/* $OpenBSD: ip_mroute.c,v 1.37 2004/08/24 20:31:16 brad Exp $ */ /* $NetBSD: ip_mroute.c,v 1.27 1996/05/07 02:40:50 thorpej Exp $ */ /* * Copyright (c) 1989 Stephen Deering * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 */ /* * IP multicast forwarding procedures * * Written by David Waitzman, BBN Labs, August 1988. * Modified by Steve Deering, Stanford, February 1989. * Modified by Mark J. Steiglitz, Stanford, May, 1991 * Modified by Van Jacobson, LBL, January 1993 * Modified by Ajit Thyagarajan, PARC, August 1993 * Modified by Bill Fenner, PARC, April 1994 * Modified by Charles M. Hannum, NetBSD, May 1995. * * MROUTING Revision: 1.2 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IP_MULTICASTOPTS 0 #define M_PULLUP(m, len) \ do { \ if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ (m) = m_pullup((m), (len)); \ } while (0) /* * Globals. All but ip_mrouter and ip_mrtproto could be static, * except for netstat or debugging purposes. */ struct socket *ip_mrouter = NULL; int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ #define NO_RTE_FOUND 0x1 #define RTE_FOUND 0x2 #define MFCHASH(a, g) \ ((((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \ ((g) >> 20) ^ ((g) >> 10) ^ (g)) & mfchash) LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; u_long mfchash; u_char nexpire[MFCTBLSIZ]; struct vif viftable[MAXVIFS]; struct mrtstat mrtstat; u_int mrtdebug = 0; /* debug level */ #define DEBUG_MFC 0x02 #define DEBUG_FORWARD 0x04 #define DEBUG_EXPIRE 0x08 #define DEBUG_XMIT 0x10 u_int tbfdebug = 0; /* tbf debug level */ #ifdef RSVP_ISI u_int rsvpdebug = 0; /* rsvp debug level */ extern struct socket *ip_rsvpd; extern int rsvp_on; #endif /* RSVP_ISI */ #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ #define UPCALL_EXPIRE 6 /* number of timeouts */ struct timeout upcalls_timeout; struct timeout tbf_timeout; /* * Define the token bucket filter structures * qtable -> each interface has an associated queue of pkts */ struct pkt_queue qtable[MAXVIFS][MAXQSIZE]; static int get_sg_cnt(struct sioc_sg_req *); static int get_vif_cnt(struct sioc_vif_req *); static int ip_mrouter_init(struct socket *, struct mbuf *); static int get_version(struct mbuf *); static int set_assert(struct mbuf *); static int get_assert(struct mbuf *); static int add_vif(struct mbuf *); static int del_vif(struct mbuf *); static void update_mfc(struct mfcctl *, struct mfc *); static void expire_mfc(struct mfc *); static int add_mfc(struct mbuf *); #ifdef UPCALL_TIMING static void collate(struct timeval *); #endif static int del_mfc(struct mbuf *); static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); static void expire_upcalls(void *); #ifdef RSVP_ISI static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); #else static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *); #endif static void phyint_send(struct ip *, struct vif *, struct mbuf *); static void encap_send(struct ip *, struct vif *, struct mbuf *); static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t); static void tbf_queue(struct vif *, struct mbuf *, struct ip *); static void tbf_process_q(struct vif *); static void tbf_dequeue(struct vif *, int); static void tbf_reprocess_q(void *); static int tbf_dq_sel(struct vif *, struct ip *); static void tbf_send_packet(struct vif *, struct mbuf *); static void tbf_update_tokens(struct vif *); static int priority(struct vif *, struct ip *); /* * 'Interfaces' associated with decapsulator (so we can tell * packets that went through it from ones that get reflected * by a broken gateway). These interfaces are never linked into * the system ifnet list & no routes point to them. I.e., packets * can't be sent this way. They only exist as a placeholder for * multicast source verification. */ #if 0 struct ifnet multicast_decap_if[MAXVIFS]; #endif #define ENCAP_TTL 64 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ /* prototype IP hdr for encapsulated packets */ struct ip multicast_encap_iphdr = { #if BYTE_ORDER == LITTLE_ENDIAN sizeof(struct ip) >> 2, IPVERSION, #else IPVERSION, sizeof(struct ip) >> 2, #endif 0, /* tos */ sizeof(struct ip), /* total length */ 0, /* id */ 0, /* frag offset */ ENCAP_TTL, ENCAP_PROTO, 0, /* checksum */ }; /* * Private variables. */ static vifi_t numvifs = 0; static int have_encap_tunnel = 0; /* * one-back cache used by ipip_mroute_input to locate a tunnel's vif * given a datagram's src ip address. */ static u_int32_t last_encap_src; static struct vif *last_encap_vif; /* * whether or not special PIM assert processing is enabled. */ static int pim_assert; /* * Rate limit for assert notification messages, in usec */ #define ASSERT_MSG_TIME 3000000 /* * Find a route for a given origin IP address and Multicast group address * Type of service parameter to be added in the future!!! */ #define MFCFIND(o, g, rt) do { \ struct