/* $OpenBSD: nfs_socket.c,v 1.136 2020/01/21 00:18:13 cheloha Exp $ */ /* $NetBSD: nfs_socket.c,v 1.27 1996/04/15 20:20:00 thorpej Exp $ */ /* * Copyright (c) 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 */ /* * Socket operations for use by nfs */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* External data, mostly RPC constants in XDR form. */ extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr; extern u_int32_t nfs_prog; extern struct nfsstats nfsstats; extern int nfsv3_procid[NFS_NPROCS]; extern int nfs_ticks; extern struct pool nfsrv_descript_pl; /* * There is a congestion window for outstanding rpcs maintained per mount * point. The cwnd size is adjusted in roughly the way that: * Van Jacobson, Congestion avoidance and Control, In "Proceedings of * SIGCOMM '88". ACM, August 1988. * describes for TCP. The cwnd size is chopped in half on a retransmit timeout * and incremented by 1/cwnd when each rpc reply is received and a full cwnd * of rpcs is in progress. * (The sent count and cwnd are scaled for integer arith.) * Variants of "slow start" were tried and were found to be too much of a * performance hit (ave. rtt 3 times larger), * I suspect due to the large rtt that nfs rpcs have. */ #define NFS_CWNDSCALE 256 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256 }; /* RTT estimator */ enum nfs_rto_timers nfs_ptimers[NFS_NPROCS] = { NFS_DEFAULT_TIMER, /* NULL */ NFS_GETATTR_TIMER, /* GETATTR */ NFS_DEFAULT_TIMER, /* SETATTR */ NFS_LOOKUP_TIMER, /* LOOKUP */ NFS_GETATTR_TIMER, /* ACCESS */ NFS_READ_TIMER, /* READLINK */ NFS_READ_TIMER, /* READ */ NFS_WRITE_TIMER, /* WRITE */ NFS_DEFAULT_TIMER, /* CREATE */ NFS_DEFAULT_TIMER, /* MKDIR */ NFS_DEFAULT_TIMER, /* SYMLINK */ NFS_DEFAULT_TIMER, /* MKNOD */ NFS_DEFAULT_TIMER, /* REMOVE */ NFS_DEFAULT_TIMER, /* RMDIR */ NFS_DEFAULT_TIMER, /* RENAME */ NFS_DEFAULT_TIMER, /* LINK */ NFS_READ_TIMER, /* READDIR */ NFS_READ_TIMER, /* READDIRPLUS */ NFS_DEFAULT_TIMER, /* FSSTAT */ NFS_DEFAULT_TIMER, /* FSINFO */ NFS_DEFAULT_TIMER, /* PATHCONF */ NFS_DEFAULT_TIMER, /* COMMIT */ NFS_DEFAULT_TIMER, /* NOOP */ }; void nfs_init_rtt(struct nfsmount *); void nfs_update_rtt(struct nfsreq *); int nfs_estimate_rto(struct nfsmount *, u_int32_t procnum); void nfs_realign(struct mbuf **, int); void nfs_realign_fixup(struct mbuf *, struct mbuf *, unsigned int *); int nfs_rcvlock(struct nfsreq *); int nfs_receive(struct nfsreq *, struct mbuf **, struct mbuf **); int nfs_reconnect(struct nfsreq *); int nfs_reply(struct nfsreq *); void nfs_msg(struct nfsreq *, char *); void nfs_rcvunlock(int *); int nfsrv_getstream(struct nfssvc_sock *, int); unsigned int nfs_realign_test = 0; unsigned int nfs_realign_count = 0; /* Initialize the RTT estimator state for a new mount point. */ void nfs_init_rtt(struct nfsmount *nmp) { int i; for (i = 0; i < NFS_MAX_TIMER; i++) nmp->nm_srtt[i] = NFS_INITRTT; for (i = 0; i < NFS_MAX_TIMER; i++) nmp->nm_sdrtt[i] = 0; } /* * Update a mount point's RTT estimator state using data from the * passed-in request. * * Use a gain of 0.125 on the mean and a gain of 0.25 on the deviation. * * NB: Since the timer resolution of NFS_HZ is so course, it can often * result in r_rtt == 0. Since r_rtt == N means that the actual RTT is * between N + dt and N + 2 - dt ticks, add 1 before calculating the * update values. */ void nfs_update_rtt(struct nfsreq *rep) { int t1 = rep->r_rtt + 1; int index = nfs_ptimers[rep->r_procnum] - 1; int *srtt = &rep->r_nmp->nm_srtt[index]; int *sdrtt = &rep->r_nmp->nm_sdrtt[index]; t1 -= *srtt >> 3; *srtt += t1; if (t1 < 0) t1 = -t1; t1 -= *sdrtt >> 2; *sdrtt += t1; } /* * Estimate RTO for an NFS RPC sent via an unreliable datagram. * * Use the mean and mean deviation of RTT for the appropriate type * of RPC for the frequent RPCs and a default for the others. * The justification for doing "other" this way is that these RPCs * happen so infrequently that timer est. would probably be stale. * Also, since many of these RPCs are non-idempotent, a conservative * timeout is desired. * * getattr, lookup - A+2D * read, write - A+4D * other - nm_timeo */ int nfs_estimate_rto(struct nfsmount *nmp, u_int32_t procnum) { enum nfs_rto_timers timer = nfs_ptimers[procnum]; int index = timer - 1; int rto; switch (timer) { case NFS_GETATTR_TIMER: case NFS_LOOKUP_TIMER: rto = ((nmp->nm_srtt[index] + 3) >> 2) + ((nmp->nm_sdrtt[index] + 1) >> 1); break; case NFS_READ_TIMER: case NFS_WRITE_TIMER: rto = ((nmp->nm_srtt[index] + 7) >> 3) + (nmp->nm_sdrtt[index] + 1); break; default: rto = nmp->nm_timeo; return (rto); } if (rto < NFS_MINRTO) rto = NFS_MINRTO; else if (rto > NFS_MAXRTO) rto = NFS_MAXRTO; return (rto); } /* * Initialize sockets and congestion for a new NFS connection. * We do not free the sockaddr if error. */ int nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) { struct socket *so; int s, error, rcvreserve, sndreserve; struct sockaddr *saddr; struct sockaddr_in *sin; struct mbuf *nam = NULL, *mopt = NULL; if (!