pf_state_key *key; if (m->m_pkthdr.pf.flags & PF_TAG_DIVERTED) return (1); key = m->m_pkthdr.pf.statekey; if (key != NULL) { if (key->inp != NULL) return (1); /* If we have linked state keys it is certainly forwarded. */ if (key->reverse != NULL) return (0); } #endif memset(&sin, 0, sizeof(sin)); sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; sin.sin_addr = ina; rt = rtalloc(sintosa(&sin), 0, m->m_pkthdr.ph_rtableid); if (rt != NULL) { if (rt->rt_flags & (RTF_LOCAL|RTF_BROADCAST)) ia = ifatoia(rt->rt_ifa); rtfree(rt); } if (ia == NULL) { struct ifaddr *ifa; /* * No local address or broadcast address found, so check for * ancient classful broadcast addresses. * It must have been broadcast on the link layer, and for an * address on the interface it was received on. */ if (!ISSET(m->m_flags, M_BCAST) || !IN_CLASSFULBROADCAST(ina.s_addr, ina.s_addr)) return (0); if (ifp->if_rdomain != rtable_l2(m->m_pkthdr.ph_rtableid)) return (0); /* * The check in the loop assumes you only rx a packet on an UP * interface, and that M_BCAST will only be set on a BROADCAST * interface. */ TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { if (ifa->ifa_addr->sa_family != AF_INET) continue; if (IN_CLASSFULBROADCAST(ina.s_addr, ifatoia(ifa)->ia_addr.sin_addr.s_addr)) return (1); } return (0); } if (ina.s_addr != ia->ia_addr.sin_addr.s_addr) { /* * This matches a broadcast address on one of our interfaces. * If directedbcast is enabled we only consider it local if it * is received on the interface with that address. */ if (ip_directedbcast && ia->ia_ifp != ifp) return (0); /* Make sure M_BCAST is set */ if (m) m->m_flags |= M_BCAST; } return (ISSET(ia->ia_ifp->if_flags, IFF_UP)); } /* * Take incoming datagram fragment and try to * reassemble it into whole datagram. If a chain for * reassembly of this datagram already exists, then it * is given as fp; otherwise have to make a chain. */ struct mbuf * ip_reass(struct ipqent *ipqe, struct ipq *fp) { struct mbuf *m = ipqe->ipqe_m; struct ipqent *nq, *p, *q; struct ip *ip; struct mbuf *t; int hlen = ipqe->ipqe_ip->ip_hl << 2; int i, next; u_int8_t ecn, ecn0; /* * Presence of header sizes in mbufs * would confuse code below. */ m->m_data += hlen; m->m_len -= hlen; /* * If first fragment to arrive, create a reassembly queue. */ if (fp == NULL) { fp = pool_get(&ipq_pool, PR_NOWAIT); if (fp == NULL) goto dropfrag; LIST_INSERT_HEAD(&ipq, fp, ipq_q); fp->ipq_ttl = IPFRAGTTL; fp->ipq_p = ipqe->ipqe_ip->ip_p; fp->ipq_id = ipqe->ipqe_ip->ip_id; LIST_INIT(&fp->ipq_fragq); fp->ipq_src = ipqe->ipqe_ip->ip_src; fp->ipq_dst = ipqe->ipqe_ip->ip_dst; p = NULL; goto insert; } /* * Handle ECN by comparing this segment with the first one; * if CE is set, do not lose CE. * drop if CE and not-ECT are mixed for the same packet. */ ecn = ipqe->ipqe_ip->ip_tos & IPTOS_ECN_MASK; ecn0 = LIST_FIRST(&fp->ipq_fragq)->ipqe_ip->ip_tos & IPTOS_ECN_MASK; if (ecn == IPTOS_ECN_CE) { if (ecn0 == IPTOS_ECN_NOTECT) goto dropfrag; if (ecn0 != IPTOS_ECN_CE) LIST_FIRST(&fp->ipq_fragq)->ipqe_ip->ip_tos |= IPTOS_ECN_CE; } if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) goto dropfrag; /* * Find a segment which begins after this one does. */ for (p = NULL, q = LIST_FIRST(&fp->ipq_fragq); q != NULL; p = q, q = LIST_NEXT(q, ipqe_q)) if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off)) break; /* * If there is a preceding segment, it may provide some of * our data already. If so, drop the data from the incoming * segment. If it provides all of our data, drop us. */ if (p != NULL) { i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) - ntohs(ipqe->ipqe_ip->ip_off); if (i > 0) { if (i >= ntohs(ipqe->ipqe_ip->ip_len)) goto dropfrag; m_adj(ipqe->ipqe_m, i); ipqe->ipqe_ip->ip_off = htons(ntohs(ipqe->ipqe_ip->ip_off) + i); ipqe->ipqe_ip->ip_len = htons(ntohs(ipqe->ipqe_ip->ip_len) - i); } } /* * While we overlap succeeding segments trim them or, * if they are completely covered, dequeue them. */ for (; q != NULL && ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) > ntohs(q->ipqe_ip->ip_off); q = nq) { i = (ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off); if (i < ntohs(q->ipqe_ip->ip_len)) { q->ipqe_ip->ip_len = htons(ntohs(q->ipqe_ip->ip_len) - i); q->ipqe_ip->ip_off = htons(ntohs(q->ipqe_ip->ip_off) + i); m_adj(q->ipqe_m, i); break; } nq = LIST_NEXT(q, ipqe_q); m_freem(q->ipqe_m); LIST_REMOVE(q, ipqe_q); pool_put(&ipqent_pool, q); ip_frags--; } insert: /* * Stick new segment in its place; * check for complete reassembly. */ if (p == NULL) { LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q); } else { LIST_INSERT_AFTER(p, ipqe, ipqe_q); } next = 0; for (p = NULL, q = LIST_FIRST(&fp->ipq_fragq); q != NULL; p = q, q = LIST_NEXT(q, ipqe_q)) { if (ntohs(q->ipqe_ip->ip_off) != next) return (0); next += ntohs(q->ipqe_ip->ip_len); } if (p->ipqe_mff) return (0); /* * Reassembly is complete. Check for a bogus message size and * concatenate fragments. */ q = LIST_FIRST(&fp->ipq_fragq); ip = q->ipqe_ip; if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) { ipstat.ips_toolong++; ip_freef(fp); return (0); } m = q->ipqe_m; t = m->m_next; m->m_next = 0; m_cat(m, t); nq = LIST_NEXT(q, ipqe_q); pool_put(&ipqent_pool, q); ip_frags--; for (q = nq; q != NULL; q = nq) { t = q->ipqe_m; nq = LIST_NEXT(q, ipqe_q); pool_put(&ipqent_pool, q); ip_frags--; m_cat(m, t); } /* * Create header for new ip packet by * modifying header of first packet; * dequeue and discard fragment reassembly header. * Make header visible. */ ip->ip_len = htons(next); ip->ip_src = fp->ipq_src; ip->ip_dst = fp->ipq_dst; LIST_REMOVE(fp, ipq_q); pool_put(&ipq_pool, fp); m->m_len += (ip->ip_hl << 2); m->m_data -= (ip->ip_hl << 2); /* some debugging cruft by sklower, below, will go away soon */ if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ int plen = 0; for (t = m; t; t = t->m_next) plen += t->m_len; m->m_pkthdr.len = plen; } return (m); dropfrag: ipstat.ips_fragdropped++; m_freem(m); pool_put(&ipqent_pool, ipqe); ip_frags--; return (0); } /* * Free a fragment reassembly header and all * associated datagrams. */ void ip_freef(struct ipq *fp) { struct ipqent *q, *p; for (q = LIST_FIRST(&fp->ipq_fragq); q != NULL; q = p) { p = LIST_NEXT(q, ipqe_q); m_freem(q->ipqe_m); LIST_REMOVE(q, ipqe_q); pool_put(&ipqent_pool, q); ip_frags--; } LIST_REMOVE(fp, ipq_q); pool_put(&ipq_pool, fp); } /* * IP timer processing; * if a timer expires on a reassembly queue, discard it. * clear the forwarding cache, there might be a better route. */ void ip_slowtimo(void) { struct ipq *fp, *nfp; int s = splsoftnet(); for (fp = LIST_FIRST(&ipq); fp != NULL; fp = nfp) { nfp = LIST_NEXT(fp, ipq_q); if (--fp->ipq_ttl == 0) { ipstat.ips_fragtimeout++; ip_freef(fp); } } if (ipforward_rt.ro_rt) { rtfree(ipforward_rt.ro_rt); ipforward_rt.ro_rt = NULL; } splx(s); } /* * Drain off all datagram fragments. */ void ip_drain(void) { while (!LIST_EMPTY(&ipq)) { ipstat.ips_fragdropped++; ip_freef(LIST_FIRST(&ipq)); } } /* * Flush a bunch of datagram fragments, till we are down to 75%. */ void ip_flush(void) { int max = 50; /* ipq already locked */ while (!LIST_EMPTY(&ipq) && ip_frags > ip_maxqueue * 3 / 4 && --max) { ipstat.ips_fragdropped++; ip_freef(LIST_FIRST(&ipq)); } } /* * Do option processing on a datagram, * possibly discarding it if bad options are encountered, * or forwarding it if source-routed. * Returns 1 if packet has been forwarded/freed, * 0 if the packet should be processed further. */ int ip_dooptions(struct mbuf *m, struct ifnet *ifp) { struct ip *ip = mtod(m, struct ip *); struct sockaddr_in ipaddr; u_char *cp; struct ip_timestamp ipt; struct in_ifaddr *ia; int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; struct in_addr sin, dst; u_int32_t ntime; dst = ip->ip_dst; cp = (u_char *)(ip + 1); cnt = (ip->ip_hl << 2) - sizeof (struct ip); for (; cnt > 0; cnt -= optlen, cp += optlen) { opt = cp[IPOPT_OPTVAL]; if (opt == IPOPT_EOL) break; if (opt == IPOPT_NOP) optlen = 1; else { if (cnt < IPOPT_OLEN + sizeof(*cp)) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } optlen = cp[IPOPT_OLEN]; if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } } switch (opt) { default: break; /* * Source routing with record. * Find interface with current destination address. * If none on this machine then drop if strictly routed, * or do nothing if loosely routed. * Record interface address and bring up next address * component. If strictly routed make sure next * address is on directly accessible net. */ case IPOPT_LSRR: case IPOPT_SSRR: if (!ip_dosourceroute) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { code = &cp[IPOPT_OFFSET] - (u_char *)ip; goto bad; } memset(&ipaddr, 0, sizeof(ipaddr)); ipaddr.sin_family = AF_INET; ipaddr.sin_len = sizeof(ipaddr); ipaddr.sin_addr = ip->ip_dst; ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr), m->m_pkthdr.ph_rtableid)); if (ia == 0) { if (opt == IPOPT_SSRR) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } /* * Loose routing, and not at next destination * yet; nothing to do except forward. */ break; } off--; /* 0 origin */ if ((off + sizeof(struct in_addr)) > optlen) { /* * End of source route. Should be for us. */ save_rte(m, cp, ip->ip_src); break; } /* * locate outgoing interface */ memset(&ipaddr, 0, sizeof(ipaddr)); ipaddr.sin_family = AF_INET; ipaddr.sin_len = sizeof(ipaddr); memcpy(&ipaddr.sin_addr, cp + off, sizeof(ipaddr.sin_addr)); if (opt == IPOPT_SSRR) { if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(&ipaddr), m->m_pkthdr.ph_rtableid))) == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(&ipaddr), m->m_pkthdr.ph_rtableid)); } else /* keep packet in the virtual instance */ ia = ip_rtaddr(ipaddr.sin_addr, m->m_pkthdr.ph_rtableid); if (ia == 0) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } ip->ip_dst = ipaddr.sin_addr; memcpy(cp + off, &ia->ia_addr.sin_addr, sizeof(struct in_addr)); cp[IPOPT_OFFSET] += sizeof(struct in_addr); /* * Let ip_intr's mcast routing check handle mcast pkts */ forward = !IN_MULTICAST(ip->ip_dst.s_addr); break; case IPOPT_RR: if (optlen < IPOPT_OFFSET + sizeof(*cp)) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { code = &cp[IPOPT_OFFSET] - (u_char *)ip; goto bad; } /* * If no space remains, ignore. */ off--; /* 0 origin */ if ((off + sizeof(struct in_addr)) > optlen) break; memset(&ipaddr, 0, sizeof(ipaddr)); ipaddr.sin_family = AF_INET; ipaddr.sin_len = sizeof(ipaddr); ipaddr.sin_addr = ip->ip_dst; /* * locate outgoing interface; if we're the destination, * use the incoming interface (should be same). * Again keep the packet inside the virtual instance. */ if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr), m->m_pkthdr.ph_rtableid))) == 