/* $OpenBSD: ip_mroute.c,v 1.49 2007/12/14 18:33:41 deraadt Exp $ */ /* $NetBSD: ip_mroute.c,v 1.85 2004/04/26 01:31:57 matt Exp $ */ /* * Copyright (c) 1989 Stephen Deering * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 */ /* * IP multicast forwarding procedures * * Written by David Waitzman, BBN Labs, August 1988. * Modified by Steve Deering, Stanford, February 1989. * Modified by Mark J. Steiglitz, Stanford, May, 1991 * Modified by Van Jacobson, LBL, January 1993 * Modified by Ajit Thyagarajan, PARC, August 1993 * Modified by Bill Fenner, PARC, April 1994 * Modified by Charles M. Hannum, NetBSD, May 1995. * Modified by Ahmed Helmy, SGI, June 1996 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 * Modified by Hitoshi Asaeda, WIDE, August 2000 * Modified by Pavlin Radoslavov, ICSI, October 2002 * * MROUTING Revision: 1.2 * and PIM-SMv2 and PIM-DM support, advanced API support, * bandwidth metering and signaling */ #ifdef PIM #define _PIM_VT 1 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PIM #include #include #endif #include #define IP_MULTICASTOPTS 0 #define M_PULLUP(m, len) \ do { \ if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ (m) = m_pullup((m), (len)); \ } while (/*CONSTCOND*/ 0) /* * Globals. All but ip_mrouter and ip_mrtproto could be static, * except for netstat or debugging purposes. */ struct socket *ip_mrouter = NULL; int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ #define NO_RTE_FOUND 0x1 #define RTE_FOUND 0x2 #define MFCHASH(a, g) \ ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; u_long mfchash; u_char nexpire[MFCTBLSIZ]; struct vif viftable[MAXVIFS]; struct mrtstat mrtstat; u_int mrtdebug = 0; /* debug level */ #define DEBUG_MFC 0x02 #define DEBUG_FORWARD 0x04 #define DEBUG_EXPIRE 0x08 #define DEBUG_XMIT 0x10 #define DEBUG_PIM 0x20 #define VIFI_INVALID ((vifi_t) -1) u_int tbfdebug = 0; /* tbf debug level */ #ifdef RSVP_ISI u_int rsvpdebug = 0; /* rsvp debug level */ extern struct socket *ip_rsvpd; extern int rsvp_on; #endif /* RSVP_ISI */ #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ #define UPCALL_EXPIRE 6 /* number of timeouts */ struct timeout expire_upcalls_ch; /* * Define the token bucket filter structures */ #define TBF_REPROCESS (hz / 100) /* 100x / second */ static int get_sg_cnt(struct sioc_sg_req *); static int get_vif_cnt(struct sioc_vif_req *); static int ip_mrouter_init(struct socket *, struct mbuf *); static int get_version(struct mbuf *); static int set_assert(struct mbuf *); static int get_assert(struct mbuf *); static int add_vif(struct mbuf *); static int del_vif(struct mbuf *); static void update_mfc_params(struct mfc *, struct mfcctl2 *); static void init_mfc_params(struct mfc *, struct mfcctl2 *); static void expire_mfc(struct mfc *); static int add_mfc(struct mbuf *); #ifdef UPCALL_TIMING static void collate(struct timeval *); #endif static int del_mfc(struct mbuf *); static int set_api_config(struct mbuf *); /* chose API capabilities */ static int get_api_support(struct mbuf *); static int get_api_config(struct mbuf *); static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); static void expire_upcalls(void *); #ifdef RSVP_ISI static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); #else static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); #endif static void phyint_send(struct ip *, struct vif *, struct mbuf *); static void encap_send(struct ip *, struct vif *, struct mbuf *); static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); static void tbf_queue(struct vif *, struct mbuf *); static void tbf_process_q(struct vif *); static void tbf_reprocess_q(void *); static int tbf_dq_sel(struct vif *, struct ip *); static void tbf_send_packet(struct vif *, struct mbuf *); static void tbf_update_tokens(struct vif *); static int priority(struct vif *, struct ip *); /* * Bandwidth monitoring */ static void free_bw_list(struct bw_meter *); static int add_bw_upcall(struct mbuf *); static int del_bw_upcall(struct mbuf *); static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *); static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); static void bw_upcalls_send(void); static void schedule_bw_meter(struct bw_meter *, struct timeval *); static void unschedule_bw_meter(struct bw_meter *); static void bw_meter_process(void); static void expire_bw_upcalls_send(void *); static void expire_bw_meter_process(void *); #ifdef PIM static int pim_register_send(struct ip *, struct vif *, struct mbuf *, struct mfc *); static int pim_register_send_rp(struct ip *, struct vif *, struct mbuf *, struct mfc *); static int pim_register_send_upcall(struct ip *, struct vif *, struct mbuf *, struct mfc *); static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *); #endif /* * 'Interfaces' associated with decapsulator (so we can tell * packets that went through it from ones that get reflected * by a broken gateway). These interfaces are never linked into * the system ifnet list & no routes point to them. I.e., packets * can't be sent this way. They only exist as a placeholder for * multicast source verification. */ #if 0 struct ifnet multicast_decap_if[MAXVIFS]; #endif #define ENCAP_TTL 64 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ /* prototype IP hdr for encapsulated packets */ struct ip multicast_encap_iphdr = { #if BYTE_ORDER == LITTLE_ENDIAN sizeof(struct ip) >> 2, IPVERSION, #else IPVERSION, sizeof(struct ip) >> 2, #endif 0, /* tos */ sizeof(struct ip), /* total length */ 0, /* id */ 0, /* frag offset */ ENCAP_TTL, ENCAP_PROTO, 0, /* checksum */ }; /* * Bandwidth meter variables and constants */ /* * Pending timeouts are stored in a hash table, the key being the * expiration time. Periodically, the entries are analysed and processed. */ #define BW_METER_BUCKETS 1024 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS]; struct timeout bw_meter_ch; #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */ /* * Pending upcalls are stored in a vector which is flushed when * full, or periodically */ static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX]; static u_int bw_upcalls_n; /* # of pending upcalls */ struct timeout bw_upcalls_ch; #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ #ifdef PIM struct pimstat pimstat; /* * Note: the PIM Register encapsulation adds the following in front of a * data packet: * * struct pim_encap_hdr { * struct ip ip; * struct pim_encap_pimhdr pim; * } * */ struct pim_encap_pimhdr { struct pim pim; uint32_t flags; }; static struct ip pim_encap_iphdr = { #if BYTE_ORDER == LITTLE_ENDIAN sizeof(struct ip) >> 2, IPVERSION, #else IPVERSION, sizeof(struct ip) >> 2, #endif 0, /* tos */ sizeof(struct ip), /* total length */ 0, /* id */ 0, /* frag offset */ ENCAP_TTL, IPPROTO_PIM, 0, /* checksum */ }; static struct pim_encap_pimhdr pim_encap_pimhdr = { { PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 0, /* reserved */ 0, /* checksum */ }, 0 /* flags */ }; static struct ifnet multicast_register_if; static vifi_t reg_vif_num = VIFI_INVALID; #endif /* PIM */ /* * Private variables. */ static vifi_t numvifs = 0; static int have_encap_tunnel = 0; /* * whether or not special PIM assert processing is enabled. */ static int pim_assert; /* * Rate limit for assert notification messages, in usec */ #define ASSERT_MSG_TIME 3000000 /* * Kernel multicast routing API capabilities and setup. * If more API capabilities are added to the kernel, they should be * recorded in `mrt_api_support'. */ static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | MRT_MFC_FLAGS_BORDER_VIF | MRT_MFC_RP | MRT_MFC_BW_UPCALL); static u_int32_t mrt_api_config = 0; /* * Find a route for a given origin IP address and Multicast group address * Type of service parameter to be added in the future!!! * Statistics are updated by the caller if needed * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses) */ static struct mfc * mfc_find(struct in_addr *o, struct in_addr *g) { struct mfc *rt; LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { if (in_hosteq(rt->mfc_origin, *o) && in_hosteq(rt->mfc_mcastgrp, *g) && (rt->mfc_stall == NULL)) break; } return (rt); } /* * Macros to compute elapsed time efficiently * Borrowed from Van Jacobson's scheduling code */ #define TV_DELTA(a, b, delta) do { \ int xxs; \ delta = (a).tv_usec - (b).tv_usec; \ xxs = (a).tv_sec - (b).tv_sec; \ switch (xxs) { \ case 2: \ delta += 1000000; \ /* FALLTHROUGH */ \ case 1: \ delta += 1000000; \ /* FALLTHROUGH */ \ case 0: \ break; \ default: \ delta += (1000000 * xxs); \ break; \ } \ } while (/*CONSTCOND*/ 0) #ifdef UPCALL_TIMING u_int32_t upcall_data[51]; #endif /* UPCALL_TIMING */ /* * Handle MRT setsockopt commands to modify the multicast routing tables. */ int ip_mrouter_set(struct socket *so, int optname, struct mbuf **m) { int error; if (optname != MRT_INIT && so != ip_mrouter) error = ENOPROTOOPT; else switch (optname) { case MRT_INIT: error = ip_mrouter_init(so, *m); break; case MRT_DONE: error = ip_mrouter_done(); break; case MRT_ADD_VIF: error = add_vif(*m); break; case MRT_DEL_VIF: error = del_vif(*m); break; case MRT_ADD_MFC: error = add_mfc(*m); break; case MRT_DEL_MFC: error = del_mfc(*m); break; case MRT_ASSERT: error = set_assert(*m); break; case MRT_API_CONFIG: error = set_api_config(*m); break; case MRT_ADD_BW_UPCALL: error = add_bw_upcall(*m); break; case MRT_DEL_BW_UPCALL: error = del_bw_upcall(*m); break; default: error = ENOPROTOOPT; break; } if (*m) m_free(*m); return (error); } /* * Handle MRT getsockopt commands */ int ip_mrouter_get(struct socket *so, int optname, struct mbuf **m) { int error; if (so != ip_mrouter) error = ENOPROTOOPT; else { *m = m_get(M_WAIT, MT_SOOPTS); switch (optname) { case MRT_VERSION: error = get_version(*m); break; case MRT_ASSERT: error = get_assert(*m); break; case MRT_API_SUPPORT: error = get_api_support(*m); break; case MRT_API_CONFIG: error = get_api_config(*m); break; default: error = ENOPROTOOPT; break; } if (error) m_free(*m); } return (error); } /* * Handle ioctl commands to obtain information from the cache */ int mrt_ioctl(struct socket *so, u_long cmd, caddr_t data) { int error; if (so != ip_mrouter) error = EINVAL; else switch (cmd) { case SIOCGETVIFCNT: error = get_vif_cnt((struct sioc_vif_req *)data); break; case SIOCGETSGCNT: error = get_sg_cnt((struct sioc_sg_req *)data); break; default: error = EINVAL; break; } return (error); } /* * returns the packet, byte, rpf-failure count for the source group provided */ static int get_sg_cnt(struct sioc_sg_req *req) { int s; struct mfc *rt; s = splsoftnet(); rt = mfc_find(&req->src, &req->grp); if (rt == NULL) { splx(s); req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; return (EADDRNOTAVAIL); } req->pktcnt = rt->mfc_pkt_cnt; req->bytecnt = rt->mfc_byte_cnt; req->wrong_if = rt->mfc_wrong_if; splx(s); return (0); } /* * returns the input and output packet and byte counts on the vif provided */ static int get_vif_cnt(struct sioc_vif_req *req) { vifi_t vifi = req->vifi; if (vifi >= numvifs) return (EINVAL); req->icount = viftable[vifi].v_pkt_in; req->ocount = viftable[vifi].v_pkt_out; req->ibytes = viftable[vifi].v_bytes_in; req->obytes = viftable[vifi].v_bytes_out; return (0); } /* * Enable multicast routing */ static int ip_mrouter_init(struct socket *so, struct mbuf *m) { int *v; if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) return (EOPNOTSUPP); if (m == NULL || m->m_len < sizeof(int)) return (EINVAL); v = mtod(m, int *); if (*v != 1) return (EINVAL); if (ip_mrouter != NULL) return (EADDRINUSE); ip_mrouter = so; mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, M_WAITOK, &mfchash); bzero((caddr_t)nexpire, sizeof(nexpire)); pim_assert = 0; timeout_set(&expire_upcalls_ch, expire_upcalls, NULL); timeout_add(&expire_upcalls_ch, EXPIRE_TIMEOUT); timeout_set(&bw_upcalls_ch, expire_bw_upcalls_send, NULL); timeout_add(&bw_upcalls_ch, BW_UPCALLS_PERIOD); timeout_set(&bw_meter_ch, expire_bw_meter_process, NULL); timeout_add(&bw_meter_ch, BW_METER_PERIOD); if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init\n"); return (0); } /* * Disable multicast routing */ int ip_mrouter_done() { vifi_t vifi; struct vif *vifp; int i; int s; s = splsoftnet(); /* Clear out all the vifs currently in use. */ for (vifi = 0; vifi < numvifs; vifi++) { vifp = &viftable[vifi]; if (!in_nullhost(vifp->v_lcl_addr)) reset_vif(vifp); } numvifs = 0; pim_assert = 0; mrt_api_config = 0; timeout_del(&expire_upcalls_ch); timeout_del(&bw_upcalls_ch); timeout_del(&bw_meter_ch); /* * Free all multicast forwarding cache entries. */ for (i = 0; i < MFCTBLSIZ; i++) { struct mfc *rt, *nrt; for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { nrt = LIST_NEXT(rt, mfc_hash); expire_mfc(rt); } } bzero((caddr_t)nexpire, sizeof(nexpire)); free(mfchashtbl, M_MRTABLE); mfchashtbl = NULL; bw_upcalls_n = 0; bzero(bw_meter_timers, sizeof(bw_meter_timers)); /* Reset de-encapsulation cache. */ have_encap_tunnel = 0; ip_mrouter = NULL; splx(s); if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_done\n"); return (0); } void ip_mrouter_detach(struct ifnet *ifp) { int vifi, i; struct vif *vifp; struct mfc *rt; struct rtdetq *rte; /* XXX not sure about side effect to userland routing daemon */ for (vifi = 0; vifi < numvifs; vifi++) { vifp = &viftable[vifi]; if (vifp->v_ifp == ifp) reset_vif(vifp); } for (i = 0; i < MFCTBLSIZ; i++) { if (nexpire[i] == 0) continue; LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { for (rte = rt->mfc_stall; rte; rte = rte->next) { if (rte->ifp == ifp) rte->ifp = NULL; } } } } static int get_version(struct mbuf *m) { int *v = mtod(m, int *); *v = 0x0305; /* XXX !!!! */ m->m_len = sizeof(int); return (0); } /* * Set PIM assert processing global */ static int set_assert(struct mbuf *m) { int *i; if (m == NULL || m->m_len < sizeof(int)) return (EINVAL); i = mtod(m, int *); pim_assert = !!*i; return (0); } /* * Get PIM assert processing global */ static int get_assert(struct mbuf *m) { int *i = mtod(m, int *); *i = pim_assert; m->m_len = sizeof(int); return (0); } /* * Configure API capabilities */ static int set_api_config(struct mbuf *m) { int i; u_int32_t *apival; if (m == NULL || m->m_len < sizeof(u_int32_t)) return (EINVAL); apival = mtod(m, u_int32_t *); /* * We can set the API capabilities only if it is the first operation * after MRT_INIT. I.e.: * - there are no vifs installed * - pim_assert is not enabled * - the MFC table is empty */ if (numvifs > 0) { *apival = 0; return (EPERM); } if (pim_assert) { *apival = 0; return (EPERM); } for (i = 0; i < MFCTBLSIZ; i++) { if (LIST_FIRST(&mfchashtbl[i]) != NULL) { *apival = 0; return (EPERM); } } mrt_api_config = *apival & mrt_api_support; *apival = mrt_api_config; return (0); } /* * Get API capabilities */ static int get_api_support(struct mbuf *m) { u_int32_t *apival; if (m == NULL || m->m_len < sizeof(u_int32_t)) return (EINVAL); apival = mtod(m, u_int32_t *); *apival = mrt_api_support; return (0); } /* * Get API configured capabilities */ static int get_api_config(struct mbuf *m) { u_int32_t *apival; if (m == NULL || m->m_len < sizeof(u_int32_t)) return (EINVAL); apival = mtod(m, u_int32_t *); *apival = mrt_api_config; return (0); } static struct sockaddr_in sin = { sizeof(sin), AF_INET }; /* * Add a vif to the vif table */ static int add_vif(struct mbuf *m) { struct vifctl *vifcp; struct vif *vifp; struct ifaddr *ifa; struct ifnet *ifp; struct ifreq ifr; int error, s; if (m == NULL || m->m_len < sizeof(struct vifctl)) return (EINVAL); vifcp = mtod(m, struct vifctl *); if (vifcp->vifc_vifi >= MAXVIFS) return (EINVAL); if (in_nullhost(vifcp->vifc_lcl_addr)) return (EADDRNOTAVAIL); vifp = &viftable[vifcp->vifc_vifi]; if (!in_nullhost(vifp->v_lcl_addr)) return (EADDRINUSE); /* Find the interface with an address in AF_INET family. */ #ifdef PIM if (vifcp->vifc_flags & VIFF_REGISTER) { /* * XXX: Because VIFF_REGISTER does not really need a valid * local interface (e.g. it could be 127.0.0.2), we don't * check its address. */ ifp = NULL; } else #endif { sin.sin_addr = vifcp->vifc_lcl_addr; ifa = ifa_ifwithaddr(sintosa(&sin)); if (ifa == NULL) return (EADDRNOTAVAIL); ifp = ifa->ifa_ifp; } if (vifcp->vifc_flags & VIFF_TUNNEL) { /* tunnels are no longer supported use gif(4) instead */ return (EOPNOTSUPP); #ifdef PIM } else if (vifcp->vifc_flags & VIFF_REGISTER) { ifp = &multicast_register_if; if (mrtdebug) log(LOG_DEBUG, "Adding a register vif, ifp: %p\n", (void *)ifp); if (reg_vif_num == VIFI_INVALID) { bzero(ifp, sizeof(*ifp)); snprintf(ifp->if_xname, sizeof ifp->if_xname, "register_vif"); ifp->if_flags = IFF_LOOPBACK; bzero(&vifp->v_route, sizeof(vifp->v_route)); reg_vif_num = vifcp->vifc_vifi; } #endif } else { /* Use the physical interface associated with the address. */ ifp = ifa->ifa_ifp; /* Make sure the interface supports multicast. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Enable promiscuous reception of all IP multicasts. */ satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); satosin(&ifr.ifr_addr)->sin_family = AF_INET; satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr; error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr); if (error) return (error); } s = splsoftnet(); /* Define parameters for the tbf structure. */ vifp->tbf_q = NULL; vifp->tbf_t = &vifp->tbf_q; microtime(&vifp->tbf_last_pkt_t); vifp->tbf_n_tok = 0; vifp->tbf_q_len = 0; vifp->tbf_max_q_len = MAXQSIZE; vifp->v_flags = vifcp->vifc_flags; vifp->v_threshold = vifcp->vifc_threshold; /* scaling up here allows division by 1024 in critical code */ vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; vifp->v_lcl_addr = vifcp->vifc_lcl_addr; vifp->v_rmt_addr = vifcp->vifc_rmt_addr; vifp->v_ifp = ifp; /* Initialize per vif pkt counters. */ vifp->v_pkt_in = 0; vifp->v_pkt_out = 0; vifp->v_bytes_in = 0; vifp->v_bytes_out = 0; timeout_del(&vifp->v_repq_ch); #ifdef RSVP_ISI vifp->v_rsvp_on = 0; vifp->v_rsvpd = NULL; #endif /* RSVP_ISI */ splx(s); /* Adjust numvifs up if the vifi is higher than numvifs. */ if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; if (mrtdebug) log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, " "thresh %x, rate %d\n", vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", ntohl(vifcp->vifc_rmt_addr.s_addr), vifcp->vifc_threshold, vifcp->vifc_rate_limit); return (0); } void reset_vif(struct vif *vifp) { struct mbuf *m, *n; struct ifnet *ifp; struct ifreq ifr; timeout_set(&vifp->v_repq_ch, tbf_reprocess_q, vifp); /* * Free packets queued at the interface */ for (m = vifp->tbf_q; m != NULL; m = n) { n = m->m_nextpkt; m_freem(m); } if (vifp->v_flags & VIFF_TUNNEL) { /* empty */ } else if (vifp->v_flags & VIFF_REGISTER) { #ifdef PIM reg_vif_num = VIFI_INVALID; #endif } else { satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); satosin(&ifr.ifr_addr)->sin_family = AF_INET; satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr; ifp = vifp->v_ifp; (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr); } bzero((caddr_t)vifp, sizeof(*vifp)); } /* * Delete a vif from the vif table */ static int del_vif(struct mbuf *m) { vifi_t *vifip; struct vif *vifp; vifi_t vifi; int s; if (m == NULL || m->m_len < sizeof(vifi_t)) return (EINVAL); vifip = mtod(m, vifi_t *); if (*vifip >= numvifs) return (EINVAL); vifp = &viftable[*vifip]; if (in_nullhost(vifp->v_lcl_addr)) return (EADDRNOTAVAIL); s = splsoftnet(); reset_vif(vifp); /* Adjust numvifs down */ for (vifi = numvifs; vifi > 0; vifi--) if (!in_nullhost(viftable[vifi - 1].v_lcl_addr)) break; numvifs = vifi; splx(s); if (mrtdebug) log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); return (0); } void vif_delete(struct ifnet *ifp) { int i; struct vif *vifp; struct mfc *rt; struct rtdetq *rte; for (i = 0; i < numvifs; i++) { vifp = &viftable[i]; if (vifp->v_ifp == ifp) bzero((caddr_t)vifp, sizeof *vifp); } for (i = numvifs; i > 0; i--) if (!in_nullhost(viftable[i - 1].v_lcl_addr)) break; numvifs = i; for (i = 0; i < MFCTBLSIZ; i++) { if (nexpire[i] == 0) continue; LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { for (rte = rt->mfc_stall; rte; rte = rte->next) { if (rte->ifp == ifp) rte->ifp = NULL; } } } } /* * update an mfc entry without resetting counters and S,G addresses. */ static void update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) { int i; rt->mfc_parent = mfccp->mfcc_parent; for (i = 0; i < numvifs; i++) { rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config & MRT_MFC_FLAGS_ALL; } /* set the RP address */ if (mrt_api_config & MRT_MFC_RP) rt->mfc_rp = mfccp->mfcc_rp; else rt->mfc_rp = zeroin_addr; } /* * fully initialize an mfc entry from the parameter. */ static void init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) { rt->mfc_origin = mfccp->mfcc_origin; rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; update_mfc_params(rt, mfccp); /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; timerclear(&rt->mfc_last_assert); } static void expire_mfc(struct mfc *rt) { struct rtdetq *rte, *nrte; free_bw_list(rt->mfc_bw_meter); for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { nrte = rte->next; m_freem(rte->m); free(rte, M_MRTABLE); } LIST_REMOVE(rt, mfc_hash); free(rt, M_MRTABLE); } /* * Add an mfc entry */ static int add_mfc(struct mbuf *m) { struct mfcctl2 mfcctl2; struct mfcctl2 *mfccp; struct mfc *rt; u_int32_t hash = 0; struct rtdetq *rte, *nrte; u_short nstl; int s; int mfcctl_size = sizeof(struct mfcctl); if (mrt_api_config & MRT_API_FLAGS_ALL) mfcctl_size = sizeof(struct mfcctl2); if (m == NULL || m->m_len < mfcctl_size) return (EINVAL); /* * select data size depending on API version. */ if (mrt_api_config & MRT_API_FLAGS_ALL) { struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *); bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2)); } else { struct mfcctl *mp = mtod(m, struct mfcctl *); bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp)); bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl), sizeof(mfcctl2) - sizeof(struct mfcctl)); } mfccp = &mfcctl2; s = splsoftnet(); rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); /* If an entry already exists, just update the fields */ if (rt) { if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); update_mfc_params(rt, mfccp); splx(s); return (0); } /* * Find the entry for which the upcall was made and update */ nstl = 0; hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && rt->mfc_stall != NULL) { if (nstl++) log(LOG_ERR, "add_mfc %s o %x g %x " "p %x dbx %p\n", "multiple kernel entries", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, rt->mfc_stall); if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc o %x g %x " "p %x dbg %p\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, rt->mfc_stall); rte = rt->mfc_stall; init_mfc_params(rt, mfccp); rt->mfc_stall = NULL; rt->mfc_expire = 0; /* Don't clean this guy up */ nexpire[hash]--; /* free packets Qed at the end of this entry */ for (; rte != NULL; rte = nrte) { nrte = rte->next; if (rte->ifp) { #ifdef RSVP_ISI ip_mdq(rte->m, rte->ifp, rt, -1); #else ip_mdq(rte->m, rte->ifp, rt); #endif /* RSVP_ISI */ } m_freem(rte->m); #ifdef UPCALL_TIMING collate(&rte->t); #endif /* UPCALL_TIMING */ free(rte, M_MRTABLE); } } } /* * It is possible that an entry is being inserted without an upcall */ if (nstl == 0) { /* * No mfc; make a new one */ if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { init_mfc_params(rt, mfccp); if (rt->mfc_expire) nexpire[hash]--; rt->mfc_expire = 0; break; /* XXX */ } } if (rt == NULL) { /* no upcall, so make a new entry */ rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == NULL) { splx(s); return (ENOBUFS); } init_mfc_params(rt, mfccp); rt->mfc_expire = 0; rt->mfc_stall = NULL; rt->mfc_bw_meter = NULL; /* insert new entry at head of hash chain */ LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); } } splx(s); return (0); } #ifdef UPCALL_TIMING /* * collect delay statistics on the upcalls */ static void collate(struct timeval *t) { u_int32_t d; struct timeval tp; u_int32_t delta; microtime(&tp); if (timercmp(t, &tp, <)) { TV_DELTA(tp, *t, delta); d = delta >> 10; if (d > 50) d = 50; ++upcall_data[d]; } } #endif /* UPCALL_TIMING */ /* * Delete an mfc entry */ static int del_mfc(struct mbuf *m) { struct mfcctl2 mfcctl2; struct mfcctl2 *mfccp; struct mfc *rt; int s; int mfcctl_size = sizeof(struct mfcctl); struct mfcctl *mp = mtod(m, struct mfcctl *); /* * XXX: for deleting MFC entries the information in entries * of size "struct mfcctl" is sufficient. */ if (m == NULL || m->m_len < mfcctl_size) return (EINVAL); bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp)); bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl), sizeof(mfcctl2) - sizeof(struct mfcctl)); mfccp = &mfcctl2; if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr)); s = splsoftnet(); rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); if (rt == NULL) { splx(s); return (EADDRNOTAVAIL); } /* * free the bw_meter entries */ free_bw_list(rt->mfc_bw_meter); rt->mfc_bw_meter = NULL; LIST_REMOVE(rt, mfc_hash); free(rt, M_MRTABLE); splx(s); return (0); } static int socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) { if (s != NULL) { if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)NULL) != 0) { sorwakeup(s); return (0); } } m_freem(mm); return (-1); } /* * IP multicast forwarding function. This function assumes that the packet * pointed to by "ip" has arrived on (or is about to be sent to) the interface * pointed to by "ifp", and the packet is to be relayed to other networks * that have members of the packet's destination IP multicast group. * * The packet is returned unscathed to the caller, unless it is * erroneous, in which case a non-zero return value tells the caller to * discard it. */ #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ int #ifdef RSVP_ISI ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo) #else ip_mforward(struct mbuf *m, struct ifnet *ifp) #endif /* RSVP_ISI */ { struct ip *ip = mtod(m, struct ip *); struct mfc *rt; static int srctun = 0; struct mbuf *mm; int s; vifi_t vifi; if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { /* * Packet arrived via a physical interface or * an encapsulated tunnel or a register_vif. */ } else { /* * Packet arrived through a source-route tunnel. * Source-route tunnels are no longer supported. */ if ((srctun++ % 1000) == 0) log(LOG_ERR, "ip_mforward: received source-routed " "packet from %x\n", ntohl(ip->ip_src.s_addr)); return (1); } #ifdef RSVP_ISI if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { if (ip->ip_ttl < 255) { /* compensate for -1 in *_send routines */ ip->ip_ttl++; } if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { struct vif *vifp = viftable + vifi; printf("Sending IPPROTO_RSVP from %x to %x on " "vif %d (%s%s)\n", ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", vifp->v_ifp->if_xname); } return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi)); } if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { printf("Warning: IPPROTO_RSVP from %x to %x without " "vif option\n", ntohl(ip->ip_src), ntohl(ip->ip_dst)); } #endif /* RSVP_ISI */ /* * Don't forward a packet with time-to-live of zero or one, * or a packet destined to a local-only group. */ if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) return (0); /* * Determine forwarding vifs from the forwarding cache table */ s = splsoftnet(); ++mrtstat.mrts_mfc_lookups; rt = mfc_find(&ip->ip_src, &ip->ip_dst); /* Entry exists, so forward if necessary */ if (rt != NULL) { splx(s); #ifdef RSVP_ISI return (ip_mdq(m, ifp, rt, -1)); #else return (ip_mdq(m, ifp, rt)); #endif /* RSVP_ISI */ } else { /* * If we don't have a route for packet's origin, * Make a copy of the packet & send message to routing daemon */ struct mbuf *mb0; struct rtdetq *rte; u_int32_t hash; int hlen = ip->ip_hl << 2; #ifdef UPCALL_TIMING struct timeval tp; microtime(&tp); #endif /* UPCALL_TIMING */ ++mrtstat.mrts_mfc_misses; mrtstat.mrts_no_route++; if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr)); /* * Allocate mbufs early so that we don't do extra work if we are * just going to fail anyway. Make sure to pullup the header so * that other people can't step on it. */ rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT); if (rte == NULL) { splx(s); return (ENOBUFS); } mb0 = m_copy(m, 0, M_COPYALL); M_PULLUP(mb0, hlen); if (mb0 == NULL) { free(rte, M_MRTABLE); splx(s); return (ENOBUFS); } /* is there an upcall waiting for this flow? */ hash = MFCHASH(ip->ip_src, ip->ip_dst); LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { if (in_hosteq(ip->ip_src, rt->mfc_origin) && in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && rt->mfc_stall != NULL) break; } if (rt == NULL) { int i; struct igmpmsg *im; /* * Locate the vifi for the incoming interface for * this packet. * If none found, drop packet. */ for (vifi = 0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) ; if (vifi >= numvifs) /* vif not found, drop packet */ goto non_fatal; /* no upcall, so make a new entry */ rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == NULL) goto fail; /* * Make a copy of the header to send to the user level * process */ mm = m_copy(m, 0, hlen); M_PULLUP(mm, hlen); if (mm == NULL) goto fail1; /* * Send message to routing daemon to install * a route into the kernel table */ im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_NOCACHE; im->im_mbz = 0; im->im_vif = vifi; mrtstat.mrts_upcalls++; sin.sin_addr = ip->ip_src; if (socket_send(ip_mrouter, mm, &sin) < 0) { log(LOG_WARNING, "ip_mforward: ip_mrouter " "socket queue full\n"); ++mrtstat.mrts_upq_sockfull; fail1: free(rt, M_MRTABLE); fail: free(rte, M_MRTABLE); m_freem(mb0); splx(s); return (ENOBUFS); } /* insert new entry at head of hash chain */ rt->mfc_origin = ip->ip_src; rt->mfc_mcastgrp = ip->ip_dst; rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; rt->mfc_expire = UPCALL_EXPIRE; nexpire[hash]++; for (i = 0; i < numvifs; i++) { rt->mfc_ttls[i] = 0; rt->mfc_flags[i] = 0; } rt->mfc_parent = -1; /* clear the RP address */ rt->mfc_rp = zeroin_addr; rt->mfc_bw_meter = NULL; /* link into table */ LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); /* Add this entry to the end of the queue */ rt->mfc_stall = rte; } else { /* determine if q has overflowed */ struct rtdetq **p; int npkts = 0; /* * XXX ouch! we need to append to the list, but we * only have a pointer to the front, so we have to * scan the entire list every time. */ for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) if (++npkts > MAX_UPQ) { mrtstat.mrts_upq_ovflw++; non_fatal: free(rte, M_MRTABLE); m_freem(mb0); splx(s); return (0); } /* Add this entry to the end of the queue */ *p = rte; } rte->next = NULL; rte->m = mb0; rte->ifp = ifp; #ifdef UPCALL_TIMING rte->t = tp; #endif /* UPCALL_TIMING */ splx(s); return (0); } } /*ARGSUSED*/ static void expire_upcalls(void *v) { int i; int s; s = splsoftnet(); for (i = 0; i < MFCTBLSIZ; i++) { struct mfc *rt, *nrt; if (nexpire[i] == 0) continue; for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { nrt = LIST_NEXT(rt, mfc_hash); if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) continue; nexpire[i]--; /* * free the bw_meter entries */ while (rt->mfc_bw_meter != NULL) { struct bw_meter *x = rt->mfc_bw_meter; rt->mfc_bw_meter = x->bm_mfc_next; free(x, M_BWMETER); } ++mrtstat.mrts_cache_cleanups; if (mrtdebug & DEBUG_EXPIRE) log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n", ntohl(rt->mfc_origin.s_addr), ntohl(rt->mfc_mcastgrp.s_addr)); expire_mfc(rt); } } splx(s); timeout_add(&expire_upcalls_ch, EXPIRE_TIMEOUT); } /* * Packet forwarding routine once entry in the cache is made */ static int #ifdef RSVP_ISI ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) #else ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt) #endif /* RSVP_ISI */ { struct ip *ip = mtod(m, struct ip *); vifi_t vifi; struct vif *vifp; int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); /* * Macro to send packet on vif. Since RSVP packets don't get counted on * input, they shouldn't get counted on output, so statistics keeping is * separate. */ #define MC_SEND(ip, vifp, m) do { \ if ((vifp)->v_flags & VIFF_TUNNEL) \ encap_send((ip), (vifp), (m)); \ else \ phyint_send((ip), (vifp), (m)); \ } while (/*CONSTCOND*/ 0) #ifdef RSVP_ISI /* * If xmt_vif is not -1, send on only the requested vif. * * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. */ if (xmt_vif < numvifs) { #ifdef PIM if (viftable[xmt_vif].v_flags & VIFF_REGISTER) pim_register_send(ip, viftable + xmt_vif, m, rt); else #endif MC_SEND(ip, viftable + xmt_vif, m); return (1); } #endif /* RSVP_ISI */ /* * Don't forward if it didn't arrive from the parent vif for its origin. */ vifi = rt->mfc_parent; if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { /* came in the wrong interface */ if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", ifp, vifi, vifi >= numvifs ? 0 : viftable[vifi].v_ifp); ++mrtstat.mrts_wrong_if; ++rt->mfc_wrong_if; /* * If we are doing PIM assert processing, send a message * to the routing daemon. * * XXX: A PIM-SM router needs the WRONGVIF detection so it * can complete the SPT switch, regardless of the type * of interface (broadcast media, GRE tunnel, etc). */ if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) { struct timeval now; u_int32_t delta; #ifdef PIM if (ifp == &multicast_register_if) pimstat.pims_rcv_registers_wrongiif++; #endif /* Get vifi for the incoming packet */ for (vifi = 0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++) ; if (vifi >= numvifs) { /* The iif is not found: ignore the packet. */ return (0); } if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) { /* WRONGVIF disabled: ignore the packet */ return (0); } microtime(&now); TV_DELTA(rt->mfc_last_assert, now, delta); if (delta > ASSERT_MSG_TIME) { struct igmpmsg *im; int hlen = ip->ip_hl << 2; struct mbuf *mm = m_copy(m, 0, hlen); M_PULLUP(mm, hlen); if (mm == NULL) return (ENOBUFS); rt->mfc_last_assert = now; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_WRONGVIF; im->im_mbz = 0; im->im_vif = vifi; mrtstat.mrts_upcalls++; sin.sin_addr = im->im_src; if (socket_send(ip_mrouter, mm, &sin) < 0) { log(LOG_WARNING, "ip_mforward: " "ip_mrouter socket queue full\n"); ++mrtstat.mrts_upq_sockfull; return (ENOBUFS); } } } return (0); } /* If I sourced this packet, it counts as output, else it was input. */ if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { viftable[vifi].v_pkt_out++; viftable[vifi].v_bytes_out += plen; } else { viftable[vifi].v_pkt_in++; viftable[vifi].v_bytes_in += plen; } rt->mfc_pkt_cnt++; rt->mfc_byte_cnt += plen; /* * For each vif, decide if a copy of the packet should be forwarded. * Forward if: * - the ttl exceeds the vif's threshold * - there are group members downstream on interface */ for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { vifp->v_pkt_out++; vifp->v_bytes_out += plen; #ifdef PIM if (vifp->v_flags & VIFF_REGISTER) pim_register_send(ip, vifp, m, rt); else #endif MC_SEND(ip, vifp, m); } /* * Perform upcall-related bw measuring. */ if (rt->mfc_bw_meter != NULL) { struct bw_meter *x; struct timeval now; microtime(&now); for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) bw_meter_receive_packet(x, plen, &now); } return (0); } #ifdef RSVP_ISI /* * check if a vif number is legal/ok. This is used by ip_output. */ int legal_vif_num(int vif) { if (vif >= 0 && vif < numvifs) return (1); else return (0); } #endif /* RSVP_ISI */ static void phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) { struct mbuf *mb_copy; int hlen = ip->ip_hl << 2; /* * Make a new reference to the packet; make sure that * the IP header is actually copied, not just referenced, * so that ip_output() only scribbles on the copy. */ mb_copy = m_copy(m, 0, M_COPYALL); M_PULLUP(mb_copy, hlen); if (mb_copy == NULL) return; if (vifp->v_rate_limit <= 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ntohs(ip->ip_len)); } static void encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m) { struct mbuf *mb_copy; struct ip *ip_copy; int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); /* Take care of delayed checksums */ if (m->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~(M_UDPV4_CSUM_OUT | M_TCPV4_CSUM_OUT); } /* * copy the old packet & pullup its IP header into the * new mbuf so we can modify it. Try to fill the new * mbuf since if we don't the ethernet driver will. */ MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); if (mb_copy == NULL) return; mb_copy->m_data += max_linkhdr; mb_copy->m_pkthdr.len = len; mb_copy->m_len = sizeof(multicast_encap_iphdr); if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) { m_freem(mb_copy); return; } i = MHLEN - max_linkhdr; if (i > len) i = len; mb_copy = m_pullup(mb_copy, i); if (mb_copy == NULL) return; /* * fill in the encapsulating IP header. */ ip_copy = mtod(mb_copy, struct ip *); *ip_copy = multicast_encap_iphdr; ip_copy->ip_id = htons(ip_randomid()); ip_copy->ip_len = htons(len); ip_copy->ip_src = vifp->v_lcl_addr; ip_copy->ip_dst = vifp->v_rmt_addr; /* * turn the encapsulated IP header back into a valid one. */ ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); --ip->ip_ttl; ip->ip_sum = 0; mb_copy->m_data += sizeof(multicast_encap_iphdr); ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); mb_copy->m_data -= sizeof(multicast_encap_iphdr); if (vifp->v_rate_limit <= 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); } /* * Token bucket filter module */ static void tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len) { if (len > MAX_BKT_SIZE) { /* drop if packet is too large */ mrtstat.mrts_pkt2large++; m_freem(m); return; } tbf_update_tokens(vifp); /* * If there are enough tokens, and the queue is empty, send this packet * out immediately. Otherwise, try to insert it on this vif's queue. */ if (vifp->tbf_q_len == 0) { if (len <= vifp->tbf_n_tok) { vifp->tbf_n_tok -= len; tbf_send_packet(vifp, m); } else { /* queue packet and timeout till later */ tbf_queue(vifp, m); timeout_add(&vifp->v_repq_ch, TBF_REPROCESS); } } else { if (vifp->tbf_q_len >= vifp->tbf_max_q_len && !tbf_dq_sel(vifp, ip)) { /* queue full, and couldn't make room */ mrtstat.mrts_q_overflow++; m_freem(m); } else { /* queue length low enough, or made room */ tbf_queue(vifp, m); tbf_process_q(vifp); } } } /* * adds a packet to the queue at the interface */ static void tbf_queue(struct vif *vifp, struct mbuf *m) { int s = splsoftnet(); /* insert at tail */ *vifp->tbf_t = m; vifp->tbf_t = &m->m_nextpkt; vifp->tbf_q_len++; splx(s); } /* * processes the queue at the interface */ static void tbf_process_q(struct vif *vifp) { struct mbuf *m; int len; int s = splsoftnet(); /* * Loop through the queue at the interface and send as many packets * as possible. */ for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) { len = ntohs(mtod(m, struct ip *)->ip_len); /* determine if the packet can be sent */ if (len <= vifp->tbf_n_tok) { /* if so, * reduce no of tokens, dequeue the packet, * send the packet. */ if ((vifp->tbf_q = m->m_nextpkt) == NULL) vifp->tbf_t = &vifp->tbf_q; --vifp->tbf_q_len; m->m_nextpkt = NULL; vifp->tbf_n_tok -= len; tbf_send_packet(vifp, m); } else break; } splx(s); } static void tbf_reprocess_q(void *arg) { struct vif *vifp = arg; if (ip_mrouter == NULL) return; tbf_update_tokens(vifp); tbf_process_q(vifp); if (vifp->tbf_q_len != 0) timeout_add(&vifp->v_repq_ch, TBF_REPROCESS); } /* function that will selectively discard a member of the queue * based on the precedence value and the priority */ static int tbf_dq_sel(struct vif *vifp, struct ip *ip) { u_int p; struct mbuf **mp, *m; int s = splsoftnet(); p = priority(vifp, ip); for (mp = &vifp->tbf_q, m = *mp; m != NULL; mp = &m->m_nextpkt, m = *mp) { if (p > priority(vifp, mtod(m, struct ip *))) { if ((*mp = m->m_nextpkt) == NULL) vifp->tbf_t = mp; --vifp->tbf_q_len; m_freem(m); mrtstat.mrts_drop_sel++; splx(s); return (1); } } splx(s); return (0); } static void tbf_send_packet(struct vif *vifp, struct mbuf *m) { int error; int s = splsoftnet(); if (vifp->v_flags & VIFF_TUNNEL) { /* If tunnel options */ ip_output(m, (struct mbuf *)NULL, &vifp->v_route, IP_FORWARDING, (struct ip_moptions *)NULL, (struct inpcb *)NULL); } else { /* * if physical interface option, extract the options * and then send */ struct ip_moptions imo; imo.imo_multicast_ifp = vifp->v_ifp; imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; imo.imo_multicast_loop = 1; #ifdef RSVP_ISI imo.imo_multicast_vif = -1; #endif error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL, IP_FORWARDING|IP_MULTICASTOPTS, &imo, (struct inpcb *)NULL); if (mrtdebug & DEBUG_XMIT) log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", (long)(vifp - viftable), error); } splx(s); } /* determine the current time and then * the elapsed time (between the last time and time now) * in milliseconds & update the no. of tokens in the bucket */ static void tbf_update_tokens(struct vif *vifp) { struct timeval tp; u_int32_t tm; int s = splsoftnet(); microtime(&tp); TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); /* * This formula is actually * "time in seconds" * "bytes/second". * * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) * * The (1000/1024) was introduced in add_vif to optimize * this divide into a shift. */ vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; vifp->tbf_last_pkt_t = tp; if (vifp->tbf_n_tok > MAX_BKT_SIZE) vifp->tbf_n_tok = MAX_BKT_SIZE; splx(s); } static int priority(struct vif *vifp, struct ip *ip) { int prio = 50; /* the lowest priority -- default case */ /* temporary hack; may add general packet classifier some day */ /* * The UDP port space is divided up into four priority ranges: * [0, 16384) : unclassified - lowest priority * [16384, 32768) : audio - highest priority * [32768, 49152) : whiteboard - medium priority * [49152, 65536) : video - low priority */ if (ip->ip_p == IPPROTO_UDP) { struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); switch (ntohs(udp->uh_dport) & 0xc000) { case 0x4000: prio = 70; break; case 0x8000: prio = 60; break; case 0xc000: prio = 55; break; } if (tbfdebug > 1) log(LOG_DEBUG, "port %x prio %d\n", ntohs(udp->uh_dport), prio); } return (prio); } /* * End of token bucket filter modifications */ #ifdef RSVP_ISI int ip_rsvp_vif_init(struct socket *so, struct mbuf *m) { int vifi, s; if (rsvpdebug) printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return (EOPNOTSUPP); /* Check mbuf. */ if (m == NULL || m->m_len != sizeof(int)) { return (EINVAL); } vifi = *(mtod(m, int *)); if (rsvpdebug) printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", vifi, rsvp_on); s = splsoftnet(); /* Check vif. */ if (!legal_vif_num(vifi)) { splx(s); return (EADDRNOTAVAIL); } /* Check if socket is available. */ if (viftable[vifi].v_rsvpd != NULL) { splx(s); return (EADDRINUSE); } viftable[vifi].v_rsvpd = so; /* This may seem silly, but we need to be sure we don't over-increment * the RSVP counter, in case something slips up. */ if (!viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 1; rsvp_on++; } splx(s); return (0); } int ip_rsvp_vif_done(struct socket *so, struct mbuf *m) { int vifi, s; if (rsvpdebug) printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return (EOPNOTSUPP); /* Check mbuf. */ if (m == NULL || m->m_len != sizeof(int)) { return (EINVAL); } vifi = *(mtod(m, int *)); s = splsoftnet(); /* Check vif. */ if (!legal_vif_num(vifi)) { splx(s); return (EADDRNOTAVAIL); } if (rsvpdebug) printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", viftable[vifi].v_rsvpd, so); viftable[vifi].v_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't over-decrement * the RSVP counter, in case something slips up. */ if (viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 0; rsvp_on--; } splx(s); return (0); } void ip_rsvp_force_done(struct socket *so) { int vifi, s; /* Don't bother if it is not the right type of socket. */ if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return; s = splsoftnet(); /* * The socket may be attached to more than one vif...this * is perfectly legal. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_rsvpd == so) { viftable[vifi].v_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't * over-decrement the RSVP counter, in case something * slips up. */ if (viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 0; rsvp_on--; } } } splx(s); return; } void rsvp_input(struct mbuf *m, struct ifnet *ifp) { int vifi, s; struct ip *ip = mtod(m, struct ip *); static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET }; if (rsvpdebug) printf("rsvp_input: rsvp_on %d\n", rsvp_on); /* * Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!rsvp_on) { m_freem(m); return; } /* * If the old-style non-vif-associated socket is set, then use * it and ignore the new ones. */ if (ip_rsvpd != NULL) { if (rsvpdebug) printf("rsvp_input: " "Sending packet up old-style socket\n"); rip_input(m, 0); /*XXX*/ return; } s = splsoftnet(); if (rsvpdebug) printf("rsvp_input: check vifs\n"); /* Find which vif the packet arrived on. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_ifp == ifp) break; } if (vifi == numvifs) { /* Can't find vif packet arrived on. Drop packet. */ if (rsvpdebug) printf("rsvp_input: " "Can't find vif for packet...dropping it.\n"); m_freem(m); splx(s); return; } if (rsvpdebug) printf("rsvp_input: check socket\n"); if (viftable[vifi].v_rsvpd == NULL) { /* * drop packet, since there is no specific socket for this * interface */ if (rsvpdebug) printf("rsvp_input: No socket defined for vif %d\n", vifi); m_freem(m); splx(s); return; } rsvp_src.sin_addr = ip->ip_src; if (rsvpdebug && m) printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) if (rsvpdebug) printf("rsvp_input: Failed to append to socket\n"); else if (rsvpdebug) printf("rsvp_input: send packet up\n"); splx(s); } #endif /* RSVP_ISI */ /* * Code for bandwidth monitors */ /* * Define common interface for timeval-related methods */ #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp) #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp)) #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp)) static uint32_t compute_bw_meter_flags(struct bw_upcall *req) { uint32_t flags = 0; if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) flags |= BW_METER_UNIT_PACKETS; if (req->bu_flags & BW_UPCALL_UNIT_BYTES) flags |= BW_METER_UNIT_BYTES; if (req->bu_flags & BW_UPCALL_GEQ) flags |= BW_METER_GEQ; if (req->bu_flags & BW_UPCALL_LEQ) flags |= BW_METER_LEQ; return (flags); } /* * Add a bw_meter entry */ static int add_bw_upcall(struct mbuf *m) { int s; struct mfc *mfc; struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; struct timeval now; struct bw_meter *x; uint32_t flags; struct bw_upcall *req; if (m == NULL || m->m_len < sizeof(struct bw_upcall)) return (EINVAL); req = mtod(m, struct bw_upcall *); if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) return (EOPNOTSUPP); /* Test if the flags are valid */ if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) return (EINVAL); if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) return (EINVAL); if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) return (EINVAL); /* Test if the threshold time interval is valid */ if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) return (EINVAL); flags = compute_bw_meter_flags(req); /* Find if we have already same bw_meter entry */ s = splsoftnet(); mfc = mfc_find(&req->bu_src, &req->bu_dst); if (mfc == NULL) { splx(s); return (EADDRNOTAVAIL); } for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) { if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && (x->bm_flags & BW_METER_USER_FLAGS) == flags) { splx(s); return (0); /* XXX Already installed */ } } /* Allocate the new bw_meter entry */ x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT); if (x == NULL) { splx(s); return (ENOBUFS); } /* Set the new bw_meter entry */ x->bm_threshold.b_time = req->bu_threshold.b_time; microtime(&now); x->bm_start_time = now; x->bm_threshold.b_packets = req->bu_threshold.b_packets; x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags = flags; x->bm_time_next = NULL; x->bm_time_hash = BW_METER_BUCKETS; /* Add the new bw_meter entry to the front of entries for this MFC */ x->bm_mfc = mfc; x->bm_mfc_next = mfc->mfc_bw_meter; mfc->mfc_bw_meter = x; schedule_bw_meter(x, &now); splx(s); return (0); } static void free_bw_list(struct bw_meter *list) { while (list != NULL) { struct bw_meter *x = list; list = list->bm_mfc_next; unschedule_bw_meter(x); free(x, M_BWMETER); } } /* * Delete one or multiple bw_meter entries */ static int del_bw_upcall(struct mbuf *m) { int s; struct mfc *mfc; struct bw_meter *x; struct bw_upcall *req; if (m == NULL || m->m_len < sizeof(struct bw_upcall)) return (EINVAL); req = mtod(m, struct bw_upcall *); if (!(mrt_api_config & MRT_MFC_BW_UPCALL)) return (EOPNOTSUPP); s = splsoftnet(); /* Find the corresponding MFC entry */ mfc = mfc_find(&req->bu_src, &req->bu_dst); if (mfc == NULL) { splx(s); return (EADDRNOTAVAIL); } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { /* Delete all bw_meter entries for this mfc */ struct bw_meter *list; list = mfc->mfc_bw_meter; mfc->mfc_bw_meter = NULL; free_bw_list(list); splx(s); return (0); } else { /* Delete a single bw_meter entry */ struct bw_meter *prev; uint32_t flags = 0; flags = compute_bw_meter_flags(req); /* Find the bw_meter entry to delete */ for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL; prev = x, x = x->bm_mfc_next) { if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && (x->bm_flags & BW_METER_USER_FLAGS) == flags) break; } if (x != NULL) { /* Delete entry from the list for this MFC */ if (prev != NULL) { /* remove from middle */ prev->bm_mfc_next = x->bm_mfc_next; } else { /* new head of list */ x->bm_mfc->mfc_bw_meter = x->bm_mfc_next; } unschedule_bw_meter(x); splx(s); /* Free the bw_meter entry */ free(x, M_BWMETER); return (0); } else { splx(s); return (EINVAL); } } /* NOTREACHED */ } /* * Perform bandwidth measurement processing that may result in an upcall */ static void bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) { struct timeval delta; delta = *nowp; BW_TIMEVALDECR(&delta, &x->bm_start_time); if (x->bm_flags & BW_METER_GEQ) { /* Processing for ">=" type of bw_meter entry */ if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { /* Reset the bw_meter entry */ x->bm_start_time = *nowp; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; } /* Record that a packet is received */ x->bm_measured.b_packets++; x->bm_measured.b_bytes += plen; /* Test if we should deliver an upcall */ if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { if (((x->bm_flags & BW_METER_UNIT_PACKETS) && (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || ((x->bm_flags & BW_METER_UNIT_BYTES) && (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { /* Prepare an upcall for delivery */ bw_meter_prepare_upcall(x, nowp); x->bm_flags |= BW_METER_UPCALL_DELIVERED; } } } else if (x->bm_flags & BW_METER_LEQ) { /* Processing for "<=" type of bw_meter entry */ if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { /* * We are behind time with the multicast forwarding * table scanning for "<=" type of bw_meter entries, * so test now if we should deliver an upcall. */ if (((x->bm_flags & BW_METER_UNIT_PACKETS) && (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || ((x->bm_flags & BW_METER_UNIT_BYTES) && (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { /* Prepare an upcall for delivery */ bw_meter_prepare_upcall(x, nowp); } /* Reschedule the bw_meter entry */ unschedule_bw_meter(x); schedule_bw_meter(x, nowp); } /* Record that a packet is received */ x->bm_measured.b_packets++; x->bm_measured.b_bytes += plen; /* Test if we should restart the measuring interval */ if ((x->bm_flags & BW_METER_UNIT_PACKETS && x->bm_measured.b_packets <= x->bm_threshold.b_packets) || (x->bm_flags & BW_METER_UNIT_BYTES && x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) { /* Don't restart the measuring interval */ } else { /* Do restart the measuring interval */ /* * XXX: note that we don't unschedule and schedule, * because this might be too much overhead per packet. * Instead, when we process all entries for a given * timer hash bin, we check whether it is really a * timeout. If not, we reschedule at that time. */ x->bm_start_time = *nowp; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; } } } /* * Prepare a bandwidth-related upcall */ static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) { struct timeval delta; struct bw_upcall *u; /* Compute the measured time interval */ delta = *nowp; BW_TIMEVALDECR(&delta, &x->bm_start_time); /* If there are too many pending upcalls, deliver them now */ if (bw_upcalls_n >= BW_UPCALLS_MAX) bw_upcalls_send(); /* Set the bw_upcall entry */ u = &bw_upcalls[bw_upcalls_n++]; u->bu_src = x->bm_mfc->mfc_origin; u->bu_dst = x->bm_mfc->mfc_mcastgrp; u->bu_threshold.b_time = x->bm_threshold.b_time; u->bu_threshold.b_packets = x->bm_threshold.b_packets; u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; u->bu_measured.b_time = delta; u->bu_measured.b_packets = x->bm_measured.b_packets; u->bu_measured.b_bytes = x->bm_measured.b_bytes; u->bu_flags = 0; if (x->bm_flags & BW_METER_UNIT_PACKETS) u->bu_flags |= BW_UPCALL_UNIT_PACKETS; if (x->bm_flags & BW_METER_UNIT_BYTES) u->bu_flags |= BW_UPCALL_UNIT_BYTES; if (x->bm_flags & BW_METER_GEQ) u->bu_flags |= BW_UPCALL_GEQ; if (x->bm_flags & BW_METER_LEQ) u->bu_flags |= BW_UPCALL_LEQ; } /* * Send the pending bandwidth-related upcalls */ static void bw_upcalls_send(void) { struct mbuf *m; int len = bw_upcalls_n * sizeof(bw_upcalls[0]); struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; static struct igmpmsg igmpmsg = { 0, /* unused1 */ 0, /* unused2 */ IGMPMSG_BW_UPCALL, /* im_msgtype */ 0, /* im_mbz */ 0, /* im_vif */ 0, /* unused3 */ { 0 }, /* im_src */ { 0 } }; /* im_dst */ if (bw_upcalls_n == 0) return; /* No pending upcalls */ bw_upcalls_n = 0; /* * Allocate a new mbuf, initialize it with the header and * the payload for the pending calls. */ MGETHDR(m, M_DONTWAIT, MT_HEADER); if (m == NULL) { log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); return; } m->m_len = m->m_pkthdr.len = 0; m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]); /* * Send the upcalls * XXX do we need to set the address in k_igmpsrc ? */ mrtstat.mrts_upcalls++; if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) { log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); ++mrtstat.mrts_upq_sockfull; } } /* * Compute the timeout hash value for the bw_meter entries */ #define BW_METER_TIMEHASH(bw_meter, hash) do { \ struct timeval next_timeval = (bw_meter)->bm_start_time; \ \ BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \ (hash) = next_timeval.tv_sec; \ if (next_timeval.tv_usec) \ (hash)++; /* XXX: make sure we don't timeout early */ \ (hash) %= BW_METER_BUCKETS; \ } while (/*CONSTCOND*/ 0) /* * Schedule a timer to process periodically bw_meter entry of type "<=" * by linking the entry in the proper hash bucket. */ static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp) { int time_hash; if (!(x->bm_flags & BW_METER_LEQ)) return; /* XXX: we schedule timers only for "<=" entries */ /* Reset the bw_meter entry */ x->bm_start_time = *nowp; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; /* Compute the timeout hash value and insert the entry */ BW_METER_TIMEHASH(x, time_hash); x->bm_time_next = bw_meter_timers[time_hash]; bw_meter_timers[time_hash] = x; x->bm_time_hash = time_hash; } /* * Unschedule the periodic timer that processes bw_meter entry of type "<=" * by removing the entry from the proper hash bucket. */ static void unschedule_bw_meter(struct bw_meter *x) { int time_hash; struct bw_meter *prev, *tmp; if (!(x->bm_flags & BW_METER_LEQ)) return; /* XXX: we schedule timers only for "<=" entries */ /* Compute the timeout hash value and delete the entry */ time_hash = x->bm_time_hash; if (time_hash >= BW_METER_BUCKETS) return; /* Entry was not scheduled */ for (prev = NULL, tmp = bw_meter_timers[time_hash]; tmp != NULL; prev = tmp, tmp = tmp->bm_time_next) if (tmp == x) break; if (tmp == NULL) panic("unschedule_bw_meter: bw_meter entry not found"); if (prev != NULL) prev->bm_time_next = x->bm_time_next; else bw_meter_timers[time_hash] = x->bm_time_next; x->bm_time_next = NULL; x->bm_time_hash = BW_METER_BUCKETS; } /* * Process all "<=" type of bw_meter that should be processed now, * and for each entry prepare an upcall if necessary. Each processed * entry is rescheduled again for the (periodic) processing. * * This is run periodically (once per second normally). On each round, * all the potentially matching entries are in the hash slot that we are * looking at. */ static void bw_meter_process() { int s; static uint32_t last_tv_sec; /* last time we processed this */ uint32_t loops; int i; struct timeval now, process_endtime; microtime(&now); if (last_tv_sec == now.tv_sec) return; /* nothing to do */ loops = now.tv_sec - last_tv_sec; last_tv_sec = now.tv_sec; if (loops > BW_METER_BUCKETS) loops = BW_METER_BUCKETS; s = splsoftnet(); /* * Process all bins of bw_meter entries from the one after the last * processed to the current one. On entry, i points to the last bucket * visited, so we need to increment i at the beginning of the loop. */ for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) { struct bw_meter *x, *tmp_list; if (++i >= BW_METER_BUCKETS) i = 0; /* Disconnect the list of bw_meter entries from the bin */ tmp_list = bw_meter_timers[i]; bw_meter_timers[i] = NULL; /* Process the list of bw_meter entries */ while (tmp_list != NULL) { x = tmp_list; tmp_list = tmp_list->bm_time_next; /* Test if the time interval is over */ process_endtime = x->bm_start_time; BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time); if (BW_TIMEVALCMP(&process_endtime, &now, >)) { /* Not yet: reschedule, but don't reset */ int time_hash; BW_METER_TIMEHASH(x, time_hash); if (time_hash == i && process_endtime.tv_sec == now.tv_sec) { /* * XXX: somehow the bin processing is * a bit ahead of time. Put the entry * in the next bin. */ if (++time_hash >= BW_METER_BUCKETS) time_hash = 0; } x->bm_time_next = bw_meter_timers[time_hash]; bw_meter_timers[time_hash] = x; x->bm_time_hash = time_hash; continue; } /* Test if we should deliver an upcall */ if (((x->bm_flags & BW_METER_UNIT_PACKETS) && (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || ((x->bm_flags & BW_METER_UNIT_BYTES) && (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { /* Prepare an upcall for delivery */ bw_meter_prepare_upcall(x, &now); } /* Reschedule for next processing */ schedule_bw_meter(x, &now); } } /* Send all upcalls that are pending delivery */ bw_upcalls_send(); splx(s); } /* * A periodic function for sending all upcalls that are pending delivery */ static void expire_bw_upcalls_send(void *unused) { int s; s = splsoftnet(); bw_upcalls_send(); splx(s); timeout_add(&bw_upcalls_ch, BW_UPCALLS_PERIOD); } /* * A periodic function for periodic scanning of the multicast forwarding * table for processing all "<=" bw_meter entries. */ static void expire_bw_meter_process(void *unused) { if (mrt_api_config & MRT_MFC_BW_UPCALL) bw_meter_process(); timeout_add(&bw_meter_ch, BW_METER_PERIOD); } /* * End of bandwidth monitoring code */ #ifdef PIM /* * Send the packet up to the user daemon, or eventually do kernel encapsulation */ static int pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, struct mfc *rt) { struct mbuf *mb_copy, *mm; if (mrtdebug & DEBUG_PIM) log(LOG_DEBUG, "pim_register_send: "); mb_copy = pim_register_prepare(ip, m); if (mb_copy == NULL) return (ENOBUFS); /* * Send all the fragments. Note that the mbuf for each fragment * is freed by the sending machinery. */ for (mm = mb_copy; mm; mm = mb_copy) { mb_copy = mm->m_nextpkt; mm->m_nextpkt = NULL; mm = m_pullup(mm, sizeof(struct ip)); if (mm != NULL) { ip = mtod(mm, struct ip *); if ((mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { pim_register_send_rp(ip, vifp, mm, rt); } else { pim_register_send_upcall(ip, vifp, mm, rt); } } } return (0); } /* * Return a copy of the data packet that is ready for PIM Register * encapsulation. * XXX: Note that in the returned copy the IP header is a valid one. */ static struct mbuf * pim_register_prepare(struct ip *ip, struct mbuf *m) { struct mbuf *mb_copy = NULL; int mtu; /* Take care of delayed checksums */ if (m->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~(M_UDPV4_CSUM_OUT | M_TCPV4_CSUM_OUT); } /* * Copy the old packet & pullup its IP header into the * new mbuf so we can modify it. */ mb_copy = m_copy(m, 0, M_COPYALL); if (mb_copy == NULL) return (NULL); mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); if (mb_copy == NULL) return (NULL); /* take care of the TTL */ ip = mtod(mb_copy, struct ip *); --ip->ip_ttl; /* Compute the MTU after the PIM Register encapsulation */ mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); if (ntohs(ip->ip_len) <= mtu) { /* Turn the IP header into a valid one */ ip->ip_sum = 0; ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); } else { /* Fragment the packet */ if (ip_fragment(mb_copy, NULL, mtu) != 0) { /* XXX: mb_copy was freed by ip_fragment() */ return (NULL); } } return (mb_copy); } /* * Send an upcall with the data packet to the user-level process. */ static int pim_register_send_upcall(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, struct mfc *rt) { struct mbuf *mb_first; int len = ntohs(ip->ip_len); struct igmpmsg *im; struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; /* Add a new mbuf with an upcall header */ MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); if (mb_first == NULL) { m_freem(mb_copy); return (ENOBUFS); } mb_first->m_data += max_linkhdr; mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); mb_first->m_len = sizeof(struct igmpmsg); mb_first->m_next = mb_copy; /* Send message to routing daemon */ im = mtod(mb_first, struct igmpmsg *); im->im_msgtype = IGMPMSG_WHOLEPKT; im->im_mbz = 0; im->im_vif = vifp - viftable; im->im_src = ip->ip_src; im->im_dst = ip->ip_dst; k_igmpsrc.sin_addr = ip->ip_src; mrtstat.mrts_upcalls++; if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) { if (mrtdebug & DEBUG_PIM) log(LOG_WARNING, "mcast: pim_register_send_upcall: " "ip_mrouter socket queue full"); ++mrtstat.mrts_upq_sockfull; return (ENOBUFS); } /* Keep statistics */ pimstat.pims_snd_registers_msgs++; pimstat.pims_snd_registers_bytes += len; return (0); } /* * Encapsulate the data packet in PIM Register message and send it to the RP. */ static int pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, struct mfc *rt) { struct mbuf *mb_first; struct ip *ip_outer; struct pim_encap_pimhdr *pimhdr; int len = ntohs(ip->ip_len); vifi_t vifi = rt->mfc_parent; if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) { m_freem(mb_copy); return (EADDRNOTAVAIL); /* The iif vif is invalid */ } /* Add a new mbuf with the encapsulating header */ MGETHDR(mb_first, M_DONTWAIT, MT_HEADER); if (mb_first == NULL) { m_freem(mb_copy); return (ENOBUFS); } mb_first->m_data += max_linkhdr; mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); mb_first->m_next = mb_copy; mb_first->m_pkthdr.len = len + mb_first->m_len; /* Fill in the encapsulating IP and PIM header */ ip_outer = mtod(mb_first, struct ip *); *ip_outer = pim_encap_iphdr; ip_outer->ip_id = htons(ip_randomid()); ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr)); ip_outer->ip_src = viftable[vifi].v_lcl_addr; ip_outer->ip_dst = rt->mfc_rp; /* * Copy the inner header TOS to the outer header, and take care of the * IP_DF bit. */ ip_outer->ip_tos = ip->ip_tos; if (ntohs(ip->ip_off) & IP_DF) ip_outer->ip_off |= htons(IP_DF); pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer + sizeof(pim_encap_iphdr)); *pimhdr = pim_encap_pimhdr; /* If the iif crosses a border, set the Border-bit */ if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config) pimhdr->flags |= htonl(PIM_BORDER_REGISTER); mb_first->m_data += sizeof(pim_encap_iphdr); pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); mb_first->m_data -= sizeof(pim_encap_iphdr); if (vifp->v_rate_limit == 0) tbf_send_packet(vifp, mb_first); else tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len)); /* Keep statistics */ pimstat.pims_snd_registers_msgs++; pimstat.pims_snd_registers_bytes += len; return (0); } /* * PIM-SMv2 and PIM-DM messages processing. * Receives and verifies the PIM control messages, and passes them * up to the listening socket, using rip_input(). * The only message with special processing is the PIM_REGISTER message * (used by PIM-SM): the PIM header is stripped off, and the inner packet * is passed to if_simloop(). */ void pim_input(struct mbuf *m, ...) { struct ip *ip = mtod(m, struct ip *); struct pim *pim; int minlen; int datalen; int ip_tos; int iphlen; va_list ap; va_start(ap, m); iphlen = va_arg(ap, int); va_end(ap); datalen = ntohs(ip->ip_len) - iphlen; /* Keep statistics */ pimstat.pims_rcv_total_msgs++; pimstat.pims_rcv_total_bytes += datalen; /* Validate lengths */ if (datalen < PIM_MINLEN) { pimstat.pims_rcv_tooshort++; log(LOG_ERR, "pim_input: packet size too small %d from %lx\n", datalen, (u_long)ip->ip_src.s_addr); m_freem(m); return; } /* * If the packet is at least as big as a REGISTER, go agead * and grab the PIM REGISTER header size, to avoid another * possible m_pullup() later. * * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 */ minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); /* * Get the IP and PIM headers in contiguous memory, and * possibly the PIM REGISTER header. */ if ((m->m_flags & M_EXT || m->m_len < minlen) && (m = m_pullup(m, minlen)) == NULL) { log(LOG_ERR, "pim_input: m_pullup failure\n"); return; } /* m_pullup() may have given us a new mbuf so reset ip. */ ip = mtod(m, struct ip *); ip_tos = ip->ip_tos; /* adjust mbuf to point to the PIM header */ m->m_data += iphlen; m->m_len -= iphlen; pim = mtod(m, struct pim *); /* * Validate checksum. If PIM REGISTER, exclude the data packet. * * XXX: some older PIMv2 implementations don't make this distinction, * so for compatibility reason perform the checksum over part of the * message, and if error, then over the whole message. */ if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { /* do nothing, checksum okay */ } else if (in_cksum(m, datalen)) { pimstat.pims_rcv_badsum++; if (mrtdebug & DEBUG_PIM) log(LOG_DEBUG, "pim_input: invalid checksum"); m_freem(m); return; } /* PIM version check */ if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { pimstat.pims_rcv_badversion++; log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n", PIM_VT_V(pim->pim_vt), PIM_VERSION); m_freem(m); return; } /* restore mbuf back to the outer IP */ m->m_data -= iphlen; m->m_len += iphlen; if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { /* * Since this is a REGISTER, we'll make a copy of the register * headers ip + pim + u_int32 + encap_ip, to be passed up to the * routing daemon. */ int s; struct sockaddr_in dst = { sizeof(dst), AF_INET }; struct mbuf *mcp; struct ip *encap_ip; u_int32_t *reghdr; struct ifnet *vifp; s = splsoftnet(); if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) { splx(s); if (mrtdebug & DEBUG_PIM) log(LOG_DEBUG, "pim_input: register vif " "not set: %d\n", reg_vif_num); m_freem(m); return; } /* XXX need refcnt? */ vifp = viftable[reg_vif_num].v_ifp; splx(s); /* Validate length */ if (datalen < PIM_REG_MINLEN) { pimstat.pims_rcv_tooshort++; pimstat.pims_rcv_badregisters++; log(LOG_ERR, "pim_input: register packet size " "too small %d from %lx\n", datalen, (u_long)ip->ip_src.s_addr); m_freem(m); return; } reghdr = (u_int32_t *)(pim + 1); encap_ip = (struct ip *)(reghdr + 1); if (mrtdebug & DEBUG_PIM) { log(LOG_DEBUG, "pim_input[register], encap_ip: " "%lx -> %lx, encap_ip len %d\n", (u_long)ntohl(encap_ip->ip_src.s_addr), (u_long)ntohl(encap_ip->ip_dst.s_addr), ntohs(encap_ip->ip_len)); } /* verify the version number of the inner packet */ if (encap_ip->ip_v != IPVERSION) { pimstat.pims_rcv_badregisters++; if (mrtdebug & DEBUG_PIM) { log(LOG_DEBUG, "pim_input: invalid IP version" " (%d) of the inner packet\n", encap_ip->ip_v); } m_freem(m); return; } /* verify the inner packet is destined to a mcast group */ if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) { pimstat.pims_rcv_badregisters++; if (mrtdebug & DEBUG_PIM) log(LOG_DEBUG, "pim_input: inner packet of register is" " not multicast %lx\n", (u_long)ntohl(encap_ip->ip_dst.s_addr)); m_freem(m); return; } /* If a NULL_REGISTER, pass it to the daemon */ if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) goto pim_input_to_daemon; /* * Copy the TOS from the outer IP header to the inner * IP header. */ if (encap_ip->ip_tos != ip_tos) { /* Outer TOS -> inner TOS */ encap_ip->ip_tos = ip_tos; /* Recompute the inner header checksum. Sigh... */ /* adjust mbuf to point to the inner IP header */ m->m_data += (iphlen + PIM_MINLEN); m->m_len -= (iphlen + PIM_MINLEN); encap_ip->ip_sum = 0; encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); /* restore mbuf to point back to the outer IP header */ m->m_data -= (iphlen + PIM_MINLEN); m->m_len += (iphlen + PIM_MINLEN); } /* * Decapsulate the inner IP packet and loopback to forward it * as a normal multicast packet. Also, make a copy of the * outer_iphdr + pimhdr + reghdr + encap_iphdr * to pass to the daemon later, so it can take the appropriate * actions (e.g., send back PIM_REGISTER_STOP). * XXX: here m->m_data points to the outer IP header. */ mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN); if (mcp == NULL) { log(LOG_ERR, "pim_input: pim register: could not " "copy register head\n"); m_freem(m); return; } /* Keep statistics */ /* XXX: registers_bytes include only the encap. mcast pkt */ pimstat.pims_rcv_registers_msgs++; pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len); /* forward the inner ip packet; point m_data at the inner ip. */ m_adj(m, iphlen + PIM_MINLEN); if (mrtdebug & DEBUG_PIM) { log(LOG_DEBUG, "pim_input: forwarding decapsulated register: " "src %lx, dst %lx, vif %d\n", (u_long)ntohl(encap_ip->ip_src.s_addr), (u_long)ntohl(encap_ip->ip_dst.s_addr), reg_vif_num); } /* NB: vifp was collected above; can it change on us? */ looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL); /* prepare the register head to send to the mrouting daemon */ m = mcp; } pim_input_to_daemon: /* * Pass the PIM message up to the daemon; if it is a Register message, * pass the 'head' only up to the daemon. This includes the * outer IP header, PIM header, PIM-Register header and the * inner IP header. * XXX: the outer IP header pkt size of a Register is not adjust to * reflect the fact that the inner multicast data is truncated. */ rip_input(m); return; } /* * Sysctl for pim variables. */ int pim_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { /* All sysctl names at this level are terminal. */ if (namelen != 1) return (ENOTDIR); switch (name[0]) { case PIMCTL_STATS: if (newp != NULL) return (EPERM); return (sysctl_struct(oldp, oldlenp, newp, newlen, &pimstat, sizeof(pimstat))); default: return (ENOPROTOOPT); } /* NOTREACHED */ } #endif /* PIM */