(nmp->nm_sotype == SOCK_DGRAM || nmp->nm_sotype == SOCK_STREAM)) return (EINVAL); nmp->nm_so = NULL; saddr = mtod(nmp->nm_nam, struct sockaddr *); error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, nmp->nm_soproto); if (error) { nfs_disconnect(nmp); return (error); } /* Allocate mbufs possibly waiting before grabbing the socket lock. */ if (nmp->nm_sotype == SOCK_STREAM || saddr->sa_family == AF_INET) MGET(mopt, M_WAIT, MT_SOOPTS); if (saddr->sa_family == AF_INET) MGET(nam, M_WAIT, MT_SONAME); so = nmp->nm_so; s = solock(so); nmp->nm_soflags = so->so_proto->pr_flags; /* * Some servers require that the client port be a reserved port number. * We always allocate a reserved port, as this prevents filehandle * disclosure through UDP port capture. */ if (saddr->sa_family == AF_INET) { int *ip; mopt->m_len = sizeof(int); ip = mtod(mopt, int *); *ip = IP_PORTRANGE_LOW; error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt); if (error) goto bad; sin = mtod(nam, struct sockaddr_in *); memset(sin, 0, sizeof(*sin)); sin->sin_len = nam->m_len = sizeof(struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_addr.s_addr = INADDR_ANY; sin->sin_port = htons(0); error = sobind(so, nam, &proc0); if (error) goto bad; mopt->m_len = sizeof(int); ip = mtod(mopt, int *); *ip = IP_PORTRANGE_DEFAULT; error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt); if (error) goto bad; } /* * Protocols that do not require connections may be optionally left * unconnected for servers that reply from a port other than NFS_PORT. */ if (nmp->nm_flag & NFSMNT_NOCONN) { if (nmp->nm_soflags & PR_CONNREQUIRED) { error = ENOTCONN; goto bad; } } else { error = soconnect(so, nmp->nm_nam); if (error) goto bad; /* * Wait for the connection to complete. Cribbed from the * connect system call but with the wait timing out so * that interruptible mounts don't hang here for a long time. */ while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { sosleep_nsec(so, &so->so_timeo, PSOCK, "nfscon", SEC_TO_NSEC(2)); if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0 && rep && (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){ so->so_state &= ~SS_ISCONNECTING; goto bad; } } if (so->so_error) { error = so->so_error; so->so_error = 0; goto bad; } } /* * Always set receive timeout to detect server crash and reconnect. * Otherwise, we can get stuck in soreceive forever. */ so->so_rcv.sb_timeo_nsecs = SEC_TO_NSEC(5); if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) so->so_snd.sb_timeo_nsecs = SEC_TO_NSEC(5); else so->so_snd.sb_timeo_nsecs = INFSLP; if (nmp->nm_sotype == SOCK_DGRAM) { sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR; rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + NFS_MAXPKTHDR) * 2; } else if (nmp->nm_sotype == SOCK_STREAM) { if (so->so_proto->pr_flags & PR_CONNREQUIRED) { *mtod(mopt, int32_t *) = 1; mopt->m_len = sizeof(int32_t); sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, mopt); } if (so->so_proto->pr_protocol == IPPROTO_TCP) { *mtod(mopt, int32_t *) = 1; mopt->m_len = sizeof(int32_t); sosetopt(so, IPPROTO_TCP, TCP_NODELAY, mopt); } sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * 2; rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_int32_t)) * 2; } else { panic("%s: nm_sotype %d", __func__, nmp->nm_sotype); } error = soreserve(so, sndreserve, rcvreserve); if (error) goto bad; so->so_rcv.sb_flags |= SB_NOINTR; so->so_snd.sb_flags |= SB_NOINTR; sounlock(so, s); m_freem(mopt); m_freem(nam); /* Initialize other non-zero congestion variables */ nfs_init_rtt(nmp); nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ nmp->nm_sent = 0; nmp->nm_timeouts = 0; return (0); bad: sounlock(so, s); m_freem(mopt); m_freem(nam); nfs_disconnect(nmp); return (error); } /* * Reconnect routine: * Called when a connection is broken on a reliable protocol. * - clean up the old socket * - nfs_connect() again * - set R_MUSTRESEND for all outstanding requests on mount point * If this fails the mount point is DEAD! * nb: Must be called with the nfs_sndlock() set on the mount point. */ int nfs_reconnect(struct nfsreq *rep) { struct nfsreq *rp; struct nfsmount *nmp = rep->r_nmp; int error; nfs_disconnect(nmp); while ((error = nfs_connect(nmp, rep)) != 0) { if (error == EINTR || error == ERESTART) return (EINTR); tsleep_nsec(&lbolt, PSOCK, "nfsrecon", INFSLP); } /* * Loop through outstanding request list and fix up all requests * on old socket. */ TAILQ_FOREACH(rp, &nmp->nm_reqsq, r_chain) { rp->r_flags |= R_MUSTRESEND; rp->r_rexmit = 0; } return (0); } /* * NFS disconnect. Clean up and unlink. */ void nfs_disconnect(struct nfsmount *nmp) { struct socket *so; if (nmp->nm_so) { so = nmp->nm_so; nmp->nm_so = NULL; soshutdown(so, SHUT_RDWR); soclose(so, 0); } } /* * This is the nfs send routine. For connection based socket types, it * must be called with an nfs_sndlock() on the socket. * "rep == NULL" indicates that it has been called from a server. * For the client side: * - return EINTR if the RPC is terminated, 0 otherwise * - set R_MUSTRESEND if the send fails for any reason * - do any cleanup required by recoverable socket errors (???) * For the server side: * - return EINTR or ERESTART if interrupted by a signal * - return EPIPE if a connection is lost for connection based sockets (TCP...) * - do any cleanup required by recoverable socket errors (???) */ int nfs_send(struct socket *so, struct mbuf *nam, struct mbuf *top, struct nfsreq *rep) { struct mbuf *sendnam; int error, soflags, flags; if (rep) { if (rep->r_flags & R_SOFTTERM) { m_freem(top); return (EINTR); } if ((so = rep->r_nmp->nm_so) == NULL) { rep->r_flags |= R_MUSTRESEND; m_freem(top); return (0); } rep->r_flags &= ~R_MUSTRESEND; soflags = rep->r_nmp->nm_soflags; } else soflags = so->so_proto->pr_flags; if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) sendnam = NULL; else sendnam = nam; flags = 0; error = sosend(so, sendnam, NULL, top, NULL, flags); if (error) { if (rep) { /* * Deal with errors for the client side. */ if (rep->r_flags & R_SOFTTERM) error = EINTR; else rep->r_flags |= R_MUSTRESEND; } /* * Handle any recoverable (soft) socket errors here. (???) */ if (error != EINTR && error != ERESTART && error != EWOULDBLOCK && error != EPIPE) error = 0; } return (error); } #ifdef NFSCLIENT /* * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all * done by soreceive(), but for SOCK_STREAM we must deal with the Record * Mark and consolidate the data into a new mbuf list. * nb: Sometimes TCP passes the data up to soreceive() in long lists of * small mbufs. * For SOCK_STREAM we must be very careful to read an entire record once * we have read any of it, even if the system call has been interrupted. */ int nfs_receive(struct nfsreq *rep, struct mbuf **aname, struct mbuf **mp) { struct socket *so; struct uio auio; struct iovec aio; struct mbuf *m; struct mbuf *control; u_int32_t len; struct mbuf **getnam; int error, sotype, rcvflg; struct proc *p = curproc; /* XXX */ /* * Set up arguments for soreceive() */ *mp = NULL; *aname = NULL; sotype = rep->r_nmp->nm_sotype; /* * For reliable protocols, lock against other senders/receivers * in case a reconnect is necessary. * For SOCK_STREAM, first get the Record Mark to find out how much * more there is to get. * We must lock the socket against other receivers * until we have an entire rpc request/reply. */ if (sotype != SOCK_DGRAM) { error = nfs_sndlock(&rep->r_nmp->nm_flag, rep); if (error) return (error); tryagain: /* * Check for fatal errors and resending request. */ /* * Ugh: If a reconnect attempt just happened, nm_so * would have changed. NULL indicates a failed * attempt that has essentially shut down this * mount point. */ if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { nfs_sndunlock(&rep->r_nmp->nm_flag); return (EINTR); } so = rep->r_nmp->nm_so; if (!so) { error = nfs_reconnect(rep); if (error) { nfs_sndunlock(&rep->r_nmp->nm_flag); return (error); } goto tryagain; } while (rep->r_flags & R_MUSTRESEND) { m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); nfsstats.rpcretries++; rep->r_rtt = 0; rep->r_flags &= ~R_TIMING; error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); if (error) { if (error == EINTR || error == ERESTART || (error = nfs_reconnect(rep)) != 0) { nfs_sndunlock(&rep->r_nmp->nm_flag); return (error); } goto tryagain; } } nfs_sndunlock(&rep->r_nmp->nm_flag); if (sotype == SOCK_STREAM) { aio.iov_base = (caddr_t) &len; aio.iov_len = sizeof(u_int32_t); auio.uio_iov = &aio; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_READ; auio.uio_offset = 0; auio.uio_resid = sizeof(u_int32_t); auio.uio_procp = p; do { rcvflg = MSG_WAITALL; error = soreceive(so, NULL, &auio, NULL, NULL, &rcvflg, 0); if (error == EWOULDBLOCK && rep) { if (rep->r_flags & R_SOFTTERM) return (EINTR); /* * looks like the server died after it * received the request, make sure * that we will retransmit and we * don't get stuck here forever. */ if (rep->r_rexmit >= rep->r_nmp->nm_retry) { nfsstats.rpctimeouts++; error = EPIPE; } } } while (error == EWOULDBLOCK); if (!error && auio.uio_resid > 0) { log(LOG_INFO, "short receive (%zu/%zu) from nfs server %s\n", sizeof(u_int32_t) - auio.uio_resid, sizeof(u_int32_t), rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); error = EPIPE; } if (error) goto errout; len = ntohl(len) & ~0x80000000; /* * This is SERIOUS! We are out of sync with the sender * and forcing a disconnect/reconnect is all I can do. */ if (len > NFS_MAXPACKET) { log(LOG_ERR, "%s (%u) from nfs server %s\n", "impossible packet length", len, rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); error = EFBIG; goto errout; } auio.uio_resid = len; do { rcvflg = MSG_WAITALL; error = soreceive(so, NULL, &auio, mp, NULL, &rcvflg, 0); } while (error == EWOULDBLOCK || error == EINTR || error == ERESTART); if (!error && auio.uio_resid > 0) { log(LOG_INFO, "short receive (%zu/%u) from " "nfs server %s\n", len - auio.uio_resid, len, rep->r_nmp->nm_mountp-> mnt_stat.f_mntfromname); error = EPIPE; } } else { /* * NB: Since uio_resid is big, MSG_WAITALL is ignored * and soreceive() will return when it has either a * control msg or a data msg. * We have no use for control msg., but must grab them * and then throw them away so we know what is going * on. */ auio.uio_resid = len = 100000000; /* Anything Big */ auio.uio_procp = p; do { rcvflg = 0; error = soreceive(so, NULL, &auio, mp, &control, &rcvflg, 0); m_freem(control); if (error == EWOULDBLOCK && rep) { if (rep->r_flags & R_SOFTTERM) return (EINTR); } } while (error == EWOULDBLOCK || (!error && *mp == NULL && control)); if ((rcvflg & MSG_EOR) == 0) printf("Egad!!\n"); if (!error && *mp == NULL) error = EPIPE; len -= auio.uio_resid; } errout: if (error && error != EINTR && error != ERESTART) { m_freemp(mp); if (error != EPIPE) log(LOG_INFO, "receive error %d from nfs server %s\n", error, rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); error = nfs_sndlock(&rep->r_nmp->nm_flag, rep); if (!error) { error = nfs_reconnect(rep); if (!error) goto tryagain; nfs_sndunlock(&rep->r_nmp->nm_flag); } } } else { if ((so = rep->r_nmp->nm_so) == NULL) return (EACCES); if (so->so_state & SS_ISCONNECTED) getnam = NULL; else getnam = aname; auio.uio_resid = len = 1000000; auio.uio_procp = p; do { rcvflg = 0; error = soreceive(so, getnam, &auio, mp, NULL, &rcvflg, 0); if (error == EWOULDBLOCK && (rep->r_flags & R_SOFTTERM)) return (EINTR); } while (error == EWOULDBLOCK); len -= auio.uio_resid; } if (error) m_freemp(mp); /* * Search for any mbufs that are not a multiple of 4 bytes long * or with m_data not longword aligned. * These could cause pointer alignment problems, so copy them to * well aligned mbufs. */ nfs_realign(mp, 5 * NFSX_UNSIGNED); return (error); } /* * Implement receipt of reply on a socket. * We must search through the list of received datagrams matching them * with outstanding requests using the xid, until ours is found. */ int nfs_reply(struct nfsreq *myrep) { struct nfsreq *rep; struct nfsmount *nmp = myrep->r_nmp; struct nfsm_info info; struct mbuf *nam; u_int32_t rxid, *tl, t1; caddr_t cp2; int error; /* * Loop around until we get our own reply */ for (;;) { /* * Lock against other receivers so that I don't get stuck in * sbwait() after someone else has received my reply for me. * Also necessary for connection based protocols to avoid * race conditions during a reconnect. */ error = nfs_rcvlock(myrep); if (error) return (error == EALREADY ? 0 : error); /* * Get the next Rpc reply off the socket */ error = nfs_receive(myrep, &nam, &info.nmi_mrep); nfs_rcvunlock(&nmp->nm_flag); if (error) { /* * Ignore routing errors on connectionless protocols?? */ if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { if (nmp->nm_so) nmp->nm_so->so_error = 0; continue; } return (error); } m_freem(nam); /* * Get the xid and check that it is an rpc reply */ info.nmi_md = info.nmi_mrep; info.nmi_dpos = mtod(info.nmi_md, caddr_t); nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); rxid = *tl++; if (*tl != rpc_reply) { nfsstats.rpcinvalid++; m_freem(info.nmi_mrep); nfsmout: continue; } /* * Loop through the request list to match up the reply * Iff no match, just drop the datagram */ TAILQ_FOREACH(rep, &nmp->nm_reqsq, r_chain) { if (rep->r_mrep == NULL && rxid == rep->r_xid) { /* Found it.. */ rep->r_mrep = info.nmi_mrep; rep->r_md = info.nmi_md; rep->r_dpos = info.nmi_dpos; /* * Update congestion window. * Do the additive increase of * one rpc/rtt. */ if (nmp->nm_cwnd <= nmp->nm_sent) { nmp->nm_cwnd += (NFS_CWNDSCALE * NFS_CWNDSCALE + (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; if (nmp->nm_cwnd > NFS_MAXCWND) nmp->nm_cwnd = NFS_MAXCWND; } rep->r_flags &= ~R_SENT; nmp->nm_sent -= NFS_CWNDSCALE; if (rep->r_flags & R_TIMING) nfs_update_rtt(rep); nmp->nm_timeouts = 0; break; } } /* * If not matched to a request, drop it. * If it's mine, get out. */ if (rep == 0) { nfsstats.rpcunexpected++; m_freem(info.nmi_mrep); } else if (rep == myrep) { if (rep->r_mrep == NULL) panic("nfsreply nil"); return (0); } } } /* * nfs_request - goes something like this * - fill in request struct * - links it into list * - calls nfs_send() for first transmit * - calls nfs_receive() to get reply * - break down rpc header and return with nfs reply pointed to * by mrep or error * nb: always frees up mreq mbuf list */ int nfs_request(struct vnode *vp, int procnum, struct nfsm_info *infop) { struct mbuf *m; u_int32_t *tl; struct nfsmount *nmp; caddr_t cp2; int t1, i, error = 0; int addr, trylater_delay; struct nfsreq *rep; struct nfsm_info info; rep = pool_get(&nfsreqpl, PR_WAITOK); rep->r_nmp = VFSTONFS(vp->v_mount); rep->r_vp = vp; rep->r_procp = infop->nmi_procp; rep->r_procnum = procnum; /* empty mbuf for AUTH_UNIX header */ rep->r_mreq = m_gethdr(M_WAIT, MT_DATA); rep->r_mreq->m_next = infop->nmi_mreq; rep->r_mreq->m_len = 0; m_calchdrlen(rep->r_mreq); trylater_delay = NFS_MINTIMEO; nmp = rep->r_nmp; /* Get the RPC header with authorization. */ nfsm_rpchead(rep, infop->nmi_cred, RPCAUTH_UNIX); m = rep->r_mreq; /* * For stream protocols, insert a Sun RPC Record Mark. */ if (nmp->nm_sotype == SOCK_STREAM) { M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); *mtod(m, u_int32_t *) = htonl(0x80000000 | (m->m_pkthdr.len - NFSX_UNSIGNED)); } tryagain: rep->r_rtt = rep->r_rexmit = 0; if (nfs_ptimers[rep->r_procnum] != NFS_DEFAULT_TIMER) rep->r_flags = R_TIMING; else rep->r_flags = 0; rep->r_mrep = NULL; /* * Do the client side RPC. */ nfsstats.rpcrequests++; /* * Chain request into list of outstanding requests. Be sure * to put it LAST so timer finds oldest requests first. */ if (TAILQ_EMPTY(&nmp->nm_reqsq)) timeout_add(&nmp->nm_rtimeout, nfs_ticks); TAILQ_INSERT_TAIL(&nmp->nm_reqsq, rep, r_chain); /* * If backing off another request or avoiding congestion, don't * send this one now but let timer do it. If not timing a request, * do it now. */ if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || (nmp->nm_flag & NFSMNT_DUMBTIMR) || nmp->nm_sent < nmp->nm_cwnd)) { if (nmp->nm_soflags & PR_CONNREQUIRED) error = nfs_sndlock(&nmp->nm_flag, rep); if (!error) { error = nfs_send(nmp->nm_so, nmp->nm_nam, m_copym(m, 0, M_COPYALL, M_WAIT), rep); if (nmp->nm_soflags & PR_CONNREQUIRED) nfs_sndunlock(&nmp->nm_flag); } if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { nmp->nm_sent += NFS_CWNDSCALE; rep->r_flags |= R_SENT; } } else { rep->r_rtt = -1; } /* * Wait for the reply from our send or the timer's. */ if (!error || error == EPIPE) error = nfs_reply(rep); /* * RPC done, unlink the request. */ TAILQ_REMOVE(&nmp->nm_reqsq, rep, r_chain); if (TAILQ_EMPTY(&nmp->nm_reqsq)) timeout_del(&nmp->nm_rtimeout); /* * Decrement the outstanding request count. */ if (rep->r_flags & R_SENT) { rep->r_flags &= ~R_SENT; /* paranoia */ nmp->nm_sent -= NFS_CWNDSCALE; } /* * If there was a successful reply and a tprintf msg. * tprintf a response. */ if (!error && (rep->r_flags & R_TPRINTFMSG)) nfs_msg(rep, "is alive again"); info.nmi_mrep = rep->r_mrep; info.nmi_md = rep->r_md; info.nmi_dpos = rep->r_dpos; if (error) { infop->nmi_mrep = NULL; goto nfsmout1; } /* * break down the rpc header and check if ok */ nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); if (*tl++ == rpc_msgdenied) { if (*tl == rpc_mismatch) error = EOPNOTSUPP; else error = EACCES; /* Should be EAUTH. */ infop->nmi_mrep = NULL; goto nfsmout1; } /* * Since we only support RPCAUTH_UNIX atm we step over the * reply verifer type, and in the (error) case that there really * is any data in it, we advance over it. */ tl++; /* Step over verifer type */ i = fxdr_unsigned(int32_t, *tl); if (i > 0) nfsm_adv(nfsm_rndup(i)); /* Should not happen */ nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); /* 0 == ok */ if (*tl == 0) { nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); if (*tl != 0) { error = fxdr_unsigned(int, *tl); if ((nmp->nm_flag & NFSMNT_NFSV3) && error == NFSERR_TRYLATER) { m_freem(info.nmi_mrep); error = 0; tsleep_nsec(&addr, PSOCK, "nfsretry", SEC_TO_NSEC(trylater_delay)); trylater_delay *= NFS_TIMEOUTMUL; if (trylater_delay > NFS_MAXTIMEO) trylater_delay = NFS_MAXTIMEO; goto tryagain; } /* * If the File Handle was stale, invalidate the * lookup cache, just in case. */ if (error == ESTALE) cache_purge(rep->r_vp); } goto nfsmout; } error = EPROTONOSUPPORT; nfsmout: infop->nmi_mrep = info.nmi_mrep; infop->nmi_md = info.nmi_md; infop->nmi_dpos = info.nmi_dpos; nfsmout1: m_freem(rep->r_mreq); pool_put(&nfsreqpl, rep); return (error); } #endif /* NFSCLIENT */ /* * Generate the rpc reply header * siz arg. is used to decide if adding a cluster is worthwhile */ int nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp, int err, struct mbuf **mrq, struct mbuf **mbp) { u_int32_t *tl; struct mbuf *mreq; struct mbuf *mb; MGETHDR(mreq, M_WAIT, MT_DATA); mb = mreq; /* * If this is a big reply, use a cluster else * try and leave leading space for the lower level headers. */ siz += RPC_REPLYSIZ; if (siz >= MHLEN - max_hdr) { MCLGET(mreq, M_WAIT); } else mreq->m_data += max_hdr; tl = mtod(mreq, u_int32_t *); mreq->m_len = 6 * NFSX_UNSIGNED; *tl++ = txdr_unsigned(nd->nd_retxid); *tl++ = rpc_reply; if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { *tl++ = rpc_msgdenied; if (err & NFSERR_AUTHERR) { *tl++ = rpc_autherr; *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); mreq->m_len -= NFSX_UNSIGNED; } else { *tl++ = rpc_mismatch; *tl++ = txdr_unsigned(RPC_VER2); *tl = txdr_unsigned(RPC_VER2); } } else { *tl++ = rpc_msgaccepted; /* AUTH_UNIX requires RPCAUTH_NULL. */ *tl++ = 0; *tl++ = 0; switch (err) { case EPROGUNAVAIL: *tl = txdr_unsigned(RPC_PROGUNAVAIL); break; case EPROGMISMATCH: *tl = txdr_unsigned(RPC_PROGMISMATCH); tl = nfsm_build(&mb, 2 * NFSX_UNSIGNED); *tl++ = txdr_unsigned(NFS_VER2); *tl = txdr_unsigned(NFS_VER3); break; case EPROCUNAVAIL: *tl = txdr_unsigned(RPC_PROCUNAVAIL); break; case EBADRPC: *tl = txdr_unsigned(RPC_GARBAGE); break; default: *tl = 0; if (err != NFSERR_RETVOID) { tl = nfsm_build(&mb, NFSX_UNSIGNED); if (err) *tl = txdr_unsigned(nfsrv_errmap(nd, err)); else *tl = 0; } break; }; } *mrq = mreq; if (mbp != NULL) *mbp = mb; if (err != 0 && err != NFSERR_RETVOID) nfsstats.srvrpc_errs++; return (0); } /* * nfs timer routine * Scan the nfsreq list and retranmit any requests that have timed out. */ void nfs_timer(void *arg) { struct nfsmount *nmp = arg; struct nfsreq *rep; struct mbuf *m; struct socket *so; int timeo, error; NET_LOCK(); TAILQ_FOREACH(rep, &nmp->nm_reqsq, r_chain) { if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) continue; if (nfs_sigintr(nmp, rep, rep->r_procp)) { rep->r_flags |= R_SOFTTERM; continue; } if (rep->r_rtt >= 0) { rep->r_rtt++; if (nmp->nm_flag & NFSMNT_DUMBTIMR) timeo = nmp->nm_timeo; else timeo = nfs_estimate_rto(nmp, rep->r_procnum); if (nmp->nm_timeouts > 0) timeo *= nfs_backoff[nmp->nm_timeouts - 1]; if (rep->r_rtt <= timeo) continue; if (nmp->nm_timeouts < nitems(nfs_backoff)) nmp->nm_timeouts++; } /* Check for server not responding. */ if ((rep->r_flags & R_TPRINTFMSG) == 0 && rep->r_rexmit > 4) { nfs_msg(rep, "not responding"); rep->r_flags |= R_TPRINTFMSG; } if (rep->r_rexmit >= nmp->nm_retry) { /* too many */ nfsstats.rpctimeouts++; rep->r_flags |= R_SOFTTERM; continue; } if (nmp->nm_sotype != SOCK_DGRAM) { if (++rep->r_rexmit > NFS_MAXREXMIT) rep->r_rexmit = NFS_MAXREXMIT; continue; } if ((so = nmp->nm_so) == NULL) continue; /* * If there is enough space and the window allows.. * Resend it * Set r_rtt to -1 in case we fail to send it now. */ rep->r_rtt = -1; if (sbspace(so, &so->so_snd) >= rep->r_mreq->m_pkthdr.len && ((nmp->nm_flag & NFSMNT_DUMBTIMR) || (rep->r_flags & R_SENT) || nmp->nm_sent < nmp->nm_cwnd) && (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, NULL, NULL, curproc); else error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, nmp->nm_nam, NULL, curproc); if (error) { if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) so->so_error = 0; } else { /* * Iff first send, start timing * else turn timing off, backoff timer * and divide congestion window by 2. */ if (rep->r_flags & R_SENT) { rep->r_flags &= ~R_TIMING; if (++rep->r_rexmit > NFS_MAXREXMIT) rep->r_rexmit = NFS_MAXREXMIT; nmp->nm_cwnd >>= 1; if (nmp->nm_cwnd < NFS_CWNDSCALE) nmp->nm_cwnd = NFS_CWNDSCALE; nfsstats.rpcretries++; } else { rep->r_flags |= R_SENT; nmp->nm_sent += NFS_CWNDSCALE; } rep->r_rtt = 0; } } } NET_UNLOCK(); timeout_add(&nmp->nm_rtimeout, nfs_ticks); } /* * Test for a termination condition pending on the process. * This is used for NFSMNT_INT mounts. */ int nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct proc *p) { if (rep && (rep->r_flags & R_SOFTTERM)) return (EINTR); if (!(nmp->nm_flag & NFSMNT_INT)) return (0); if (p && (SIGPENDING(p) & ~p->p_p->ps_sigacts->ps_sigignore & NFSINT_SIGMASK)) return (EINTR); return (0); } /* * Lock a socket against others. * Necessary for STREAM sockets to ensure you get an entire rpc request/reply * and also to avoid race conditions between the processes with nfs requests * in progress when a reconnect is necessary. */ int nfs_sndlock(int *flagp, struct nfsreq *rep) { uint64_t slptimeo = INFSLP; struct proc *p; int slpflag = 0; if (rep) { p = rep->r_procp; if (rep->r_nmp->nm_flag & NFSMNT_INT) slpflag = PCATCH; } else p = NULL; while (*flagp & NFSMNT_SNDLOCK) { if (rep && nfs_sigintr(rep->r_nmp, rep, p)) return (EINTR); *flagp |= NFSMNT_WANTSND; tsleep_nsec(flagp, slpflag | (PZERO - 1), "nfsndlck", slptimeo); if (slpflag == PCATCH) { slpflag = 0; slptimeo = SEC_TO_NSEC(2); } } *flagp |= NFSMNT_SNDLOCK; return (0); } /* * Unlock the stream socket for others. */ void nfs_sndunlock(int *flagp) { if ((*flagp & NFSMNT_SNDLOCK) == 0) panic("nfs sndunlock"); *flagp &= ~NFSMNT_SNDLOCK; if (*flagp & NFSMNT_WANTSND) { *flagp &= ~NFSMNT_WANTSND; wakeup((caddr_t)flagp); } } int nfs_rcvlock(struct nfsreq *rep) { uint64_t slptimeo = INFSLP; int *flagp = &rep->r_nmp->nm_flag; int slpflag; if (*flagp & NFSMNT_INT) slpflag = PCATCH; else slpflag = 0; while (*flagp & NFSMNT_RCVLOCK) { if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp)) return (EINTR); *flagp |= NFSMNT_WANTRCV; tsleep_nsec(flagp, slpflag | (PZERO - 1), "nfsrcvlk", slptimeo); if (rep->r_mrep != NULL) { /* * Don't take the lock if our reply has been received * while we where sleeping. */ return (EALREADY); } if (slpflag == PCATCH) { slpflag = 0; slptimeo = SEC_TO_NSEC(2); } } *flagp |= NFSMNT_RCVLOCK; return (0); } /* * Unlock the stream socket for others. */ void nfs_rcvunlock(int *flagp) { if ((*flagp & NFSMNT_RCVLOCK) == 0) panic("nfs rcvunlock"); *flagp &= ~NFSMNT_RCVLOCK; if (*flagp & NFSMNT_WANTRCV) { *flagp &= ~NFSMNT_WANTRCV; wakeup(flagp); } } /* * Auxiliary routine to align the length of mbuf copies made with m_copyback(). */ void nfs_realign_fixup(struct mbuf *m, struct mbuf *n, unsigned int *off) { size_t padding; /* * The maximum number of bytes that m_copyback() places in a mbuf is * always an aligned quantity, so realign happens at the chain's tail. */ while (n->m_next != NULL) n = n->m_next; /* * Pad from the next elements in the source chain. Loop until the * destination chain is aligned, or the end of the source is reached. */ do { m = m->m_next; if (m == NULL) return; padding = min(ALIGN(n->m_len) - n->m_len, m->m_len); if (padding > m_trailingspace(n)) panic("nfs_realign_fixup: no memory to pad to"); bcopy(mtod(m, void *), mtod(n, char *) + n->m_len, padding); n->m_len += padding; m_adj(m, padding); *off += padding; } while (!ALIGNED_POINTER(n->m_len, void *)); } /* * The NFS RPC parsing code uses the data address and the length of mbuf * structures to calculate on-memory addresses. This function makes sure these * parameters are correctly aligned. */ void nfs_realign(struct mbuf **pm, int hsiz) { struct mbuf *m; struct mbuf *n = NULL; unsigned int off = 0; ++nfs_realign_test; while ((m = *pm) != NULL) { if (!ALIGNED_POINTER(m->m_data, void *) || !ALIGNED_POINTER(m->m_len, void *)) { MGET(n, M_WAIT, MT_DATA); #define ALIGN_POINTER(n) ((u_int)(((n) + sizeof(void *)) & ~sizeof(void *))) if (ALIGN_POINTER(m->m_len) >= MINCLSIZE) { MCLGET(n, M_WAIT); } n->m_len = 0; break; } pm = &m->m_next; } /* * If n is non-NULL, loop on m copying data, then replace the * portion of the chain that had to be realigned. */ if (n != NULL) { ++nfs_realign_count; while (m) { m_copyback(n, off, m->m_len, mtod(m, caddr_t), M_WAIT); /* * If an unaligned amount of memory was copied, fix up * the last mbuf created by m_copyback(). */ if (!ALIGNED_POINTER(m->m_len, void *)) nfs_realign_fixup(m, n, &off); off += m->m_len; m = m->m_next; } m_freemp(pm); *pm = n; } } /* * Parse an RPC request * - verify it * - fill in the cred struct. */ int nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header) { int len, i; u_int32_t *tl; int32_t t1; caddr_t cp2; u_int32_t nfsvers, auth_type; int error = 0; struct nfsm_info info; info.nmi_mrep = nd->nd_mrep; info.nmi_md = nd->nd_md; info.nmi_dpos = nd->nd_dpos; if (has_header) { nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); if (*tl++ != rpc_call) { m_freem(info.nmi_mrep); return (EBADRPC); } } else nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); nd->nd_repstat = 0; nd->nd_flag = 0; if (*tl++ != rpc_vers) { nd->nd_repstat = ERPCMISMATCH; nd->nd_procnum = NFSPROC_NOOP; return (0); } if (*tl != nfs_prog) { nd->nd_repstat = EPROGUNAVAIL; nd->nd_procnum = NFSPROC_NOOP; return (0); } tl++; nfsvers = fxdr_unsigned(u_int32_t, *tl++); if (nfsvers != NFS_VER2 && nfsvers != NFS_VER3) { nd->nd_repstat = EPROGMISMATCH; nd->nd_procnum = NFSPROC_NOOP; return (0); } if (nfsvers == NFS_VER3) nd->nd_flag = ND_NFSV3; nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); if (nd->nd_procnum == NFSPROC_NULL) return (0); if (nd->nd_procnum >= NFS_NPROCS || (nd->nd_procnum > NFSPROC_COMMIT) || (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { nd->nd_repstat = EPROCUNAVAIL; nd->nd_procnum = NFSPROC_NOOP; return (0); } if ((nd->nd_flag & ND_NFSV3) == 0) nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; auth_type = *tl++; len = fxdr_unsigned(int, *tl++); if (len < 0 || len > RPCAUTH_MAXSIZ) { m_freem(info.nmi_mrep); return (EBADRPC); } /* Handle auth_unix */ if (auth_type == rpc_auth_unix) { len = fxdr_unsigned(int, *++tl); if (len < 0 || len > NFS_MAXNAMLEN) { m_freem(info.nmi_mrep); return (EBADRPC); } nfsm_adv(nfsm_rndup(len)); nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); memset(&nd->nd_cr, 0, sizeof (struct ucred)); nd->nd_cr.cr_ref = 1; nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); len = fxdr_unsigned(int, *tl); if (len < 0 || len > RPCAUTH_UNIXGIDS) { m_freem(info.nmi_mrep); return (EBADRPC); } nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); for (i = 0; i < len; i++) { if (i < NGROUPS_MAX) nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); else tl++; } nd->nd_cr.cr_ngroups = (len > NGROUPS_MAX) ? NGROUPS_MAX : len; len = fxdr_unsigned(int, *++tl); if (len < 0 || len > RPCAUTH_MAXSIZ) { m_freem(info.nmi_mrep); return (EBADRPC); } if (len > 0) nfsm_adv(nfsm_rndup(len)); } else { nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); nd->nd_procnum = NFSPROC_NOOP; return (0); } nd->nd_md = info.nmi_md; nd->nd_dpos = info.nmi_dpos; return (0); nfsmout: return (error); } void nfs_msg(struct nfsreq *rep, char *msg) { tpr_t tpr; if (rep->r_procp) tpr = tprintf_open(rep->r_procp); else tpr = NULL; tprintf(tpr, "nfs server %s: %s\n", rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname, msg); tprintf_close(tpr); } #ifdef NFSSERVER /* * Socket upcall routine for the nfsd sockets. * The caddr_t arg is a pointer to the "struct nfssvc_sock". * Essentially do as much as possible non-blocking, else punt and it will * be called with M_WAIT from an nfsd. */ void nfsrv_rcv(struct socket *so, caddr_t arg, int waitflag) { struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; struct mbuf *m; struct mbuf *mp, *nam; struct uio auio; int flags, error; if ((slp->ns_flag & SLP_VALID) == 0) return; /* Defer soreceive() to an nfsd. */ if (waitflag == M_DONTWAIT) { slp->ns_flag |= SLP_NEEDQ; goto dorecs; } auio.uio_procp = NULL; if (so->so_type == SOCK_STREAM) { /* * Do soreceive(). */ auio.uio_resid = 1000000000; flags = MSG_DONTWAIT; error = soreceive(so, &nam, &auio, &mp, NULL, &flags, 0); if (error || mp == NULL) { if (error == EWOULDBLOCK) slp->ns_flag |= SLP_NEEDQ; else slp->ns_flag |= SLP_DISCONN; goto dorecs; } m = mp; if (slp->ns_rawend) { slp->ns_rawend->m_next = m; slp->ns_cc += 1000000000 - auio.uio_resid; } else { slp->ns_raw = m; slp->ns_cc = 1000000000 - auio.uio_resid; } while (m->m_next) m = m->m_next; slp->ns_rawend = m; /* * Now try and parse record(s) out of the raw stream data. */ error = nfsrv_getstream(slp, waitflag); if (error) { if (error == EPERM) slp->ns_flag |= SLP_DISCONN; else slp->ns_flag |= SLP_NEEDQ; } } else { do { auio.uio_resid = 1000000000; flags = MSG_DONTWAIT; error = soreceive(so, &nam, &auio, &mp, NULL, &flags, 0); if (mp) { if (nam) { m = nam; m->m_next = mp; } else m = mp; if (slp->ns_recend) slp->ns_recend->m_nextpkt = m; else slp->ns_rec = m; slp->ns_recend = m; m->m_nextpkt = NULL; } if (error) { if ((so->so_proto->pr_flags & PR_CONNREQUIRED) && error != EWOULDBLOCK) { slp->ns_flag |= SLP_DISCONN; goto dorecs; } } } while (mp); } /* * Now try and process the request records, non-blocking. */ dorecs: if (waitflag == M_DONTWAIT && (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) nfsrv_wakenfsd(slp); } /* * Try and extract an RPC request from the mbuf data list received on a * stream socket. The "waitflag" argument indicates whether or not it * can sleep. */ int nfsrv_getstream(struct nfssvc_sock *slp, int waitflag) { struct mbuf *m, **mpp; char *cp1, *cp2; int len; struct mbuf *om, *m2, *recm; u_int32_t recmark; if (slp->ns_flag & SLP_GETSTREAM) return (0); slp->ns_flag |= SLP_GETSTREAM; for (;;) { if (slp->ns_reclen == 0) { if (slp->ns_cc < NFSX_UNSIGNED) { slp->ns_flag &= ~SLP_GETSTREAM; return (0); } m = slp->ns_raw; if (m->m_len >= NFSX_UNSIGNED) { bcopy(mtod(m, caddr_t), &recmark, NFSX_UNSIGNED); m->m_data += NFSX_UNSIGNED; m->m_len -= NFSX_UNSIGNED; } else { cp1 = (caddr_t)&recmark; cp2 = mtod(m, caddr_t); while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { while (m->m_len == 0) { m = m->m_next; cp2 = mtod(m, caddr_t); } *cp1++ = *cp2++; m->m_data++; m->m_len--; } } slp->ns_cc -= NFSX_UNSIGNED; recmark = ntohl(recmark); slp->ns_reclen = recmark & ~0x80000000; if (recmark & 0x80000000) slp->ns_flag |= SLP_LASTFRAG; else slp->ns_flag &= ~SLP_LASTFRAG; if (slp->ns_reclen > NFS_MAXPACKET) { slp->ns_flag &= ~SLP_GETSTREAM; return (EPERM); } } /* * Now get the record part. */ recm = NULL; if (slp->ns_cc == slp->ns_reclen) { recm = slp->ns_raw; slp->ns_raw = slp->ns_rawend = NULL; slp->ns_cc = slp->ns_reclen = 0; } else if (slp->ns_cc > slp->ns_reclen) { len = 0; m = slp->ns_raw; om = NULL; while (len < slp->ns_reclen) { if ((len + m->m_len) > slp->ns_reclen) { m2 = m_copym(m, 0, slp->ns_reclen - len, waitflag); if (m2) { if (om) { om->m_next = m2; recm = slp->ns_raw; } else recm = m2; m->m_data += slp->ns_reclen-len; m->m_len -= slp->ns_reclen-len; len = slp->ns_reclen; } else { slp->ns_flag &= ~SLP_GETSTREAM; return (EWOULDBLOCK); } } else if ((len + m->m_len) == slp->ns_reclen) { om = m; len += m->m_len; m = m->m_next; recm = slp->ns_raw; om->m_next = NULL; } else { om = m; len += m->m_len; m = m->m_next; } } slp->ns_raw = m; slp->ns_cc -= len; slp->ns_reclen = 0; } else { slp->ns_flag &= ~SLP_GETSTREAM; return (0); } /* * Accumulate the fragments into a record. */ mpp = &slp->ns_frag; while (*mpp) mpp = &((*mpp)->m_next); *mpp = recm; if (slp->ns_flag & SLP_LASTFRAG) { if (slp->ns_recend) slp->ns_recend->m_nextpkt = slp->ns_frag; else slp->ns_rec = slp->ns_frag; slp->ns_recend = slp->ns_frag; slp->ns_frag = NULL; } } } /* * Parse an RPC header. */ int nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd, struct nfsrv_descript **ndp) { struct mbuf *m, *nam; struct nfsrv_descript *nd; int error; *ndp = NULL; if ((slp->ns_flag & SLP_VALID) == 0 || (m = slp->ns_rec) == NULL) return (ENOBUFS); slp->ns_rec = m->m_nextpkt; if (slp->ns_rec) m->m_nextpkt = NULL; else slp->ns_recend = NULL; if (m->m_type == MT_SONAME) { nam = m; m = m->m_next; nam->m_next = NULL; } else nam = NULL; nd = pool_get(&nfsrv_descript_pl, PR_WAITOK); nfs_realign(&m, 10 * NFSX_UNSIGNED); nd->nd_md = nd->nd_mrep = m; nd->nd_nam2 = nam; nd->nd_dpos = mtod(m, caddr_t); error = nfs_getreq(nd, nfsd, 1); if (error) { m_freem(nam); pool_put(&nfsrv_descript_pl, nd); return (error); } *ndp = nd; nfsd->nfsd_nd = nd; return (0); } /* * Search for a sleeping nfsd and wake it up. * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the * running nfsds will go look for the work in the nfssvc_sock list. */ void nfsrv_wakenfsd(struct nfssvc_sock *slp) { struct nfsd *nfsd; if ((slp->ns_flag & SLP_VALID) == 0) return; TAILQ_FOREACH(nfsd, &nfsd_head, nfsd_chain) { if (nfsd->nfsd_flag & NFSD_WAITING) { nfsd->nfsd_flag &= ~NFSD_WAITING; if (nfsd->nfsd_slp) panic("nfsd wakeup"); slp->ns_sref++; nfsd->nfsd_slp = slp; wakeup_one(nfsd); return; } } slp->ns_flag |= SLP_DOREC; nfsd_head_flag |= NFSD_CHECKSLP; } #endif /* NFSSERVER */