0 && (ia = ip_rtaddr(ipaddr.sin_addr, m->m_pkthdr.ph_rtableid)) == 0) { type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; goto bad; } memcpy(cp + off, &ia->ia_addr.sin_addr, sizeof(struct in_addr)); cp[IPOPT_OFFSET] += sizeof(struct in_addr); break; case IPOPT_TS: code = cp - (u_char *)ip; if (optlen < sizeof(struct ip_timestamp)) goto bad; memcpy(&ipt, cp, sizeof(struct ip_timestamp)); if (ipt.ipt_ptr < 5 || ipt.ipt_len < 5) goto bad; if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) > ipt.ipt_len) { if (++ipt.ipt_oflw == 0) goto bad; break; } memcpy(&sin, cp + ipt.ipt_ptr - 1, sizeof sin); switch (ipt.ipt_flg) { case IPOPT_TS_TSONLY: break; case IPOPT_TS_TSANDADDR: if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) + sizeof(struct in_addr) > ipt.ipt_len) goto bad; memset(&ipaddr, 0, sizeof(ipaddr)); ipaddr.sin_family = AF_INET; ipaddr.sin_len = sizeof(ipaddr); ipaddr.sin_addr = dst; ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr), ifp)); if (ia == 0) continue; memcpy(&sin, &ia->ia_addr.sin_addr, sizeof(struct in_addr)); ipt.ipt_ptr += sizeof(struct in_addr); break; case IPOPT_TS_PRESPEC: if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) + sizeof(struct in_addr) > ipt.ipt_len) goto bad; memset(&ipaddr, 0, sizeof(ipaddr)); ipaddr.sin_family = AF_INET; ipaddr.sin_len = sizeof(ipaddr); ipaddr.sin_addr = sin; if (ifa_ifwithaddr(sintosa(&ipaddr), m->m_pkthdr.ph_rtableid) == 0) continue; ipt.ipt_ptr += sizeof(struct in_addr); break; default: /* XXX can't take &ipt->ipt_flg */ code = (u_char *)&ipt.ipt_ptr - (u_char *)ip + 1; goto bad; } ntime = iptime(); memcpy(cp + ipt.ipt_ptr - 1, &ntime, sizeof(u_int32_t)); ipt.ipt_ptr += sizeof(u_int32_t); } } if (forward && ipforwarding) { ip_forward(m, ifp, 1); return (1); } return (0); bad: icmp_error(m, type, code, 0, 0); ipstat.ips_badoptions++; return (1); } /* * Given address of next destination (final or next hop), * return internet address info of interface to be used to get there. */ struct in_ifaddr * ip_rtaddr(struct in_addr dst, u_int rtableid) { struct sockaddr_in *sin; sin = satosin(&ipforward_rt.ro_dst); if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) { if (ipforward_rt.ro_rt) { rtfree(ipforward_rt.ro_rt); ipforward_rt.ro_rt = NULL; } sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = dst; ipforward_rt.ro_rt = rtalloc(&ipforward_rt.ro_dst, RT_REPORT|RT_RESOLVE, rtableid); } if (ipforward_rt.ro_rt == 0) return (NULL); return (ifatoia(ipforward_rt.ro_rt->rt_ifa)); } /* * Save incoming source route for use in replies, * to be picked up later by ip_srcroute if the receiver is interested. */ void save_rte(struct mbuf *m, u_char *option, struct in_addr dst) { struct ip_srcrt *isr; struct m_tag *mtag; unsigned olen; olen = option[IPOPT_OLEN]; if (olen > sizeof(isr->isr_hdr) + sizeof(isr->isr_routes)) return; mtag = m_tag_get(PACKET_TAG_SRCROUTE, sizeof(*isr), M_NOWAIT); if (mtag == NULL) return; isr = (struct ip_srcrt *)(mtag + 1); memcpy(isr->isr_hdr, option, olen); isr->isr_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); isr->isr_dst = dst; m_tag_prepend(m, mtag); } /* * Retrieve incoming source route for use in replies, * in the same form used by setsockopt. * The first hop is placed before the options, will be removed later. */ struct mbuf * ip_srcroute(struct mbuf *m0) { struct in_addr *p, *q; struct mbuf *m; struct ip_srcrt *isr; struct m_tag *mtag; if (!ip_dosourceroute) return (NULL); mtag = m_tag_find(m0, PACKET_TAG_SRCROUTE, NULL); if (mtag == NULL) return (NULL); isr = (struct