mfc *_rt; \ (rt) = NULL; \ ++mrtstat.mrts_mfc_lookups; \ for (_rt = mfchashtbl[MFCHASH(o, g)].lh_first; \ _rt; _rt = _rt->mfc_hash.le_next) { \ if (_rt->mfc_origin.s_addr == (o) && \ _rt->mfc_mcastgrp.s_addr == (g) && \ _rt->mfc_stall == NULL) { \ (rt) = _rt; \ break; \ } \ } \ if ((rt) == NULL) \ ++mrtstat.mrts_mfc_misses; \ } while (0) /* * Macros to compute elapsed time efficiently * Borrowed from Van Jacobson's scheduling code */ #define TV_DELTA(a, b, delta) do { \ int xxs; \ delta = (a).tv_usec - (b).tv_usec; \ xxs = (a).tv_sec - (b).tv_sec; \ switch (xxs) { \ case 2: \ delta += 1000000; \ /* fall through */ \ case 1: \ delta += 1000000; \ /* fall through */ \ case 0: \ break; \ default: \ delta += (1000000 * xxs); \ break; \ } \ } while (0) #ifdef UPCALL_TIMING u_int32_t upcall_data[51]; #endif /* UPCALL_TIMING */ /* * Handle MRT setsockopt commands to modify the multicast routing tables. */ int ip_mrouter_set(cmd, so, m) int cmd; struct socket *so; struct mbuf **m; { int error; if (cmd != MRT_INIT && so != ip_mrouter) error = EACCES; else switch (cmd) { case MRT_INIT: error = ip_mrouter_init(so, *m); break; case MRT_DONE: error = ip_mrouter_done(); break; case MRT_ADD_VIF: error = add_vif(*m); break; case MRT_DEL_VIF: error = del_vif(*m); break; case MRT_ADD_MFC: error = add_mfc(*m); break; case MRT_DEL_MFC: error = del_mfc(*m); break; case MRT_ASSERT: error = set_assert(*m); break; default: error = EOPNOTSUPP; break; } if (*m) m_free(*m); return (error); } /* * Handle MRT getsockopt commands */ int ip_mrouter_get(cmd, so, m) int cmd; struct socket *so; struct mbuf **m; { struct mbuf *mb; int error; if (so != ip_mrouter) error = EACCES; else { *m = mb = m_get(M_WAIT, MT_SOOPTS); switch (cmd) { case MRT_VERSION: error = get_version(mb); break; case MRT_ASSERT: error = get_assert(mb); break; default: error = EOPNOTSUPP; break; } if (error) m_free(mb); } return (error); } /* * Handle ioctl commands to obtain information from the cache */ int mrt_ioctl(so, cmd, data) struct socket *so; u_long cmd; caddr_t data; { int error; if (so != ip_mrouter) error = EINVAL; else switch (cmd) { case SIOCGETVIFCNT: error = get_vif_cnt((struct sioc_vif_req *)data); break; case SIOCGETSGCNT: error = get_sg_cnt((struct sioc_sg_req *)data); break; default: error = EINVAL; break; } return (error); } /* * returns the packet, byte, rpf-failure count for the source group provided */ static int get_sg_cnt(req) struct sioc_sg_req *req; { struct mfc *rt; int s; s = splsoftnet(); MFCFIND(req->src.s_addr, req->grp.s_addr, rt); splx(s); if (rt != NULL) { req->pktcnt = rt->mfc_pkt_cnt; req->bytecnt = rt->mfc_byte_cnt; req->wrong_if = rt->mfc_wrong_if; } else req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; return (0); } /* * returns the input and output packet and byte counts on the vif provided */ static int get_vif_cnt(req) struct sioc_vif_req *req; { vifi_t vifi = req->vifi; if (vifi >= numvifs) return (EINVAL); req->icount = viftable[vifi].v_pkt_in; req->ocount = viftable[vifi].v_pkt_out; req->ibytes = viftable[vifi].v_bytes_in; req->obytes = viftable[vifi].v_bytes_out; return (0); } /* * Enable multicast routing */ static int ip_mrouter_init(so, m) struct socket *so; struct mbuf *m; { int *v; if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) return (EOPNOTSUPP); if (m == 0 || m->m_len < sizeof(int)) return (EINVAL); v = mtod(m, int *); if (*v != 1) return (EINVAL); if (ip_mrouter != NULL) return (EADDRINUSE); ip_mrouter = so; mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, M_WAITOK, &mfchash); bzero((caddr_t)nexpire, sizeof(nexpire)); pim_assert = 0; timeout_set(&upcalls_timeout, expire_upcalls, NULL); timeout_add(&upcalls_timeout, EXPIRE_TIMEOUT); if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init\n"); return (0); } /* * Disable multicast routing */ int ip_mrouter_done() { vifi_t vifi; struct vif *vifp; int i; int s; s = splsoftnet(); /* Clear out all the vifs currently in use. */ for (vifi = 0; vifi < numvifs; vifi++) { vifp = &viftable[vifi]; if (vifp->v_lcl_addr.s_addr != 0) reset_vif(vifp); } bzero((caddr_t)qtable, sizeof(qtable)); numvifs = 0; pim_assert = 0; timeout_del(&upcalls_timeout); /* * Free all multicast forwarding cache entries. */ for (i = 0; i < MFCTBLSIZ; i++) { struct mfc *rt, *nrt; for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) { nrt = rt->mfc_hash.le_next; expire_mfc(rt); } } free(mfchashtbl, M_MRTABLE); mfchashtbl = 0; /* Reset de-encapsulation cache. */ have_encap_tunnel = 0; ip_mrouter = NULL; splx(s); if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_done\n"); return (0); } static int get_version(m) struct mbuf *m; { int *v = mtod(m, int *); *v = 0x0305; /* XXX !!!! */ m->m_len = sizeof(int); return (0); } /* * Set PIM assert processing global */ static int set_assert(m) struct mbuf *m; { int *i; if (m == 0 || m->m_len < sizeof(int)) return (EINVAL); i = mtod(m, int *); pim_assert = !!*i; return (0); } /* * Get PIM assert processing global */ static int get_assert(m) struct mbuf *m; { int *i = mtod(m, int *); *i = pim_assert; m->m_len = sizeof(int); return (0); } static struct sockaddr_in sin = { sizeof(sin), AF_INET }; /* * Add a vif to the vif table */ static int add_vif(m) struct mbuf *m; { struct vifctl *vifcp; struct vif *vifp; struct ifaddr *ifa; struct ifnet *ifp; struct ifreq ifr; int error, s; if (m == 0 || m->m_len < sizeof(struct vifctl)) return (EINVAL); vifcp = mtod(m, struct vifctl *); if (vifcp->vifc_vifi >= MAXVIFS) return (EINVAL); vifp = &viftable[vifcp->vifc_vifi]; if (vifp->v_lcl_addr.s_addr != 0) return (EADDRINUSE); /* Find the interface with an address in AF_INET family. */ sin.sin_addr = vifcp->vifc_lcl_addr; ifa = ifa_ifwithaddr(sintosa(&sin)); if (ifa == 0) return (EADDRNOTAVAIL); if (vifcp->vifc_flags & VIFF_TUNNEL) { if (vifcp->vifc_flags & VIFF_SRCRT) { log(LOG_ERR, "Source routed tunnels not supported.\n"); return (EOPNOTSUPP); } /* Create a fake encapsulation interface. */ ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK); bzero(ifp, sizeof(*ifp)); snprintf(ifp->if_xname, sizeof ifp->if_xname, "mdecap%d", vifcp->vifc_vifi); /* Prepare cached route entry. */ bzero(&vifp->v_route, sizeof(vifp->v_route)); /* * Tell ipip_mroute_input() to start looking at * encapsulated packets. */ have_encap_tunnel = 1; } else { /* Use the physical interface associated with the address. */ ifp = ifa->ifa_ifp; /* Make sure the interface supports multicast. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Enable promiscuous reception of all IP multicasts. */ satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); satosin(&ifr.ifr_addr)->sin_family = AF_INET; satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY; error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr); if (error) return (error); } s = splsoftnet(); /* Define parameters for the tbf structure. */ vifp->v_tbf.q_len = 0; vifp->v_tbf.n_tok = 0; vifp->v_tbf.last_pkt_t = 0; vifp->v_flags = vifcp->vifc_flags; vifp->v_threshold = vifcp->vifc_threshold; vifp->v_lcl_addr = vifcp->vifc_lcl_addr; vifp->v_rmt_addr = vifcp->vifc_rmt_addr; vifp->v_ifp = ifp; vifp->v_rate_limit = vifcp->vifc_rate_limit; #ifdef RSVP_ISI vifp->v_rsvp_on = 0; vifp->v_rsvpd = NULL; #endif /* RSVP_ISI */ /* Initialize per vif pkt counters. */ vifp->v_pkt_in = 0; vifp->v_pkt_out = 0; vifp->v_bytes_in = 0; vifp->v_bytes_out = 0; splx(s); /* Adjust numvifs up if the vifi is higher than numvifs. */ if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; if (mrtdebug) log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", ntohl(vifcp->vifc_rmt_addr.s_addr), vifcp->vifc_threshold, vifcp->vifc_rate_limit); return (0); } void reset_vif(vifp) struct vif *vifp; { struct ifnet *ifp; struct ifreq ifr; if (vifp->v_flags & VIFF_TUNNEL) { free(vifp->v_ifp, M_MRTABLE); if (vifp == last_encap_vif) { last_encap_vif = 0; last_encap_src = 0; } } else { satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); satosin(&ifr.ifr_addr)->sin_family = AF_INET; satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY; ifp = vifp->v_ifp; (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr); } bzero((caddr_t)vifp, sizeof(*vifp)); } /* * Delete a vif from the vif table */ static int del_vif(m) struct mbuf *m; { vifi_t *vifip; struct vif *vifp; vifi_t vifi; int s; if (m == 0 || m->m_len < sizeof(vifi_t)) return (EINVAL); vifip = mtod(m, vifi_t *); if (*vifip >= numvifs) return (EINVAL); vifp = &viftable[*vifip]; if (vifp->v_lcl_addr.s_addr == 0) return (EADDRNOTAVAIL); s = splsoftnet(); reset_vif(vifp); bzero((caddr_t)qtable[*vifip], sizeof(qtable[*vifip])); /* Adjust numvifs down */ for (vifi = numvifs; vifi > 0; vifi--) if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break; numvifs = vifi; splx(s); if (mrtdebug) log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); return (0); } void vif_delete(ifp) struct ifnet *ifp; { int i; struct vif *vifp; struct mfc *rt; struct rtdetq *rte; for (i = 0; i < numvifs; i++) { vifp = &viftable[i]; if (vifp->v_ifp == ifp) bzero((caddr_t)vifp, sizeof *vifp); } for (i = numvifs; i > 0; i--) if (viftable[i - 1].v_lcl_addr.s_addr != 0) break; numvifs = i; for (i = 0; i < MFCTBLSIZ; i++) { if (nexpire[i] == 0) continue; LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { for (rte = rt->mfc_stall; rte; rte = rte->next) { if (rte->ifp == ifp) rte->ifp = NULL; } } } } static void update_mfc(mfccp, rt) struct mfcctl *mfccp; struct mfc *rt; { vifi_t vifi; rt->mfc_parent = mfccp->mfcc_parent; for (vifi = 0; vifi < numvifs; vifi++) rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi]; rt->mfc_expire = 0; rt->mfc_stall = 0; } static void expire_mfc(rt) struct mfc *rt; { struct rtdetq *rte, *nrte; for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { nrte = rte->next; m_freem(rte->m); free(rte, M_MRTABLE); } LIST_REMOVE(rt, mfc_hash); free(rt, M_MRTABLE); } /* * Add an mfc entry */ static int add_mfc(m) struct mbuf *m; { struct mfcctl *mfccp; struct mfc *rt; u_int32_t hash = 0; struct rtdetq *rte, *nrte; u_short nstl; int s; if (m == 0 || m->m_len < sizeof(struct mfcctl)) return (EINVAL); mfccp = mtod(m, struct mfcctl *); s = splsoftnet(); MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt); /* If an entry already exists, just update the fields */ if (rt) { if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); if (rt->mfc_expire) nexpire[hash]--; update_mfc(mfccp, rt); splx(s); return (0); } /* * Find the entry for which the upcall was made and update */ nstl = 0; hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr); for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) { if (rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr && rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr && rt->mfc_stall != NULL) { if (nstl++) log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", "multiple kernel entries", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, rt->mfc_stall); if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, rt->mfc_stall); if (rt->mfc_expire) nexpire[hash]--; /* free packets Qed at the end of this entry */ for (rte = rt->mfc_stall; rte != NULL; rte = nrte) { nrte = rte->next; if (rte->ifp) { #ifdef RSVP_ISI ip_mdq(rte->m, rte->ifp, rt, -1); #else ip_mdq(rte->m, rte->ifp, rt); #endif /* RSVP_ISI */ } m_freem(rte->m); #ifdef UPCALL_TIMING collate(&rte->t); #endif /* UPCALL_TIMING */ free(rte, M_MRTABLE); } update_mfc(mfccp, rt); } } if (nstl == 0) { /* * No mfc; make a new one */ if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == NULL) { splx(s); return (ENOBUFS); } rt->mfc_origin = mfccp->mfcc_origin; rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; timerclear(&rt->mfc_last_assert); update_mfc(mfccp, rt); /* insert new entry at head of hash chain */ LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); } splx(s); return (0); } #ifdef UPCALL_TIMING /* * collect delay statistics on the upcalls */ static void collate(t) struct timeval *t; { u_int32_t d; struct timeval tp; u_int32_t delta; microtime(&tp); if (timercmp(t, &tp, <)) { TV_DELTA(tp, *t, delta); d = delta >> 10; if (d > 50) d = 50; ++upcall_data[d]; } } #endif /* UPCALL_TIMING */ /* * Delete an mfc entry */ static int del_mfc(m) struct mbuf *m; { struct mfcctl *mfccp; struct mfc *rt; int s; if (m == 0 || m->m_len < sizeof(struct mfcctl)) return (EINVAL); mfccp = mtod(m, struct mfcctl *); if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr)); s = splsoftnet(); MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt); if (rt == NULL) { splx(s); return (EADDRNOTAVAIL); } LIST_REMOVE(rt, mfc_hash); free(rt, M_MRTABLE); splx(s); return (0); } static int socket_send(s, mm, src) struct socket *s; struct mbuf *mm; struct sockaddr_in *src; { if (s) { if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) { sorwakeup(s); return (0); } } m_freem(mm); return (-1); } /* * IP multicast forwarding function. This function assumes that the packet * pointed to by "ip" has arrived on (or is about to be sent to) the interface * pointed to by "ifp", and the packet is to be relayed to other networks * that have members of the packet's destination IP multicast group. * * The packet is returned unscathed to the caller, unless it is * erroneous, in which case a non-zero return value tells the caller to * discard it. */ #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ int #ifdef RSVP_ISI ip_mforward(m, ifp, imo) #else ip_mforward(m, ifp) #endif /* RSVP_ISI */ struct mbuf *m; struct ifnet *ifp; #ifdef RSVP_ISI struct ip_moptions *imo; #endif /* RSVP_ISI */ { struct ip *ip = mtod(m, struct ip *); struct mfc *rt; u_char *ipoptions; static int srctun = 0; struct mbuf *mm; int s; #ifdef RSVP_ISI struct vif *vifp; vifi_t vifi; #endif /* RSVP_ISI */ if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) { /* * Packet arrived via a physical interface or * an encapuslated tunnel. */ } else { /* * Packet arrived through a source-route tunnel. * Source-route tunnels are no longer supported. */ if ((srctun++ % 1000) == 0) log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n", ntohl(ip->ip_src.s_addr)); return (1); } #ifdef RSVP_ISI if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { if (ip->ip_ttl < 255) ip->ip_ttl++; /* compensate for -1 in *_send routines */ if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { vifp = viftable + vifi; printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", vifp->v_ifp->if_xname); } return (ip_mdq(m, ifp, rt, vifi)); } if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", ntohl(ip->ip_src), ntohl(ip->ip_dst)); } #endif /* RSVP_ISI */ /* * Don't forward a packet with time-to-live of zero or one, * or a packet destined to a local-only group. */ if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) return (0); /* * Determine forwarding vifs from the forwarding cache table */ s = splsoftnet(); MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt); /* Entry exists, so forward if necessary */ if (rt != NULL) { splx(s); #ifdef RSVP_ISI return (ip_mdq(m, ifp, rt, -1)); #else return (ip_mdq(m, ifp, rt)); #endif /* RSVP_ISI */ } else { /* * If we don't have a route for packet's origin, * Make a copy of the packet & * send message to routing daemon */ struct mbuf *mb0; struct rtdetq *rte; u_int32_t hash; #ifdef UPCALL_TIMING struct timeval tp; microtime(&tp); #endif /* UPCALL_TIMING */ mrtstat.mrts_no_route++; if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr)); /* * Allocate mbufs early so that we don't do extra work if we are * just going to fail anyway. */ rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT); if (rte == NULL) { splx(s); return (ENOBUFS); } mb0 = m_copy(m, 0, M_COPYALL); if (mb0 == NULL) { free(rte, M_MRTABLE); splx(s); return (ENOBUFS); } /* is there an upcall waiting for this packet? */ hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr); for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) { if (ip->ip_src.s_addr == rt->mfc_origin.s_addr && ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr && rt->mfc_stall != NULL) break; } if (rt == NULL) { int hlen = ip->ip_hl << 2; int i; struct igmpmsg *im; /* no upcall, so make a new entry */ rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == NULL) { free(rte, M_MRTABLE); m_free(mb0); splx(s); return (ENOBUFS); } /* * Make a copy of the header to send to the user level * process */ mm = m_copy(m, 0, hlen); M_PULLUP(mm, hlen); if (mm == NULL) { free(rte, M_MRTABLE); m_free(mb0); free(rt, M_MRTABLE); splx(s); return (ENOBUFS); } /* * Send message to routing daemon to install * a route into the kernel table */ sin.sin_addr = ip->ip_src; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_NOCACHE; im->im_mbz = 0; mrtstat.mrts_upcalls++; if (socket_send(ip_mrouter, mm, &sin) < 0) { log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); ++mrtstat.mrts_upq_sockfull; free(rte, M_MRTABLE); m_free(mb0); free(rt, M_MRTABLE); splx(s); return (ENOBUFS); } /* insert new entry at head of hash chain */ rt->mfc_origin = ip->ip_src; rt->mfc_mcastgrp = ip->ip_dst; rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; rt->mfc_expire = UPCALL_EXPIRE; nexpire[hash]++; for (i = 0; i < numvifs; i++) rt->mfc_ttls[i] = 0; rt->mfc_parent = -1; /* link into table */ LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); /* Add this entry to the end of the queue */ rt->mfc_stall = rte; } else { /* determine if q has overflowed */ struct rtdetq **p; int npkts = 0; for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next) if (++npkts > MAX_UPQ) { mrtstat.mrts_upq_ovflw++; free(rte, M_MRTABLE); m_free(mb0); splx(s); return (0); } /* Add this entry to the end of the queue */ *p = rte; } rte->next = NULL; rte->m = mb0; rte->ifp = ifp; #ifdef UPCALL_TIMING rte->t = tp; #endif /* UPCALL_TIMING */ splx(s); return (0); } } /*ARGSUSED*/ static void expire_upcalls(v) void *v; { int i; int s; s = splsoftnet(); for (i = 0; i < MFCTBLSIZ; i++) { struct mfc *rt, *nrt; if (nexpire[i] == 0) continue; for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) { nrt = rt->mfc_hash.le_next; if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) continue; nexpire[i]--; ++mrtstat.mrts_cache_cleanups; if (mrtdebug & DEBUG_EXPIRE) log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n", ntohl(rt->mfc_origin.s_addr), ntohl(rt->mfc_mcastgrp.s_addr)); expire_mfc(rt); } } splx(s); timeout_add(&upcalls_timeout, EXPIRE_TIMEOUT); } /* * Packet forwarding routine once entry in the cache is made */ static int #ifdef RSVP_ISI ip_mdq(m, ifp, rt, xmt_vif) #else ip_mdq(m, ifp, rt) #endif /* RSVP_ISI */ struct mbuf *m; struct ifnet *ifp; struct mfc *rt; #ifdef RSVP_ISI vifi_t xmt_vif; #endif /* RSVP_ISI */ { struct ip *ip = mtod(m, struct ip *); vifi_t vifi; struct vif *vifp; int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); /* * Macro to send packet on vif. Since RSVP packets don't get counted on * input, they shouldn't get counted on output, so statistics keeping is * separate. */ #define MC_SEND(ip, vifp, m) do { \ if ((vifp)->v_flags & VIFF_TUNNEL) \ encap_send((ip), (vifp), (m)); \ else \ phyint_send((ip), (vifp), (m)); \ } while (0) #ifdef RSVP_ISI /* * If xmt_vif is not -1, send on only the requested vif. * * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. */ if (xmt_vif < numvifs) { MC_SEND(ip, viftable + xmt_vif, m); return (1); } #endif /* RSVP_ISI */ /* * Don't forward if it didn't arrive from the parent vif for its origin. */ vifi = rt->mfc_parent; if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { /* came in the wrong interface */ if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", ifp, vifi, vifi >= numvifs ? 0 : viftable[vifi].v_ifp); ++mrtstat.mrts_wrong_if; ++rt->mfc_wrong_if; /* * If we are doing PIM assert processing, and we are forwarding * packets on this interface, and it is a broadcast medium * interface (and not a tunnel), send a message to the routing daemon. */ if (pim_assert && rt->mfc_ttls[vifi] && (ifp->if_flags & IFF_BROADCAST) && !(viftable[vifi].v_flags & VIFF_TUNNEL)) { struct mbuf *mm; struct igmpmsg *im; int hlen = ip->ip_hl << 2; struct timeval now; u_int32_t delta; microtime(&now); TV_DELTA(rt->mfc_last_assert, now, delta); if (delta > ASSERT_MSG_TIME) { mm = m_copy(m, 0, hlen); M_PULLUP(mm, hlen); if (mm == NULL) { return (ENOBUFS); } rt->mfc_last_assert = now; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_WRONGVIF; im->im_mbz = 0; im->im_vif = vifi; sin.sin_addr = im->im_src; socket_send(ip_mrouter, m, &sin); } } return (0); } /* If I sourced this packet, it counts as output, else it was input. */ if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) { viftable[vifi].v_pkt_out++; viftable[vifi].v_bytes_out += plen; } else { viftable[vifi].v_pkt_in++; viftable[vifi].v_bytes_in += plen; } rt->mfc_pkt_cnt++; rt->mfc_byte_cnt += plen; /* * For each vif, decide if a copy of the packet should be forwarded. * Forward if: * - the ttl exceeds the vif's threshold * - there are group members downstream on interface */ for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { vifp->v_pkt_out++; vifp->v_bytes_out += plen; MC_SEND(ip, vifp, m); } return (0); } #ifdef RSVP_ISI /* * check if a vif number is legal/ok. This is used by ip_output, to export * numvifs there, */ int legal_vif_num(vif) int vif; { if (vif >= 0 && vif < numvifs) return (1); else return (0); } #endif /* RSVP_ISI */ static void phyint_send(ip, vifp, m) struct ip *ip; struct vif *vifp; struct mbuf *m; { struct mbuf *mb_copy; int hlen = ip->ip_hl << 2; /* * Make a new reference to the packet; make sure that * the IP header is actually copied, not just referenced, * so that ip_output() only scribbles on the copy. */ mb_copy = m_copy(m, 0, M_COPYALL); M_PULLUP(mb_copy, hlen); if (mb_copy == NULL) return; if (vifp->v_rate_limit <= 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ntohs(ip->ip_len)); } static void encap_send(ip, vifp, m) struct ip *ip; struct vif *vifp; struct mbuf *m; { struct mbuf *mb_copy; struct ip *ip_copy; int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); /* * copy the old packet & pullup it's IP header into the * new mbuf so we can modify it. Try to fill the new * mbuf since if we don't the ethernet driver will. */ MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); if (mb_copy == NULL) return; mb_copy->m_data += max_linkhdr; mb_copy->m_pkthdr.len = len; mb_copy->m_len = sizeof(multicast_encap_iphdr); if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) { m_freem(mb_copy); return; } i = MHLEN - max_linkhdr; if (i > len) i = len; mb_copy = m_pullup(mb_copy, i); if (mb_copy == NULL) return; /* * fill in the encapsulating IP header. */ ip_copy = mtod(mb_copy, struct ip *); *ip_copy = multicast_encap_iphdr; ip_copy->ip_id = htons(ip_randomid()); ip_copy->ip_len = htons(len); ip_copy->ip_src = vifp->v_lcl_addr; ip_copy->ip_dst = vifp->v_rmt_addr; /* * turn the encapsulated IP header back into a valid one. */ ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); --ip->ip_ttl; ip->ip_sum = 0; #if defined(LBL) && !defined(ultrix) && !defined(i386) ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0); #else mb_copy->m_data += sizeof(multicast_encap_iphdr); ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); mb_copy->m_data -= sizeof(multicast_encap_iphdr); #endif if (vifp->v_rate_limit <= 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); } /* * De-encapsulate a packet and feed it back through ip input (this * routine is called whenever IP gets a packet with proto type * ENCAP_PROTO and a local destination address). */ void ipip_mroute_input(struct mbuf *m, ...) { int hlen; struct ip *ip = mtod(m, struct ip *); int s; struct ifqueue *ifq; struct vif *vifp; va_list ap; va_start(ap, m); hlen = va_arg(ap, int); va_end(ap); if (!have_encap_tunnel) { rip_input(m, 0); return; } /* * dump the packet if we don't have an encapsulating tunnel * with the source. * Note: This code assumes that the remote site IP address * uniquely identifies the tunnel (i.e., that this site has * at most one tunnel with the remote site). */ if (ip->ip_src.s_addr != last_encap_src) { struct vif *vife; vifp = viftable; vife = vifp + numvifs; for (; vifp < vife; vifp++) if (vifp->v_flags & VIFF_TUNNEL && vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) break; if (vifp == vife) { mrtstat.mrts_cant_tunnel++; /*XXX*/ m_freem(m); if (mrtdebug) log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n", ntohl(ip->ip_src.s_addr)); return; } last_encap_vif = vifp; last_encap_src = ip->ip_src.s_addr; } else vifp = last_encap_vif; m->m_data += hlen; m->m_len -= hlen; m->m_pkthdr.len -= hlen; m->m_pkthdr.rcvif = vifp->v_ifp; ifq = &ipintrq; s = splimp(); if (IF_QFULL(ifq)) { IF_DROP(ifq); m_freem(m); } else { IF_ENQUEUE(ifq, m); /* * normally we would need a "schednetisr(NETISR_IP)" * here but we were called by ip_input and it is going * to loop back & try to dequeue the packet we just * queued as soon as we return so we avoid the * unnecessary software interrrupt. */ } splx(s); } /* * Token bucket filter module */ static void tbf_control(vifp, m, ip, p_len) struct vif *vifp; struct mbuf *m; struct ip *ip; u_int32_t p_len; { tbf_update_tokens(vifp); /* * If there are enough tokens, and the queue is empty, send this packet * out immediately. Otherwise, try to insert it on this vif's queue. */ if (vifp->v_tbf.q_len == 0) { if (p_len <= vifp->v_tbf.n_tok) { vifp->v_tbf.n_tok -= p_len; tbf_send_packet(vifp, m); } else if (p_len > MAX_BKT_SIZE) { /* drop if packet is too large */ mrtstat.mrts_pkt2large++; m_freem(m); } else { /* queue packet and timeout till later */ tbf_queue(vifp, m, ip); timeout_set(&tbf_timeout, tbf_reprocess_q, vifp); timeout_add(&tbf_timeout, 1); } } else { if (vifp->v_tbf.q_len >= MAXQSIZE && !tbf_dq_sel(vifp, ip)) { /* queue length too much, and couldn't make room */ mrtstat.mrts_q_overflow++; m_freem(m); } else { /* queue length low enough, or made room */ tbf_queue(vifp, m, ip); tbf_process_q(vifp); } } } /* * adds a packet to the queue at the interface */ static void tbf_queue(vifp, m, ip) struct vif *vifp; struct mbuf *m; struct ip *ip; { u_int32_t ql; int index = (vifp - viftable); int s = splsoftnet(); ql = vifp->v_tbf.q_len; qtable[index][ql].pkt_m = m; qtable[index][ql].pkt_len = ntohs((mtod(m, struct ip *))->ip_len); qtable[index][ql].pkt_ip = ip; vifp->v_tbf.q_len++; splx(s); } /* * processes the queue at the interface */ static void tbf_process_q(vifp) struct vif *vifp; { struct pkt_queue pkt_1; int index = (vifp - viftable); int s = splsoftnet(); /* loop through the queue at the interface and send as many packets * as possible */ while (vifp->v_tbf.q_len > 0) { /* locate the first packet */ pkt_1 = qtable[index][0]; /* determine if the packet can be sent */ if (pkt_1.pkt_len <= vifp->v_tbf.n_tok) { /* if so, * reduce no of tokens, dequeue the queue, * send the packet. */ vifp->v_tbf.n_tok -= pkt_1.pkt_len; tbf_dequeue(vifp, 0); tbf_send_packet(vifp, pkt_1.pkt_m); } else break; } splx(s); } /* * removes the jth packet from the queue at the interface */ static void tbf_dequeue(vifp, j) struct vif *vifp; int j; { u_int32_t index = vifp - viftable; int i; for (i = j + 1; i <= vifp->v_tbf.q_len - 1; i++) { qtable[index][i-1] = qtable[index][i]; } qtable[index][i-1].pkt_m = NULL; qtable[index][i-1].pkt_len = 0; qtable[index][i-1].pkt_ip = NULL; vifp->v_tbf.q_len--; if (tbfdebug > 1) log(LOG_DEBUG, "tbf_dequeue: vif# %d qlen %d\n", vifp - viftable, i - 1); } static void tbf_reprocess_q(arg) void *arg; { struct vif *vifp = arg; if (ip_mrouter == NULL) return; tbf_update_tokens(vifp); tbf_process_q(vifp); if (vifp->v_tbf.q_len) timeout_add(&tbf_timeout, 1); } /* function that will selectively discard a member of the queue * based on the precedence value and the priority obtained through * a lookup table - not yet implemented accurately! */ static int tbf_dq_sel(vifp, ip) struct vif *vifp; struct ip *ip; { int i; int s = splsoftnet(); u_int p; p = priority(vifp, ip); for (i = vifp->v_tbf.q_len - 1; i >= 0; i--) { if (p > priority(vifp, qtable[vifp-viftable][i].pkt_ip)) { m_freem(qtable[vifp-viftable][i].pkt_m); tbf_dequeue(vifp, i); splx(s); mrtstat.mrts_drop_sel++; return (1); } } splx(s); return (0); } static void tbf_send_packet(vifp, m) struct vif *vifp; struct mbuf *m; { int error; int s = splsoftnet(); if (vifp->v_flags & VIFF_TUNNEL) { /* If tunnel options */ ip_output(m, (struct mbuf *)0, &vifp->v_route, IP_FORWARDING, (void *)NULL, (void *)NULL); } else { /* if physical interface option, extract the options and then send */ struct ip *ip = mtod(m, struct ip *); struct ip_moptions imo; imo.imo_multicast_ifp = vifp->v_ifp; imo.imo_multicast_ttl = ip->ip_ttl - 1; imo.imo_multicast_loop = 1; #ifdef RSVP_ISI imo.imo_multicast_vif = -1; #endif error = ip_output(m, (struct mbuf *)0, (struct route *)0, IP_FORWARDING|IP_MULTICASTOPTS, &imo, (void *)NULL); if (mrtdebug & DEBUG_XMIT) log(LOG_DEBUG, "phyint_send on vif %d err %d\n", vifp - viftable, error); } splx(s); } /* determine the current time and then * the elapsed time (between the last time and time now) * in milliseconds & update the no. of tokens in the bucket */ static void tbf_update_tokens(vifp) struct vif *vifp; { struct timeval tp; u_int32_t t; u_int32_t elapsed; int s = splsoftnet(); microtime(&tp); t = tp.tv_sec * 1000 + tp.tv_usec / 1000; elapsed = (t - vifp->v_tbf.last_pkt_t) * vifp->v_rate_limit / 8; vifp->v_tbf.n_tok += elapsed; vifp->v_tbf.last_pkt_t = t; if (vifp->v_tbf.n_tok > MAX_BKT_SIZE) vifp->v_tbf.n_tok = MAX_BKT_SIZE; splx(s); } static int priority(vifp, ip) struct vif *vifp; struct ip *ip; { int prio; /* temporary hack; may add general packet classifier some day */ /* * The UDP port space is divided up into four priority ranges: * [0, 16384) : unclassified - lowest priority * [16384, 32768) : audio - highest priority * [32768, 49152) : whiteboard - medium priority * [49152, 65536) : video - low priority */ if (ip->ip_p == IPPROTO_UDP) { struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); switch (ntohs(udp->uh_dport) & 0xc000) { case 0x4000: prio = 70; break; case 0x8000: prio = 60; break; case 0xc000: prio = 55; break; default: prio = 50; break; } if (tbfdebug > 1) log(LOG_DEBUG, "port %x prio %d\n", ntohs(udp->uh_dport), prio); } else prio = 50; return (prio); } /* * End of token bucket filter modifications */ #ifdef RSVP_ISI int ip_rsvp_vif_init(so, m) struct socket *so; struct mbuf *m; { int i; int s; if (rsvpdebug) printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return (EOPNOTSUPP); /* Check mbuf. */ if (m == NULL || m->m_len != sizeof(int)) { return (EINVAL); } i = *(mtod(m, int *)); if (rsvpdebug) printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on); s = splsoftnet(); /* Check vif. */ if (!legal_vif_num(i)) { splx(s); return (EADDRNOTAVAIL); } /* Check if socket is available. */ if (viftable[i].v_rsvpd != NULL) { splx(s); return (EADDRINUSE); } viftable[i].v_rsvpd = so; /* This may seem silly, but we need to be sure we don't over-increment * the RSVP counter, in case something slips up. */ if (!viftable[i].v_rsvp_on) { viftable[i].v_rsvp_on = 1; rsvp_on++; } splx(s); return (0); } int ip_rsvp_vif_done(so, m) struct socket *so; struct mbuf *m; { int i; int s; if (rsvpdebug) printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return (EOPNOTSUPP); /* Check mbuf. */ if (m == NULL || m->m_len != sizeof(int)) { return (EINVAL); } i = *(mtod(m, int *)); s = splsoftnet(); /* Check vif. */ if (!legal_vif_num(i)) { splx(s); return (EADDRNOTAVAIL); } if (rsvpdebug) printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", viftable[i].v_rsvpd, so); viftable[i].v_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't over-decrement * the RSVP counter, in case something slips up. */ if (viftable[i].v_rsvp_on) { viftable[i].v_rsvp_on = 0; rsvp_on--; } splx(s); return (0); } void ip_rsvp_force_done(so) struct socket *so; { int vifi; int s; /* Don't bother if it is not the right type of socket. */ if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return; s = splsoftnet(); /* * The socket may be attached to more than one vif...this * is perfectly legal. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_rsvpd == so) { viftable[vifi].v_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't * over-decrement the RSVP counter, in case something * slips up. */ if (viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 0; rsvp_on--; } } } splx(s); return; } void rsvp_input(m, ifp) struct mbuf *m; struct ifnet *ifp; { int vifi; struct ip *ip = mtod(m, struct ip *); static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET }; int s; if (rsvpdebug) printf("rsvp_input: rsvp_on %d\n", rsvp_on); /* * Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!rsvp_on) { m_freem(m); return; } /* * If the old-style non-vif-associated socket is set, then use * it and ignore the new ones. */ if (ip_rsvpd != NULL) { if (rsvpdebug) printf("rsvp_input: " "Sending packet up old-style socket\n"); rip_input(m, 0); return; } s = splsoftnet(); if (rsvpdebug) printf("rsvp_input: check vifs\n"); /* Find which vif the packet arrived on. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_ifp == ifp) break; } if (vifi == numvifs) { /* Can't find vif packet arrived on. Drop packet. */ if (rsvpdebug) printf("rsvp_input: " "Can't find vif for packet...dropping it.\n"); m_freem(m); splx(s); return; } if (rsvpdebug) printf("rsvp_input: check socket\n"); if (viftable[vifi].v_rsvpd == NULL) { /* * drop packet, since there is no specific socket for this * interface */ if (rsvpdebug) printf("rsvp_input: No socket defined for vif %d\n", vifi); m_freem(m); splx(s); return; } rsvp_src.sin_addr = ip->ip_src; if (rsvpdebug && m) printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) if (rsvpdebug) printf("rsvp_input: Failed to append to socket\n"); else if (rsvpdebug) printf("rsvp_input: send packet up\n"); splx(s); } #endif /* RSVP_ISI */