ip_srcrt *)(mtag + 1); if (isr->isr_nhops == 0) return (NULL); m = m_get(M_DONTWAIT, MT_SOOPTS); if (m == NULL) return (NULL); #define OPTSIZ (sizeof(isr->isr_nop) + sizeof(isr->isr_hdr)) /* length is (nhops+1)*sizeof(addr) + sizeof(nop + header) */ m->m_len = (isr->isr_nhops + 1) * sizeof(struct in_addr) + OPTSIZ; /* * First save first hop for return route */ p = &(isr->isr_routes[isr->isr_nhops - 1]); *(mtod(m, struct in_addr *)) = *p--; /* * Copy option fields and padding (nop) to mbuf. */ isr->isr_nop = IPOPT_NOP; isr->isr_hdr[IPOPT_OFFSET] = IPOPT_MINOFF; memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &isr->isr_nop, OPTSIZ); q = (struct in_addr *)(mtod(m, caddr_t) + sizeof(struct in_addr) + OPTSIZ); #undef OPTSIZ /* * Record return path as an IP source route, * reversing the path (pointers are now aligned). */ while (p >= isr->isr_routes) { *q++ = *p--; } /* * Last hop goes to final destination. */ *q = isr->isr_dst; m_tag_delete(m0, (struct m_tag *)isr); return (m); } /* * Strip out IP options, at higher level protocol in the kernel. */ void ip_stripoptions(struct mbuf *m) { int i; struct ip *ip = mtod(m, struct ip *); caddr_t opts; int olen; olen = (ip->ip_hl<<2) - sizeof (struct ip); opts = (caddr_t)(ip + 1); i = m->m_len - (sizeof (struct ip) + olen); memmove(opts, opts + olen, i); m->m_len -= olen; if (m->m_flags & M_PKTHDR) m->m_pkthdr.len -= olen; ip->ip_hl = sizeof(struct ip) >> 2; ip->ip_len = htons(ntohs(ip->ip_len) - olen); } int inetctlerrmap[PRC_NCMDS] = { 0, 0, 0, 0, 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, EMSGSIZE, EHOSTUNREACH, 0, 0, 0, 0, 0, 0, ENOPROTOOPT }; /* * Forward a packet. If some error occurs return the sender * an icmp packet. Note we can't always generate a meaningful * icmp message because icmp doesn't have a large enough repertoire * of codes and types. * * If not forwarding, just drop the packet. This could be confusing * if ipforwarding was zero but some routing protocol was advancing * us as a gateway to somewhere. However, we must let the routing * protocol deal with that. * * The srcrt parameter indicates whether the packet is being forwarded * via a source route. */ void ip_forward(struct mbuf *m, struct ifnet *ifp, int srcrt) { struct mbuf mfake, *mcopy = NULL; struct ip *ip = mtod(m, struct ip *); struct sockaddr_in *sin; struct rtentry *rt; int error, type = 0, code = 0, destmtu = 0, fake = 0, len; u_int rtableid = 0; u_int32_t dest; dest = 0; if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { ipstat.ips_cantforward++; m_freem(m); return; } if (ip->ip_ttl <= IPTTLDEC) { icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0); return; } rtableid = m->m_pkthdr.ph_rtableid; sin = satosin(&ipforward_rt.ro_dst); if ((rt = ipforward_rt.ro_rt) == NULL || ip->ip_dst.s_addr != sin->sin_addr.s_addr || rtableid != ipforward_rt.ro_tableid) { if (ipforward_rt.ro_rt) { rtfree(ipforward_rt.ro_rt); ipforward_rt.ro_rt = NULL; } sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = ip->ip_dst; ipforward_rt.ro_tableid = rtableid; ipforward_rt.ro_rt = rtalloc_mpath(&ipforward_rt.ro_dst, &ip->ip_src.s_addr, ipforward_rt.ro_tableid); if (ipforward_rt.ro_rt == 0) { icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0); return; } rt = ipforward_rt.ro_rt; } /* * Save at most 68 bytes of the packet in case * we need to generate an ICMP message to the src. * The data is saved in the mbuf on the stack that * acts as a temporary storage not intended to be * passed down the IP stack or to the mfree. */ memset(&mfake.m_hdr, 0, sizeof(mfake.m_hdr)); mfake.m_type = m->m_type; if (m_dup_pkthdr(&mfake, m, M_DONTWAIT) == 0) { mfake.m_data = mfake.m_pktdat; len = min(ntohs(ip->ip_len), 68); m_copydata(m, 0, len, mfake.m_pktdat); mfake.m_pkthdr.len = mfake.m_len = len; fake = 1; } ip->ip_ttl -= IPTTLDEC; /* * If forwarding packet using same interface that it came in on, * perhaps should send a redirect to sender to shortcut a hop. * Only send redirect if source is sending directly to us, * and if packet was not source routed (or has any options). * Also, don't send redirect if forwarding using a default route * or a route modified by a redirect. * Don't send redirect if we advertise destination's arp address * as ours (proxy arp). */ if (rt->rt_ifp == ifp && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && satosin(rt_key(rt))->sin_addr.s_addr != 0 && ipsendredirects && !srcrt && !arpproxy(satosin(rt_key(rt))->sin_addr, m->m_pkthdr.ph_rtableid)) { if (rt->rt_ifa && (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_netmask) == ifatoia(rt->rt_ifa)->ia_net) { if (rt->rt_flags & RTF_GATEWAY) dest = satosin(rt->rt_gateway)->sin_addr.s_addr; else dest = ip->ip_dst.s_addr; /* Router requirements says to only send host redirects */ type = ICMP_REDIRECT; code = ICMP_REDIRECT_HOST; } } error = ip_output(m, NULL, &ipforward_rt, (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), NULL, NULL, 0); if (error) ipstat.ips_cantforward++; else { ipstat.ips_forward++; if (type) ipstat.ips_redirectsent++; else goto freecopy; } if (!fake) goto freert; switch (error) { case 0: /* forwarded, but need redirect */ /* type, code set above */ break; case ENETUNREACH: /* shouldn't happen, checked above */ case EHOSTUNREACH: case ENETDOWN: case EHOSTDOWN: default: type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; break; case EMSGSIZE: type = ICMP_UNREACH; code = ICMP_UNREACH_NEEDFRAG; #ifdef IPSEC if (ipforward_rt.ro_rt) { struct rtentry *rt = ipforward_rt.ro_rt; if (rt->rt_rmx.rmx_mtu) destmtu = rt->rt_rmx.rmx_mtu; else destmtu = ipforward_rt.ro_rt->rt_ifp->if_mtu; } #endif /*IPSEC*/ ipstat.ips_cantfrag++; break; case EACCES: /* * pf(4) blocked the packet. There is no need to send an ICMP * packet back since pf(4) takes care of it. */ goto freecopy; case ENOBUFS: /* * a router should not generate ICMP_SOURCEQUENCH as * required in RFC1812 Requirements for IP Version 4 Routers. * source quench could be a big problem under DoS attacks, * or the underlying interface is rate-limited. */ goto freecopy; } mcopy = m_copym(&mfake, 0, len, M_DONTWAIT); if (mcopy) icmp_error(mcopy, type, code, dest, destmtu); freecopy: if (fake) m_tag_delete_chain(&mfake); freert: #ifndef SMALL_KERNEL if (ipmultipath && ipforward_rt.ro_rt && (ipforward_rt.ro_rt->rt_flags & RTF_MPATH)) { rtfree(ipforward_rt.ro_rt); ipforward_rt.ro_rt = NULL; } #endif return; } int ip_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int s, error; #ifdef MROUTING extern int ip_mrtproto; extern struct mrtstat mrtstat; #endif /* Almost all sysctl names at this level are terminal. */ if (namelen != 1 && name[0] != IPCTL_IFQUEUE) return (ENOTDIR); switch (name[0]) { #ifdef notyet case IPCTL_DEFMTU: return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu)); #endif case IPCTL_SOURCEROUTE: /* * Don't allow this to change in a secure environment. */ if (newp && securelevel > 0) return (EPERM); return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_dosourceroute)); case IPCTL_MTUDISC: error = sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtudisc); if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) { ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout); } else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) { s = splsoftnet(); rt_timer_queue_destroy(ip_mtudisc_timeout_q); ip_mtudisc_timeout_q = NULL; splx(s); } return error; case IPCTL_MTUDISCTIMEOUT: error = sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtudisc_timeout); if (ip_mtudisc_timeout_q != NULL) { s = splsoftnet(); rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout); splx(s); } return (error); case IPCTL_IPSEC_ENC_ALGORITHM: return (sysctl_tstring(oldp, oldlenp, newp, newlen, ipsec_def_enc, sizeof(ipsec_def_enc))); case IPCTL_IPSEC_AUTH_ALGORITHM: return (sysctl_tstring(oldp, oldlenp, newp, newlen, ipsec_def_auth, sizeof(ipsec_def_auth))); case IPCTL_IPSEC_IPCOMP_ALGORITHM: return (sysctl_tstring(oldp, oldlenp, newp, newlen, ipsec_def_comp, sizeof(ipsec_def_comp))); case IPCTL_IFQUEUE: return (sysctl_ifq(name + 1, namelen - 1, oldp, oldlenp, newp, newlen, &ipintrq)); case IPCTL_STATS: if (newp != NULL) return (EPERM); return (sysctl_struct(oldp, oldlenp, newp, newlen, &ipstat, sizeof(ipstat))); case IPCTL_MRTSTATS: #ifdef MROUTING if (newp != NULL) return (EPERM); return (sysctl_struct(oldp, oldlenp, newp, newlen, &mrtstat, sizeof(mrtstat))); #else return (EOPNOTSUPP); #endif case IPCTL_MRTPROTO: #ifdef MROUTING return (sysctl_rdint(oldp, oldlenp, newp, ip_mrtproto)); #else return (EOPNOTSUPP); #endif default: if (name[0] < IPCTL_MAXID) return (sysctl_int_arr(ipctl_vars, name, namelen, oldp, oldlenp, newp, newlen)); return (EOPNOTSUPP); } /* NOTREACHED */ } void ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, struct mbuf *m) { #ifdef SO_TIMESTAMP if (inp->inp_socket->so_options & SO_TIMESTAMP) { struct timeval tv; microtime(&tv); *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv), SCM_TIMESTAMP, SOL_SOCKET); if (*mp) mp = &(*mp)->m_next; } #endif if (inp->inp_flags & INP_RECVDSTADDR) { *mp = sbcreatecontrol((caddr_t) &ip->ip_dst, sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef notyet /* this code is broken and will probably never be fixed. */ /* options were tossed already */ if (inp->inp_flags & INP_RECVOPTS) { *mp = sbcreatecontrol((caddr_t) opts_deleted_above, sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } /* ip_srcroute doesn't do what we want here, need to fix */ if (inp->inp_flags & INP_RECVRETOPTS) { *mp = sbcreatecontrol((caddr_t) ip_srcroute(m), sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #endif if (inp->inp_flags & INP_RECVIF) { struct sockaddr_dl sdl; struct ifnet *ifp; ifp = m->m_pkthdr.rcvif; if (ifp == NULL || ifp->if_sadl == NULL) { memset(&sdl, 0, sizeof(sdl)); sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]); sdl.sdl_family = AF_LINK; sdl.sdl_index = ifp != NULL ? ifp->if_index : 0; sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0; *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP); } else { *mp = sbcreatecontrol((caddr_t) ifp->if_sadl, ifp->if_sadl->sdl_len, IP_RECVIF, IPPROTO_IP); } if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVTTL) { *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl, sizeof(u_int8_t), IP_RECVTTL, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVRTABLE) { u_int rtableid = inp->inp_rtableid; #if NPF > 0 struct pf_divert *divert; if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED && (divert = pf_find_divert(m)) != NULL) rtableid = divert->rdomain; #endif *mp = sbcreatecontrol((caddr_t) &rtableid, sizeof(u_int), IP_RECVRTABLE, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } }