/* $OpenBSD: nfs_vnops.c,v 1.118 2009/07/18 14:40:31 thib Exp $ */ /* $NetBSD: nfs_vnops.c,v 1.62.4.1 1996/07/08 20:26:52 jtc Exp $ */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Rick Macklem at The University of Guelph. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95 */ /* * vnode op calls for Sun NFS version 2 and 3 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void nfs_cache_enter(struct vnode *, struct vnode *, struct componentname *); /* * Global vfs data structures for nfs */ int (**nfsv2_vnodeop_p)(void *); struct vnodeopv_entry_desc nfsv2_vnodeop_entries[] = { { &vop_default_desc, eopnotsupp }, { &vop_lookup_desc, nfs_lookup }, /* lookup */ { &vop_create_desc, nfs_create }, /* create */ { &vop_mknod_desc, nfs_mknod }, /* mknod */ { &vop_open_desc, nfs_open }, /* open */ { &vop_close_desc, nfs_close }, /* close */ { &vop_access_desc, nfs_access }, /* access */ { &vop_getattr_desc, nfs_getattr }, /* getattr */ { &vop_setattr_desc, nfs_setattr }, /* setattr */ { &vop_read_desc, nfs_read }, /* read */ { &vop_write_desc, nfs_write }, /* write */ { &vop_ioctl_desc, nfs_ioctl }, /* ioctl */ { &vop_poll_desc, nfs_poll }, /* poll */ { &vop_kqfilter_desc, nfs_kqfilter }, /* kqfilter */ { &vop_revoke_desc, vop_generic_revoke }, /* revoke */ { &vop_fsync_desc, nfs_fsync }, /* fsync */ { &vop_remove_desc, nfs_remove }, /* remove */ { &vop_link_desc, nfs_link }, /* link */ { &vop_rename_desc, nfs_rename }, /* rename */ { &vop_mkdir_desc, nfs_mkdir }, /* mkdir */ { &vop_rmdir_desc, nfs_rmdir }, /* rmdir */ { &vop_symlink_desc, nfs_symlink }, /* symlink */ { &vop_readdir_desc, nfs_readdir }, /* readdir */ { &vop_readlink_desc, nfs_readlink }, /* readlink */ { &vop_abortop_desc, vop_generic_abortop }, /* abortop */ { &vop_inactive_desc, nfs_inactive }, /* inactive */ { &vop_reclaim_desc, nfs_reclaim }, /* reclaim */ { &vop_lock_desc, vop_generic_lock }, /* lock */ { &vop_unlock_desc, vop_generic_unlock }, /* unlock */ { &vop_bmap_desc, nfs_bmap }, /* bmap */ { &vop_strategy_desc, nfs_strategy }, /* strategy */ { &vop_print_desc, nfs_print }, /* print */ { &vop_islocked_desc, vop_generic_islocked }, /* islocked */ { &vop_pathconf_desc, nfs_pathconf }, /* pathconf */ { &vop_advlock_desc, nfs_advlock }, /* advlock */ { &vop_bwrite_desc, nfs_bwrite }, { NULL, NULL } }; struct vnodeopv_desc nfsv2_vnodeop_opv_desc = { &nfsv2_vnodeop_p, nfsv2_vnodeop_entries }; /* * Special device vnode ops */ int (**spec_nfsv2nodeop_p)(void *); struct vnodeopv_entry_desc spec_nfsv2nodeop_entries[] = { { &vop_default_desc, spec_vnoperate }, { &vop_close_desc, nfsspec_close }, /* close */ { &vop_access_desc, nfsspec_access }, /* access */ { &vop_getattr_desc, nfs_getattr }, /* getattr */ { &vop_setattr_desc, nfs_setattr }, /* setattr */ { &vop_read_desc, nfsspec_read }, /* read */ { &vop_write_desc, nfsspec_write }, /* write */ { &vop_fsync_desc, nfs_fsync }, /* fsync */ { &vop_inactive_desc, nfs_inactive }, /* inactive */ { &vop_reclaim_desc, nfs_reclaim }, /* reclaim */ { &vop_lock_desc, vop_generic_lock }, /* lock */ { &vop_unlock_desc, vop_generic_unlock }, /* unlock */ { &vop_print_desc, nfs_print }, /* print */ { &vop_islocked_desc, vop_generic_islocked }, /* islocked */ { NULL, NULL } }; struct vnodeopv_desc spec_nfsv2nodeop_opv_desc = { &spec_nfsv2nodeop_p, spec_nfsv2nodeop_entries }; #ifdef FIFO int (**fifo_nfsv2nodeop_p)(void *); struct vnodeopv_entry_desc fifo_nfsv2nodeop_entries[] = { { &vop_default_desc, fifo_vnoperate }, { &vop_close_desc, nfsfifo_close }, /* close */ { &vop_access_desc, nfsspec_access }, /* access */ { &vop_getattr_desc, nfs_getattr }, /* getattr */ { &vop_setattr_desc, nfs_setattr }, /* setattr */ { &vop_read_desc, nfsfifo_read }, /* read */ { &vop_write_desc, nfsfifo_write }, /* write */ { &vop_fsync_desc, nfs_fsync }, /* fsync */ { &vop_inactive_desc, nfs_inactive }, /* inactive */ { &vop_reclaim_desc, nfsfifo_reclaim }, /* reclaim */ { &vop_lock_desc, vop_generic_lock }, /* lock */ { &vop_unlock_desc, vop_generic_unlock }, /* unlock */ { &vop_print_desc, nfs_print }, /* print */ { &vop_islocked_desc, vop_generic_islocked }, /* islocked */ { &vop_bwrite_desc, vop_generic_bwrite }, { NULL, NULL } }; struct vnodeopv_desc fifo_nfsv2nodeop_opv_desc = { &fifo_nfsv2nodeop_p, fifo_nfsv2nodeop_entries }; #endif /* FIFO */ /* * Global variables */ extern u_int32_t nfs_true, nfs_false; extern u_int32_t nfs_xdrneg1; extern struct nfsstats nfsstats; extern nfstype nfsv3_type[9]; int nfs_numasync = 0; void nfs_cache_enter(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) { struct nfsnode *np; if (vp != NULL) { np = VTONFS(vp); np->n_ctime = np->n_vattr.va_ctime.tv_sec; } else { np = VTONFS(dvp); if (!np->n_ctime) np->n_ctime = np->n_vattr.va_mtime.tv_sec; } cache_enter(dvp, vp, cnp); } /* * nfs null call from vfs. */ int nfs_null(vp, cred, procp) struct vnode *vp; struct ucred *cred; struct proc *procp; { caddr_t dpos; int error = 0; struct mbuf *mreq, *mrep, *md, *mb; mb = mreq = nfsm_reqhead(0); error = nfs_request(vp, mreq, NFSPROC_NULL, procp, cred, &mrep, &md, &dpos); m_freem(mrep); return (error); } /* * nfs access vnode op. * For nfs version 2, just return ok. File accesses may fail later. * For nfs version 3, use the access rpc to check accessibility. If file modes * are changed on the server, accesses might still fail later. */ int nfs_access(v) void *v; { struct vop_access_args *ap = v; struct vnode *vp = ap->a_vp; u_int32_t *tl; int32_t t1; caddr_t dpos, cp2; int error = 0, attrflag; struct mbuf *mreq, *mrep, *md, *mb; u_int32_t mode, rmode; int v3 = NFS_ISV3(vp); int cachevalid; struct nfsnode *np = VTONFS(vp); /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } /* * Check access cache first. If a request has been made for this uid * shortly before, use the cached result. */ cachevalid = (np->n_accstamp != -1 && (time_second - np->n_accstamp) < nfs_attrtimeo(np) && np->n_accuid == ap->a_cred->cr_uid); if (cachevalid) { if (!np->n_accerror) { if ((np->n_accmode & ap->a_mode) == ap->a_mode) return (np->n_accerror); } else if ((np->n_accmode & ap->a_mode) == np->n_accmode) return (np->n_accerror); } /* * For nfs v3, do an access rpc, otherwise you are stuck emulating * ufs_access() locally using the vattr. This may not be correct, * since the server may apply other access criteria such as * client uid-->server uid mapping that we do not know about, but * this is better than just returning anything that is lying about * in the cache. */ if (v3) { nfsstats.rpccnt[NFSPROC_ACCESS]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_UNSIGNED); nfsm_fhtom(&mb, vp, v3); tl = nfsm_build(&mb, NFSX_UNSIGNED); if (ap->a_mode & VREAD) mode = NFSV3ACCESS_READ; else mode = 0; if (vp->v_type == VDIR) { if (ap->a_mode & VWRITE) mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND | NFSV3ACCESS_DELETE); if (ap->a_mode & VEXEC) mode |= NFSV3ACCESS_LOOKUP; } else { if (ap->a_mode & VWRITE) mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND); if (ap->a_mode & VEXEC) mode |= NFSV3ACCESS_EXECUTE; } *tl = txdr_unsigned(mode); error = nfs_request(vp, mreq, NFSPROC_ACCESS, ap->a_p, ap->a_cred, &mrep, &md, &dpos); nfsm_postop_attr(vp, attrflag); if (error) { m_freem(mrep); goto nfsmout; } nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); rmode = fxdr_unsigned(u_int32_t, *tl); /* * The NFS V3 spec does not clarify whether or not * the returned access bits can be a superset of * the ones requested, so... */ if ((rmode & mode) != mode) error = EACCES; m_freem(mrep); } else return (nfsspec_access(ap)); /* * If we got the same result as for a previous, different request, OR * it in. Don't update the timestamp in that case. */ if (!error || error == EACCES) { if (cachevalid && np->n_accstamp != -1 && error == np->n_accerror) { if (!error) np->n_accmode |= ap->a_mode; else { if ((np->n_accmode & ap->a_mode) == ap->a_mode) np->n_accmode = ap->a_mode; } } else { np->n_accstamp = time_second; np->n_accuid = ap->a_cred->cr_uid; np->n_accmode = ap->a_mode; np->n_accerror = error; } } nfsmout: return (error); } /* * nfs open vnode op * Check to see if the type is ok * and that deletion is not in progress. * For paged in text files, you will need to flush the page cache * if consistency is lost. */ int nfs_open(v) void *v; { struct vop_open_args *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; int error; if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) { #ifdef DIAGNOSTIC printf("open eacces vtyp=%d\n",vp->v_type); #endif return (EACCES); } /* * Initialize read and write creds here, for swapfiles * and other paths that don't set the creds themselves. */ if (ap->a_mode & FREAD) { if (np->n_rcred) { crfree(np->n_rcred); } np->n_rcred = ap->a_cred; crhold(np->n_rcred); } if (ap->a_mode & FWRITE) { if (np->n_wcred) { crfree(np->n_wcred); } np->n_wcred = ap->a_cred; crhold(np->n_wcred); } if (np->n_flag & NMODIFIED) { error = nfs_vinvalbuf(vp, V_SAVE, ap->a_cred, ap->a_p); if (error == EINTR) return (error); uvm_vnp_uncache(vp); NFS_INVALIDATE_ATTRCACHE(np); if (vp->v_type == VDIR) np->n_direofoffset = 0; error = VOP_GETATTR(vp, &vattr, ap->a_cred, ap->a_p); if (error) return (error); np->n_mtime = vattr.va_mtime; } else { error = VOP_GETATTR(vp, &vattr, ap->a_cred, ap->a_p); if (error) return (error); if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) { if (vp->v_type == VDIR) np->n_direofoffset = 0; error = nfs_vinvalbuf(vp, V_SAVE, ap->a_cred, ap->a_p); if (error == EINTR) return (error); uvm_vnp_uncache(vp); np->n_mtime = vattr.va_mtime; } } /* For open/close consistency. */ NFS_INVALIDATE_ATTRCACHE(np); return (0); } /* * nfs close vnode op * What an NFS client should do upon close after writing is a debatable issue. * Most NFS clients push delayed writes to the server upon close, basically for * two reasons: * 1 - So that any write errors may be reported back to the client process * doing the close system call. By far the two most likely errors are * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. * 2 - To put a worst case upper bound on cache inconsistency between * multiple clients for the file. * There is also a consistency problem for Version 2 of the protocol w.r.t. * not being able to tell if other clients are writing a file concurrently, * since there is no way of knowing if the changed modify time in the reply * is only due to the write for this client. * (NFS Version 3 provides weak cache consistency data in the reply that * should be sufficient to detect and handle this case.) * * The current code does the following: * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers * for NFS Version 3 - flush dirty buffers to the server but don't invalidate * or commit them (this satisfies 1 and 2 except for the * case where the server crashes after this close but * before the commit RPC, which is felt to be "good * enough". Changing the last argument to nfs_flush() to * a 1 would force a commit operation, if it is felt a * commit is necessary now. */ int nfs_close(v) void *v; { struct vop_close_args *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); int error = 0; if (vp->v_type == VREG) { if (np->n_flag & NMODIFIED) { if (NFS_ISV3(vp)) { error = nfs_flush(vp, ap->a_cred, MNT_WAIT, ap->a_p, 0); np->n_flag &= ~NMODIFIED; } else error = nfs_vinvalbuf(vp, V_SAVE, ap->a_cred, ap->a_p); NFS_INVALIDATE_ATTRCACHE(np); } if (np->n_flag & NWRITEERR) { np->n_flag &= ~NWRITEERR; error = np->n_error; } } return (error); } /* * nfs getattr call from vfs. */ int nfs_getattr(v) void *v; { struct vop_getattr_args *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); int32_t t1; caddr_t dpos; int error = 0; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(vp); /* * Update local times for special files. */ if (np->n_flag & (NACC | NUPD)) np->n_flag |= NCHG; /* * First look in the cache. */ if (nfs_getattrcache(vp, ap->a_vap) == 0) return (0); nfsstats.rpccnt[NFSPROC_GETATTR]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3)); nfsm_fhtom(&mb, vp, v3); error = nfs_request(vp, mreq, NFSPROC_GETATTR, ap->a_p, ap->a_cred, &mrep, &md, &dpos); if (!error) nfsm_loadattr(vp, ap->a_vap); m_freem(mrep); nfsmout: return (error); } /* * nfs setattr call. */ int nfs_setattr(v) void *v; { struct vop_setattr_args *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr *vap = ap->a_vap; int hint = NOTE_ATTRIB; int error = 0; u_quad_t tsize = 0; /* * Setting of flags is not supported. */ if (vap->va_flags != VNOVAL) return (EOPNOTSUPP); /* * Disallow write attempts if the filesystem is mounted read-only. */ if ((vap->va_uid != (uid_t)VNOVAL || vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && (vp->v_mount->mnt_flag & MNT_RDONLY)) return (EROFS); if (vap->va_size != VNOVAL) { switch (vp->v_type) { case VDIR: return (EISDIR); case VCHR: case VBLK: case VSOCK: case VFIFO: if (vap->va_mtime.tv_sec == VNOVAL && vap->va_atime.tv_sec == VNOVAL && vap->va_mode == (mode_t)VNOVAL && vap->va_uid == (uid_t)VNOVAL && vap->va_gid == (gid_t)VNOVAL) return (0); vap->va_size = VNOVAL; break; default: /* * Disallow write attempts if the filesystem is * mounted read-only. */ if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); if (vap->va_size == 0) error = nfs_vinvalbuf(vp, 0, ap->a_cred, ap->a_p); else error = nfs_vinvalbuf(vp, V_SAVE, ap->a_cred, ap->a_p); if (error) return (error); tsize = np->n_size; np->n_size = np->n_vattr.va_size = vap->va_size; uvm_vnp_setsize(vp, np->n_size); }; } else if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) && vp->v_type == VREG && (error = nfs_vinvalbuf(vp, V_SAVE, ap->a_cred, ap->a_p)) == EINTR) return (error); error = nfs_setattrrpc(vp, vap, ap->a_cred, ap->a_p); if (error && vap->va_size != VNOVAL) { np->n_size = np->n_vattr.va_size = tsize; uvm_vnp_setsize(vp, np->n_size); } if (vap->va_size != VNOVAL && vap->va_size < tsize) hint |= NOTE_TRUNCATE; VN_KNOTE(vp, hint); /* XXX setattrrpc? */ return (error); } /* * Do an nfs setattr rpc. */ int nfs_setattrrpc(vp, vap, cred, procp) struct vnode *vp; struct vattr *vap; struct ucred *cred; struct proc *procp; { struct nfsv2_sattr *sp; int32_t t1; caddr_t dpos, cp2; u_int32_t *tl; int error = 0, wccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_SETATTR]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_SATTR(v3)); nfsm_fhtom(&mb, vp, v3); if (v3) { nfsm_v3attrbuild(&mb, vap, 1); tl = nfsm_build(&mb, NFSX_UNSIGNED); *tl = nfs_false; } else { sp = nfsm_build(&mb, NFSX_V2SATTR); if (vap->va_mode == (mode_t)VNOVAL) sp->sa_mode = nfs_xdrneg1; else sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode); if (vap->va_uid == (uid_t)VNOVAL) sp->sa_uid = nfs_xdrneg1; else sp->sa_uid = txdr_unsigned(vap->va_uid); if (vap->va_gid == (gid_t)VNOVAL) sp->sa_gid = nfs_xdrneg1; else sp->sa_gid = txdr_unsigned(vap->va_gid); sp->sa_size = txdr_unsigned(vap->va_size); txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } error = nfs_request(vp, mreq, NFSPROC_SETATTR, procp, cred, &mrep, &md, &dpos); if (v3) nfsm_wcc_data(vp, wccflag); else if (error == 0) nfsm_loadattr(vp, NULL); m_freem(mrep); nfsmout: return (error); } /* * nfs lookup call, one step at a time... * First look in cache * If not found, unlock the directory nfsnode and do the rpc */ int nfs_lookup(v) void *v; { struct vop_lookup_args *ap = v; struct componentname *cnp = ap->a_cnp; struct vnode *dvp = ap->a_dvp; struct vnode **vpp = ap->a_vpp; struct proc *p = cnp->cn_proc; int flags; struct vnode *newvp; u_int32_t *tl; int32_t t1; struct nfsmount *nmp; caddr_t dpos, cp2; struct mbuf *mreq, *mrep, *md, *mb; long len; nfsfh_t *fhp; struct nfsnode *np; int lockparent, wantparent, error = 0, attrflag, fhsize; int v3 = NFS_ISV3(dvp); cnp->cn_flags &= ~PDIRUNLOCK; flags = cnp->cn_flags; *vpp = NULLVP; if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) && (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)) return (EROFS); if (dvp->v_type != VDIR) return (ENOTDIR); lockparent = flags & LOCKPARENT; wantparent = flags & (LOCKPARENT|WANTPARENT); nmp = VFSTONFS(dvp->v_mount); np = VTONFS(dvp); /* * Before tediously performing a linear scan of the directory, * check the name cache to see if the directory/name pair * we are looking for is known already. * If the directory/name pair is found in the name cache, * we have to ensure the directory has not changed from * the time the cache entry has been created. If it has, * the cache entry has to be ignored. */ if ((error = cache_lookup(dvp, vpp, cnp)) >= 0) { struct vattr vattr; int err2; if (error && error != ENOENT) { *vpp = NULLVP; return (error); } if (cnp->cn_flags & PDIRUNLOCK) { err2 = vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, p); if (err2 != 0) { *vpp = NULLVP; return (err2); } cnp->cn_flags &= ~PDIRUNLOCK; } err2 = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, cnp->cn_proc); if (err2 != 0) { if (error == 0) { if (*vpp != dvp) vput(*vpp); else vrele(*vpp); } *vpp = NULLVP; return (err2); } if (error == ENOENT) { if (!VOP_GETATTR(dvp, &vattr, cnp->cn_cred, cnp->cn_proc) && vattr.va_mtime.tv_sec == VTONFS(dvp)->n_ctime) return (ENOENT); cache_purge(dvp); np->n_ctime = 0; goto dorpc; } newvp = *vpp; if (!VOP_GETATTR(newvp, &vattr, cnp->cn_cred, cnp->cn_proc) && vattr.va_ctime.tv_sec == VTONFS(newvp)->n_ctime) { nfsstats.lookupcache_hits++; if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; if ((!lockparent || !(flags & ISLASTCN)) && newvp != dvp) VOP_UNLOCK(dvp, 0, p); return (0); } cache_purge(newvp); if (newvp != dvp) vput(newvp); else vrele(newvp); *vpp = NULLVP; } dorpc: error = 0; newvp = NULLVP; nfsstats.lookupcache_misses++; nfsstats.rpccnt[NFSPROC_LOOKUP]++; len = cnp->cn_namelen; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len)); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN); error = nfs_request(dvp, mreq, NFSPROC_LOOKUP, cnp->cn_proc, cnp->cn_cred, &mrep, &md, &dpos); if (error) { if (v3) nfsm_postop_attr(dvp, attrflag); m_freem(mrep); goto nfsmout; } nfsm_getfh(fhp, fhsize, v3); /* * Handle RENAME case... */ if (cnp->cn_nameiop == RENAME && wantparent && (flags & ISLASTCN)) { if (NFS_CMPFH(np, fhp, fhsize)) { m_freem(mrep); return (EISDIR); } error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); if (error) { m_freem(mrep); return (error); } newvp = NFSTOV(np); if (v3) { nfsm_postop_attr(newvp, attrflag); nfsm_postop_attr(dvp, attrflag); } else nfsm_loadattr(newvp, (struct vattr *)0); *vpp = newvp; m_freem(mrep); cnp->cn_flags |= SAVENAME; if (!lockparent) { VOP_UNLOCK(dvp, 0, p); cnp->cn_flags |= PDIRUNLOCK; } return (0); } /* * The postop attr handling is duplicated for each if case, * because it should be done while dvp is locked (unlocking * dvp is different for each case). */ if (NFS_CMPFH(np, fhp, fhsize)) { vref(dvp); newvp = dvp; if (v3) { nfsm_postop_attr(newvp, attrflag); nfsm_postop_attr(dvp, attrflag); } else nfsm_loadattr(newvp, (struct vattr *)0); } else if (flags & ISDOTDOT) { VOP_UNLOCK(dvp, 0, p); cnp->cn_flags |= PDIRUNLOCK; error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); if (error) { if (vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, p) == 0) cnp->cn_flags &= ~PDIRUNLOCK; m_freem(mrep); return (error); } newvp = NFSTOV(np); if (v3) { nfsm_postop_attr(newvp, attrflag); nfsm_postop_attr(dvp, attrflag); } else nfsm_loadattr(newvp, (struct vattr *)0); if (lockparent && (flags & ISLASTCN)) { if ((error = vn_lock(dvp, LK_EXCLUSIVE, p))) { m_freem(mrep); vput(newvp); return error; } cnp->cn_flags &= ~PDIRUNLOCK; } } else { error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); if (error) { m_freem(mrep); return error; } newvp = NFSTOV(np); if (v3) { nfsm_postop_attr(newvp, attrflag); nfsm_postop_attr(dvp, attrflag); } else nfsm_loadattr(newvp, (struct vattr *)0); if (!lockparent || !(flags & ISLASTCN)) { VOP_UNLOCK(dvp, 0, p); cnp->cn_flags |= PDIRUNLOCK; } } if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; if ((cnp->cn_flags & MAKEENTRY) && (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN))) { nfs_cache_enter(dvp, newvp, cnp); } *vpp = newvp; m_freem(mrep); nfsmout: if (error) { /* * We get here only because of errors returned by * the RPC. Otherwise we'll have returned above * (the nfsm_* macros will jump to nfsmout * on error). */ if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE) { nfs_cache_enter(dvp, NULL, cnp); } if (newvp != NULLVP) { vrele(newvp); if (newvp != dvp) VOP_UNLOCK(newvp, 0, p); } if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) && (flags & ISLASTCN) && error == ENOENT) { if (dvp->v_mount->mnt_flag & MNT_RDONLY) error = EROFS; else error = EJUSTRETURN; } if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN)) cnp->cn_flags |= SAVENAME; *vpp = NULL; } return (error); } /* * nfs read call. * Just call nfs_bioread() to do the work. */ int nfs_read(v) void *v; { struct vop_read_args *ap = v; struct vnode *vp = ap->a_vp; if (vp->v_type != VREG) return (EPERM); return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred)); } /* * nfs readlink call */ int nfs_readlink(v) void *v; { struct vop_readlink_args *ap = v; struct vnode *vp = ap->a_vp; if (vp->v_type != VLNK) return (EPERM); return (nfs_bioread(vp, ap->a_uio, 0, ap->a_cred)); } /* * Do a readlink rpc. * Called by nfs_doio() from below the buffer cache. */ int nfs_readlinkrpc(vp, uiop, cred) struct vnode *vp; struct uio *uiop; struct ucred *cred; { u_int32_t *tl; int32_t t1; caddr_t dpos, cp2; int error = 0, len, attrflag; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_READLINK]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3)); nfsm_fhtom(&mb, vp, v3); error = nfs_request(vp, mreq, NFSPROC_READLINK, uiop->uio_procp, cred, &mrep, &md, &dpos); if (v3) nfsm_postop_attr(vp, attrflag); if (!error) { nfsm_strsiz(len, NFS_MAXPATHLEN); nfsm_mtouio(uiop, len); } m_freem(mrep); nfsmout: return (error); } /* * nfs read rpc call * Ditto above */ int nfs_readrpc(vp, uiop) struct vnode *vp; struct uio *uiop; { u_int32_t *tl; int32_t t1; caddr_t dpos, cp2; struct mbuf *mreq, *mrep, *md, *mb; struct nfsmount *nmp; int error = 0, len, retlen, tsiz, eof, attrflag; int v3 = NFS_ISV3(vp); eof = 0; nmp = VFSTONFS(vp->v_mount); tsiz = uiop->uio_resid; if (uiop->uio_offset + tsiz > 0xffffffff && !v3) return (EFBIG); while (tsiz > 0) { nfsstats.rpccnt[NFSPROC_READ]++; len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_UNSIGNED * 3); nfsm_fhtom(&mb, vp, v3); tl = nfsm_build(&mb, NFSX_UNSIGNED * 3); if (v3) { txdr_hyper(uiop->uio_offset, tl); *(tl + 2) = txdr_unsigned(len); } else { *tl++ = txdr_unsigned(uiop->uio_offset); *tl++ = txdr_unsigned(len); *tl = 0; } error = nfs_request(vp, mreq, NFSPROC_READ, uiop->uio_procp, VTONFS(vp)->n_rcred, &mrep, &md, &dpos); if (v3) nfsm_postop_attr(vp, attrflag); if (error) { m_freem(mrep); goto nfsmout; } if (v3) { nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); eof = fxdr_unsigned(int, *(tl + 1)); } else { nfsm_loadattr(vp, NULL); } nfsm_strsiz(retlen, nmp->nm_rsize); nfsm_mtouio(uiop, retlen); m_freem(mrep); tsiz -= retlen; if (v3) { if (eof || retlen == 0) tsiz = 0; } else if (retlen < len) tsiz = 0; } nfsmout: return (error); } /* * nfs write call */ int nfs_writerpc(vp, uiop, iomode, must_commit) struct vnode *vp; struct uio *uiop; int *iomode, *must_commit; { u_int32_t *tl; int32_t t1, backup; caddr_t dpos, cp2; struct mbuf *mreq, *mrep, *md, *mb; struct nfsmount *nmp = VFSTONFS(vp->v_mount); int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit; int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC; #ifdef DIAGNOSTIC if (uiop->uio_iovcnt != 1) panic("nfs: writerpc iovcnt > 1"); #endif *must_commit = 0; tsiz = uiop->uio_resid; if (uiop->uio_offset + tsiz > 0xffffffff && !v3) return (EFBIG); while (tsiz > 0) { nfsstats.rpccnt[NFSPROC_WRITE]++; len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len)); nfsm_fhtom(&mb, vp, v3); if (v3) { tl = nfsm_build(&mb, 5 * NFSX_UNSIGNED); txdr_hyper(uiop->uio_offset, tl); tl += 2; *tl++ = txdr_unsigned(len); *tl++ = txdr_unsigned(*iomode); *tl = txdr_unsigned(len); } else { u_int32_t x; tl = nfsm_build(&mb, 4 * NFSX_UNSIGNED); /* Set both "begin" and "current" to non-garbage. */ x = txdr_unsigned((u_int32_t)uiop->uio_offset); *tl++ = x; /* "begin offset" */ *tl++ = x; /* "current offset" */ x = txdr_unsigned(len); *tl++ = x; /* total to this offset */ *tl = x; /* size of this write */ } nfsm_uiotombuf(&mb, uiop, len); error = nfs_request(vp, mreq, NFSPROC_WRITE, uiop->uio_procp, VTONFS(vp)->n_wcred, &mrep, &md, &dpos); if (v3) { wccflag = NFSV3_WCCCHK; nfsm_wcc_data(vp, wccflag); } if (error) { m_freem(mrep); goto nfsmout; } if (v3) { wccflag = NFSV3_WCCCHK; nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF); rlen = fxdr_unsigned(int, *tl++); if (rlen == 0) { error = NFSERR_IO; break; } else if (rlen < len) { backup = len - rlen; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup; uiop->uio_iov->iov_len += backup; uiop->uio_offset -= backup; uiop->uio_resid += backup; len = rlen; } commit = fxdr_unsigned(int, *tl++); /* * Return the lowest committment level * obtained by any of the RPCs. */ if (committed == NFSV3WRITE_FILESYNC) committed = commit; else if (committed == NFSV3WRITE_DATASYNC && commit == NFSV3WRITE_UNSTABLE) committed = commit; if ((nmp->nm_flag & NFSMNT_HASWRITEVERF) == 0) { bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); nmp->nm_flag |= NFSMNT_HASWRITEVERF; } else if (bcmp((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) { *must_commit = 1; bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); } } else { nfsm_loadattr(vp, NULL); } if (wccflag) VTONFS(vp)->n_mtime = VTONFS(vp)->n_vattr.va_mtime; m_freem(mrep); tsiz -= len; } nfsmout: *iomode = committed; if (error) uiop->uio_resid = tsiz; return (error); } /* * nfs mknod rpc * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the * mode set to specify the file type and the size field for rdev. */ int nfs_mknodrpc(dvp, vpp, cnp, vap) struct vnode *dvp; struct vnode **vpp; struct componentname *cnp; struct vattr *vap; { struct nfsv2_sattr *sp; u_int32_t *tl; int32_t t1; struct vnode *newvp = (struct vnode *)0; struct nfsnode *np = NULL; char *cp2; caddr_t dpos; int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0; struct mbuf *mreq, *mrep, *md, *mb; u_int32_t rdev; int v3 = NFS_ISV3(dvp); if (vap->va_type == VCHR || vap->va_type == VBLK) rdev = txdr_unsigned(vap->va_rdev); else if (vap->va_type == VFIFO || vap->va_type == VSOCK) rdev = nfs_xdrneg1; else { VOP_ABORTOP(dvp, cnp); vput(dvp); return (EOPNOTSUPP); } nfsstats.rpccnt[NFSPROC_MKNOD]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + 4 * NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3)); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); if (v3) { tl = nfsm_build(&mb, NFSX_UNSIGNED); *tl++ = vtonfsv3_type(vap->va_type); nfsm_v3attrbuild(&mb, vap, 0); if (vap->va_type == VCHR || vap->va_type == VBLK) { tl = nfsm_build(&mb, 2 * NFSX_UNSIGNED); *tl++ = txdr_unsigned(major(vap->va_rdev)); *tl = txdr_unsigned(minor(vap->va_rdev)); } } else { sp = nfsm_build(&mb, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = rdev; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } error = nfs_request(dvp, mreq, NFSPROC_MKNOD, cnp->cn_proc, cnp->cn_cred, &mrep, &md, &dpos); if (!error) { nfsm_mtofh(dvp, newvp, v3, gotvp); if (!gotvp) { if (newvp) { vrele(newvp); newvp = (struct vnode *)0; } error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_proc, &np); if (!error) newvp = NFSTOV(np); } } if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: if (error) { if (newvp) vrele(newvp); } else { if (cnp->cn_flags & MAKEENTRY) nfs_cache_enter(dvp, newvp, cnp); *vpp = newvp; } pool_put(&namei_pool, cnp->cn_pnbuf); VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(dvp)); vrele(dvp); return (error); } /* * nfs mknod vop * just call nfs_mknodrpc() to do the work. */ int nfs_mknod(v) void *v; { struct vop_mknod_args *ap = v; struct vnode *newvp; int error; error = nfs_mknodrpc(ap->a_dvp, &newvp, ap->a_cnp, ap->a_vap); if (!error) vrele(newvp); VN_KNOTE(ap->a_dvp, NOTE_WRITE); return (error); } int nfs_create(v) void *v; { struct vop_create_args *ap = v; struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; u_int32_t *tl; int32_t t1; struct nfsnode *np = (struct nfsnode *)0; struct vnode *newvp = (struct vnode *)0; caddr_t dpos, cp2; int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(dvp); /* * Oops, not for me.. */ if (vap->va_type == VSOCK) return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); if (vap->va_vaflags & VA_EXCLUSIVE) fmode |= O_EXCL; again: nfsstats.rpccnt[NFSPROC_CREATE]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + 2 * NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3)); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); if (v3) { tl = nfsm_build(&mb, NFSX_UNSIGNED); if (fmode & O_EXCL) { *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE); tl = nfsm_build(&mb, NFSX_V3CREATEVERF); *tl++ = arc4random(); *tl = arc4random(); } else { *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED); nfsm_v3attrbuild(&mb, vap, 0); } } else { sp = nfsm_build(&mb, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = 0; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } error = nfs_request(dvp, mreq, NFSPROC_CREATE, cnp->cn_proc, cnp->cn_cred, &mrep, &md, &dpos); if (!error) { nfsm_mtofh(dvp, newvp, v3, gotvp); if (!gotvp) { if (newvp) { vrele(newvp); newvp = (struct vnode *)0; } error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_proc, &np); if (!error) newvp = NFSTOV(np); } } if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: if (error) { if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) { fmode &= ~O_EXCL; goto again; } if (newvp) vrele(newvp); } else if (v3 && (fmode & O_EXCL)) error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_proc); if (!error) { if (cnp->cn_flags & MAKEENTRY) nfs_cache_enter(dvp, newvp, cnp); *ap->a_vpp = newvp; } pool_put(&namei_pool, cnp->cn_pnbuf); VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(dvp)); VN_KNOTE(ap->a_dvp, NOTE_WRITE); vrele(dvp); return (error); } /* * nfs file remove call * To try and make nfs semantics closer to ufs semantics, a file that has * other processes using the vnode is renamed instead of removed and then * removed later on the last close. * - If v_usecount > 1 * If a rename is not already in the works * call nfs_sillyrename() to set it up * else * do the remove rpc */ int nfs_remove(v) void *v; { struct vop_remove_args *ap = v; struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; struct nfsnode *np = VTONFS(vp); int error = 0; struct vattr vattr; #ifdef DIAGNOSTIC if ((cnp->cn_flags & HASBUF) == 0) panic("nfs_remove: no name"); if (vp->v_usecount < 1) panic("nfs_remove: bad v_usecount"); #endif if (vp->v_type == VDIR) error = EPERM; else if (vp->v_usecount == 1 || (np->n_sillyrename && VOP_GETATTR(vp, &vattr, cnp->cn_cred, cnp->cn_proc) == 0 && vattr.va_nlink > 1)) { /* * Purge the name cache so that the chance of a lookup for * the name succeeding while the remove is in progress is * minimized. Without node locking it can still happen, such * that an I/O op returns ESTALE, but since you get this if * another host removes the file.. */ cache_purge(vp); /* * throw away biocache buffers, mainly to avoid * unnecessary delayed writes later. */ error = nfs_vinvalbuf(vp, 0, cnp->cn_cred, cnp->cn_proc); /* Do the rpc */ if (error != EINTR) error = nfs_removerpc(dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_cred, cnp->cn_proc); /* * Kludge City: If the first reply to the remove rpc is lost.. * the reply to the retransmitted request will be ENOENT * since the file was in fact removed * Therefore, we cheat and return success. */ if (error == ENOENT) error = 0; } else if (!np->n_sillyrename) error = nfs_sillyrename(dvp, vp, cnp); pool_put(&namei_pool, cnp->cn_pnbuf); NFS_INVALIDATE_ATTRCACHE(np); vrele(dvp); vrele(vp); VN_KNOTE(vp, NOTE_DELETE); VN_KNOTE(dvp, NOTE_WRITE); return (error); } /* * nfs file remove rpc called from nfs_inactive */ int nfs_removeit(sp) struct sillyrename *sp; { return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen, sp->s_cred, (struct proc *)0)); } /* * Nfs remove rpc, called from nfs_remove() and nfs_removeit(). */ int nfs_removerpc(dvp, name, namelen, cred, proc) struct vnode *dvp; char *name; int namelen; struct ucred *cred; struct proc *proc; { u_int32_t *tl; int32_t t1; caddr_t dpos, cp2; int error = 0, wccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_REMOVE]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen)); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(name, namelen, NFS_MAXNAMLEN); error = nfs_request(dvp, mreq, NFSPROC_REMOVE, proc, cred, &mrep, &md, &dpos); if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(dvp)); return (error); } /* * nfs file rename call */ int nfs_rename(v) void *v; { struct vop_rename_args *ap = v; struct vnode *fvp = ap->a_fvp; struct vnode *tvp = ap->a_tvp; struct vnode *fdvp = ap->a_fdvp; struct vnode *tdvp = ap->a_tdvp; struct componentname *tcnp = ap->a_tcnp; struct componentname *fcnp = ap->a_fcnp; int error; #ifdef DIAGNOSTIC if ((tcnp->cn_flags & HASBUF) == 0 || (fcnp->cn_flags & HASBUF) == 0) panic("nfs_rename: no name"); #endif /* Check for cross-device rename */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; goto out; } /* * If the tvp exists and is in use, sillyrename it before doing the * rename of the new file over it. */ if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename && tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { VN_KNOTE(tvp, NOTE_DELETE); vrele(tvp); tvp = NULL; } error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen, tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, tcnp->cn_proc); VN_KNOTE(fdvp, NOTE_WRITE); VN_KNOTE(tdvp, NOTE_WRITE); if (fvp->v_type == VDIR) { if (tvp != NULL && tvp->v_type == VDIR) cache_purge(tdvp); cache_purge(fdvp); } out: if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); vrele(fdvp); vrele(fvp); /* * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * nfs file rename rpc called from nfs_remove() above */ int nfs_renameit(sdvp, scnp, sp) struct vnode *sdvp; struct componentname *scnp; struct sillyrename *sp; { return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen, sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_proc)); } /* * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). */ int nfs_renamerpc(fdvp, fnameptr, fnamelen, tdvp, tnameptr, tnamelen, cred, proc) struct vnode *fdvp; char *fnameptr; int fnamelen; struct vnode *tdvp; char *tnameptr; int tnamelen; struct ucred *cred; struct proc *proc; { u_int32_t *tl; int32_t t1; caddr_t dpos, cp2; int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(fdvp); nfsstats.rpccnt[NFSPROC_RENAME]++; mb = mreq = nfsm_reqhead((NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen)); nfsm_fhtom(&mb, fdvp, v3); nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN); nfsm_fhtom(&mb, tdvp, v3); nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN); error = nfs_request(fdvp, mreq, NFSPROC_RENAME, proc, cred, &mrep, &md, &dpos); if (v3) { nfsm_wcc_data(fdvp, fwccflag); nfsm_wcc_data(tdvp, twccflag); } m_freem(mrep); nfsmout: VTONFS(fdvp)->n_flag |= NMODIFIED; VTONFS(tdvp)->n_flag |= NMODIFIED; if (!fwccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(fdvp)); if (!twccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(tdvp)); return (error); } /* * nfs hard link create call */ int nfs_link(v) void *v; { struct vop_link_args *ap = v; struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; u_int32_t *tl; int32_t t1; caddr_t dpos, cp2; int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0; struct mbuf *mreq, *mrep, *md, *mb; int v3; if (dvp->v_mount != vp->v_mount) { pool_put(&namei_pool, cnp->cn_pnbuf); if (vp == dvp) vrele(dvp); else vput(dvp); return (EXDEV); } /* * Push all writes to the server, so that the attribute cache * doesn't get "out of sync" with the server. * XXX There should be a better way! */ VOP_FSYNC(vp, cnp->cn_cred, MNT_WAIT, cnp->cn_proc); v3 = NFS_ISV3(vp); nfsstats.rpccnt[NFSPROC_LINK]++; mb = mreq = nfsm_reqhead(2 * NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen)); nfsm_fhtom(&mb, vp, v3); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); error = nfs_request(vp, mreq, NFSPROC_LINK, cnp->cn_proc, cnp->cn_cred, &mrep, &md, &dpos); if (v3) { nfsm_postop_attr(vp, attrflag); nfsm_wcc_data(dvp, wccflag); } m_freem(mrep); nfsmout: pool_put(&namei_pool, cnp->cn_pnbuf); VTONFS(dvp)->n_flag |= NMODIFIED; if (!attrflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(vp)); if (!wccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(dvp)); VN_KNOTE(vp, NOTE_LINK); VN_KNOTE(dvp, NOTE_WRITE); vput(dvp); return (error); } /* * nfs symbolic link create call */ int nfs_symlink(v) void *v; { struct vop_symlink_args *ap = v; struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; u_int32_t *tl; int32_t t1; caddr_t dpos, cp2; int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp; struct mbuf *mreq, *mrep, *md, *mb; struct vnode *newvp = (struct vnode *)0; int v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_SYMLINK]++; slen = strlen(ap->a_target); mb = mreq = nfsm_reqhead(NFSX_FH(v3) + 2 * NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3)); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); if (v3) nfsm_v3attrbuild(&mb, vap, 0); nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN); if (!v3) { sp = nfsm_build(&mb, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = nfs_xdrneg1; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } error = nfs_request(dvp, mreq, NFSPROC_SYMLINK, cnp->cn_proc, cnp->cn_cred, &mrep, &md, &dpos); if (v3) { if (!error) nfsm_mtofh(dvp, newvp, v3, gotvp); nfsm_wcc_data(dvp, wccflag); } m_freem(mrep); nfsmout: if (newvp) vrele(newvp); pool_put(&namei_pool, cnp->cn_pnbuf); VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(dvp)); VN_KNOTE(dvp, NOTE_WRITE); vrele(dvp); return (error); } /* * nfs make dir call */ int nfs_mkdir(v) void *v; { struct vop_mkdir_args *ap = v; struct vnode *dvp = ap->a_dvp; struct vattr *vap = ap->a_vap; struct componentname *cnp = ap->a_cnp; struct nfsv2_sattr *sp; u_int32_t *tl; int32_t t1; int len; struct nfsnode *np = (struct nfsnode *)0; struct vnode *newvp = (struct vnode *)0; caddr_t dpos, cp2; int error = 0, wccflag = NFSV3_WCCRATTR; int gotvp = 0; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(dvp); len = cnp->cn_namelen; nfsstats.rpccnt[NFSPROC_MKDIR]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3)); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN); if (v3) { nfsm_v3attrbuild(&mb, vap, 0); } else { sp = nfsm_build(&mb, NFSX_V2SATTR); sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode); sp->sa_uid = nfs_xdrneg1; sp->sa_gid = nfs_xdrneg1; sp->sa_size = nfs_xdrneg1; txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); } error = nfs_request(dvp, mreq, NFSPROC_MKDIR, cnp->cn_proc, cnp->cn_cred, &mrep, &md, &dpos); if (!error) nfsm_mtofh(dvp, newvp, v3, gotvp); if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(dvp)); if (error == 0 && newvp == NULL) { error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred, cnp->cn_proc, &np); if (!error) { newvp = NFSTOV(np); if (newvp->v_type != VDIR) error = EEXIST; } } if (error) { if (newvp) vrele(newvp); } else { VN_KNOTE(dvp, NOTE_WRITE|NOTE_LINK); if (cnp->cn_flags & MAKEENTRY) nfs_cache_enter(dvp, newvp, cnp); *ap->a_vpp = newvp; } pool_put(&namei_pool, cnp->cn_pnbuf); vrele(dvp); return (error); } /* * nfs remove directory call */ int nfs_rmdir(v) void *v; { struct vop_rmdir_args *ap = v; struct vnode *vp = ap->a_vp; struct vnode *dvp = ap->a_dvp; struct componentname *cnp = ap->a_cnp; u_int32_t *tl; int32_t t1; caddr_t dpos, cp2; int error = 0, wccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; int v3 = NFS_ISV3(dvp); if (dvp == vp) { vrele(dvp); vrele(dvp); pool_put(&namei_pool, cnp->cn_pnbuf); return (EINVAL); } nfsstats.rpccnt[NFSPROC_RMDIR]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen)); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); error = nfs_request(dvp, mreq, NFSPROC_RMDIR, cnp->cn_proc, cnp->cn_cred, &mrep, &md, &dpos); if (v3) nfsm_wcc_data(dvp, wccflag); m_freem(mrep); nfsmout: pool_put(&namei_pool, cnp->cn_pnbuf); VTONFS(dvp)->n_flag |= NMODIFIED; if (!wccflag) NFS_INVALIDATE_ATTRCACHE(VTONFS(dvp)); VN_KNOTE(dvp, NOTE_WRITE|NOTE_LINK); VN_KNOTE(vp, NOTE_DELETE); cache_purge(vp); vrele(vp); vrele(dvp); /* * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. */ if (error == ENOENT) error = 0; return (error); } /* * The readdir logic below has a big design bug. It stores the NFS cookie in * the returned uio->uio_offset but does not store the verifier (it cannot). * Instead, the code stores the verifier in the nfsnode and applies that * verifies to all cookies, no matter what verifier was originally with * the cookie. * * From a practical standpoint, this is not a problem since almost all * NFS servers do not change the validity of cookies across deletes * and inserts. */ struct nfs_dirent { u_int32_t cookie[2]; struct dirent dirent; }; #define NFS_DIRHDSIZ (sizeof (struct nfs_dirent) - (MAXNAMLEN + 1)) #define NFS_DIRENT_OVERHEAD offsetof(struct nfs_dirent, dirent) /* * nfs readdir call */ int nfs_readdir(v) void *v; { struct vop_readdir_args *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct uio *uio = ap->a_uio; int tresid, error; struct vattr vattr; u_long *cookies = NULL; int ncookies = 0, cnt; u_int64_t newoff = uio->uio_offset; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct uio readdir_uio; struct iovec readdir_iovec; struct proc * p = uio->uio_procp; int done = 0, eof = 0; struct ucred *cred = ap->a_cred; void *data; if (vp->v_type != VDIR) return (EPERM); /* * First, check for hit on the EOF offset cache */ if (np->n_direofoffset != 0 && uio->uio_offset == np->n_direofoffset) { if (VOP_GETATTR(vp, &vattr, ap->a_cred, uio->uio_procp) == 0 && timespeccmp(&np->n_mtime, &vattr.va_mtime, ==)) { nfsstats.direofcache_hits++; *ap->a_eofflag = 1; return (0); } } if (uio->uio_resid < NFS_FABLKSIZE) return (EINVAL); tresid = uio->uio_resid; if (uio->uio_rw != UIO_READ) return (EINVAL); if (ap->a_cookies) { ncookies = uio->uio_resid / 20; cookies = malloc(sizeof(*cookies) * ncookies, M_TEMP, M_WAITOK); *ap->a_ncookies = ncookies; *ap->a_cookies = cookies; } if ((nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_GOTFSINFO)) == NFSMNT_NFSV3) (void)nfs_fsinfo(nmp, vp, cred, p); cnt = 5; data = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); do { struct nfs_dirent *ndp = data; readdir_iovec.iov_len = NFS_DIRBLKSIZ; readdir_iovec.iov_base = data; readdir_uio.uio_offset = newoff; readdir_uio.uio_iov = &readdir_iovec; readdir_uio.uio_iovcnt = 1; readdir_uio.uio_segflg = UIO_SYSSPACE; readdir_uio.uio_rw = UIO_READ; readdir_uio.uio_resid = NFS_DIRBLKSIZ; readdir_uio.uio_procp = curproc; if (nmp->nm_flag & NFSMNT_RDIRPLUS) { error = nfs_readdirplusrpc(vp, &readdir_uio, cred, &eof); if (error == NFSERR_NOTSUPP) nmp->nm_flag &= ~NFSMNT_RDIRPLUS; } if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) error = nfs_readdirrpc(vp, &readdir_uio, cred, &eof); if (error == NFSERR_BAD_COOKIE) error = EINVAL; while (error == 0 && (ap->a_cookies == NULL || ncookies != 0) && ndp < (struct nfs_dirent *)readdir_iovec.iov_base) { struct dirent *dp = &ndp->dirent; int reclen = dp->d_reclen; dp->d_reclen -= NFS_DIRENT_OVERHEAD; if (uio->uio_resid < dp->d_reclen) { eof = 0; done = 1; break; } error = uiomove((caddr_t)dp, dp->d_reclen, uio); if (error) break; newoff = fxdr_hyper(&ndp->cookie[0]); if (ap->a_cookies != NULL) { *cookies = newoff; cookies++; ncookies--; } ndp = (struct nfs_dirent *)((u_int8_t *)ndp + reclen); } } while (!error && !done && !eof && cnt--); free(data, M_TEMP); data = NULL; if (ap->a_cookies) { if (error) { free(*ap->a_cookies, M_TEMP); *ap->a_cookies = NULL; *ap->a_ncookies = 0; } else { *ap->a_ncookies -= ncookies; } } if (!error) uio->uio_offset = newoff; if (!error && (eof || uio->uio_resid == tresid)) { nfsstats.direofcache_misses++; *ap->a_eofflag = 1; return (0); } *ap->a_eofflag = 0; return (error); } /* * The function below stuff the cookies in after the name */ /* * Readdir rpc call. */ int nfs_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, int *end_of_directory) { int len, left; struct nfs_dirent *ndp = NULL; struct dirent *dp = NULL; u_int32_t *tl; caddr_t cp; int32_t t1; caddr_t dpos, cp2; struct mbuf *mreq, *mrep, *md, *mb; nfsuint64 cookie; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfsnode *dnp = VTONFS(vp); u_quad_t fileno; int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1; int attrflag; int v3 = NFS_ISV3(vp); #ifdef DIAGNOSTIC if (uiop->uio_iovcnt != 1 || (uiop->uio_resid & (NFS_DIRBLKSIZ - 1))) panic("nfs readdirrpc bad uio"); #endif txdr_hyper(uiop->uio_offset, &cookie.nfsuquad[0]); /* * Loop around doing readdir rpc's of size nm_readdirsize * truncated to a multiple of NFS_READDIRBLKSIZ. * The stopping criteria is EOF or buffer full. */ while (more_dirs && bigenough) { nfsstats.rpccnt[NFSPROC_READDIR]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_READDIR(v3)); nfsm_fhtom(&mb, vp, v3); if (v3) { tl = nfsm_build(&mb, 5 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[0]; *tl++ = cookie.nfsuquad[1]; if (cookie.nfsuquad[0] == 0 && cookie.nfsuquad[1] == 0) { *tl++ = 0; *tl++ = 0; } else { *tl++ = dnp->n_cookieverf.nfsuquad[0]; *tl++ = dnp->n_cookieverf.nfsuquad[1]; } } else { tl = nfsm_build(&mb, 2 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[1]; } *tl = txdr_unsigned(nmp->nm_readdirsize); error = nfs_request(vp, mreq, NFSPROC_READDIR, uiop->uio_procp, cred, &mrep, &md, &dpos); if (v3) nfsm_postop_attr(vp, attrflag); if (error) { m_freem(mrep); goto nfsmout; } if (v3) { nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); dnp->n_cookieverf.nfsuquad[0] = *tl++; dnp->n_cookieverf.nfsuquad[1] = *tl; } nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); more_dirs = fxdr_unsigned(int, *tl); /* loop thru the dir entries, doctoring them to 4bsd form */ while (more_dirs && bigenough) { if (v3) { nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); fileno = fxdr_hyper(tl); len = fxdr_unsigned(int, *(tl + 2)); } else { nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); fileno = fxdr_unsigned(u_quad_t, *tl++); len = fxdr_unsigned(int, *tl); } if (len <= 0 || len > NFS_MAXNAMLEN) { error = EBADRPC; m_freem(mrep); goto nfsmout; } tlen = nfsm_rndup(len + 1); left = NFS_READDIRBLKSIZ - blksiz; if ((tlen + NFS_DIRHDSIZ) > left) { dp->d_reclen += left; uiop->uio_iov->iov_base += left; uiop->uio_iov->iov_len -= left; uiop->uio_resid -= left; blksiz = 0; } if ((tlen + NFS_DIRHDSIZ) > uiop->uio_resid) bigenough = 0; if (bigenough) { ndp = (struct nfs_dirent *) uiop->uio_iov->iov_base; dp = &ndp->dirent; dp->d_fileno = (int)fileno; dp->d_namlen = len; dp->d_reclen = tlen + NFS_DIRHDSIZ; dp->d_type = DT_UNKNOWN; blksiz += dp->d_reclen; if (blksiz == NFS_READDIRBLKSIZ) blksiz = 0; uiop->uio_resid -= NFS_DIRHDSIZ; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + NFS_DIRHDSIZ; uiop->uio_iov->iov_len -= NFS_DIRHDSIZ; nfsm_mtouio(uiop, len); cp = uiop->uio_iov->iov_base; tlen -= len; *cp = '\0'; /* null terminate */ uiop->uio_iov->iov_base += tlen; uiop->uio_iov->iov_len -= tlen; uiop->uio_resid -= tlen; } else nfsm_adv(nfsm_rndup(len)); if (v3) { nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); } else { nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); } if (bigenough) { if (v3) { ndp->cookie[0] = cookie.nfsuquad[0] = *tl++; } else ndp->cookie[0] = 0; ndp->cookie[1] = cookie.nfsuquad[1] = *tl++; } else if (v3) tl += 2; else tl++; more_dirs = fxdr_unsigned(int, *tl); } /* * If at end of rpc data, get the eof boolean */ if (!more_dirs) { nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); more_dirs = (fxdr_unsigned(int, *tl) == 0); } m_freem(mrep); } /* * Fill last record, iff any, out to a multiple of NFS_READDIRBLKSIZ * by increasing d_reclen for the last record. */ if (blksiz > 0) { left = NFS_READDIRBLKSIZ - blksiz; dp->d_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_resid -= left; } /* * We are now either at the end of the directory or have filled the * block. */ if (bigenough) { dnp->n_direofoffset = fxdr_hyper(&cookie.nfsuquad[0]); if (end_of_directory) *end_of_directory = 1; } else { if (uiop->uio_resid > 0) printf("EEK! readdirrpc resid > 0\n"); } nfsmout: return (error); } /* * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc(). */ int nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred, int *end_of_directory) { int len, left; struct nfs_dirent *ndirp = NULL; struct dirent *dp = NULL; u_int32_t *tl; caddr_t cp; int32_t t1; struct vnode *newvp; caddr_t dpos, cp2, dpossav1, dpossav2; struct mbuf *mreq, *mrep, *md, *mb, *mdsav1, *mdsav2; struct nameidata nami, *ndp = &nami; struct componentname *cnp = &ndp->ni_cnd; nfsuint64 cookie; struct nfsmount *nmp = VFSTONFS(vp->v_mount); struct nfsnode *dnp = VTONFS(vp), *np; nfsfh_t *fhp; u_quad_t fileno; int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i; int attrflag, fhsize; #ifdef DIAGNOSTIC if (uiop->uio_iovcnt != 1 || (uiop->uio_resid & (NFS_DIRBLKSIZ - 1))) panic("nfs readdirplusrpc bad uio"); #endif ndp->ni_dvp = vp; newvp = NULLVP; txdr_hyper(uiop->uio_offset, &cookie.nfsuquad[0]); /* * Loop around doing readdir rpc's of size nm_readdirsize * truncated to a multiple of NFS_READDIRBLKSIZ. * The stopping criteria is EOF or buffer full. */ while (more_dirs && bigenough) { nfsstats.rpccnt[NFSPROC_READDIRPLUS]++; mb = mreq = nfsm_reqhead(NFSX_FH(1) + 6 * NFSX_UNSIGNED); nfsm_fhtom(&mb, vp, 1); tl = nfsm_build(&mb, 6 * NFSX_UNSIGNED); *tl++ = cookie.nfsuquad[0]; *tl++ = cookie.nfsuquad[1]; if (cookie.nfsuquad[0] == 0 && cookie.nfsuquad[1] == 0) { *tl++ = 0; *tl++ = 0; } else { *tl++ = dnp->n_cookieverf.nfsuquad[0]; *tl++ = dnp->n_cookieverf.nfsuquad[1]; } *tl++ = txdr_unsigned(nmp->nm_readdirsize); *tl = txdr_unsigned(nmp->nm_rsize); error = nfs_request(vp, mreq, NFSPROC_READDIRPLUS, uiop->uio_procp, cred, &mrep, &md, &dpos); nfsm_postop_attr(vp, attrflag); if (error) { m_freem(mrep); goto nfsmout; } nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); dnp->n_cookieverf.nfsuquad[0] = *tl++; dnp->n_cookieverf.nfsuquad[1] = *tl++; more_dirs = fxdr_unsigned(int, *tl); /* loop thru the dir entries, doctoring them to 4bsd form */ while (more_dirs && bigenough) { nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); fileno = fxdr_hyper(tl); len = fxdr_unsigned(int, *(tl + 2)); if (len <= 0 || len > NFS_MAXNAMLEN) { error = EBADRPC; m_freem(mrep); goto nfsmout; } tlen = nfsm_rndup(len + 1); left = NFS_READDIRBLKSIZ - blksiz; if ((tlen + NFS_DIRHDSIZ) > left) { dp->d_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_resid -= left; blksiz = 0; } if ((tlen + NFS_DIRHDSIZ) > uiop->uio_resid) bigenough = 0; if (bigenough) { ndirp = (struct nfs_dirent *) uiop->uio_iov->iov_base; dp = &ndirp->dirent; dp->d_fileno = (int)fileno; dp->d_namlen = len; dp->d_reclen = tlen + NFS_DIRHDSIZ; dp->d_type = DT_UNKNOWN; blksiz += dp->d_reclen; if (blksiz == NFS_READDIRBLKSIZ) blksiz = 0; uiop->uio_resid -= NFS_DIRHDSIZ; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + NFS_DIRHDSIZ; uiop->uio_iov->iov_len -= NFS_DIRHDSIZ; cnp->cn_nameptr = uiop->uio_iov->iov_base; cnp->cn_namelen = len; nfsm_mtouio(uiop, len); cp = uiop->uio_iov->iov_base; tlen -= len; *cp = '\0'; uiop->uio_iov->iov_base += tlen; uiop->uio_iov->iov_len -= tlen; uiop->uio_resid -= tlen; } else nfsm_adv(nfsm_rndup(len)); nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); if (bigenough) { ndirp->cookie[0] = cookie.nfsuquad[0] = *tl++; ndirp->cookie[1] = cookie.nfsuquad[1] = *tl++; } else tl += 2; /* * Since the attributes are before the file handle * (sigh), we must skip over the attributes and then * come back and get them. */ attrflag = fxdr_unsigned(int, *tl); if (attrflag) { dpossav1 = dpos; mdsav1 = md; nfsm_adv(NFSX_V3FATTR); nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); doit = fxdr_unsigned(int, *tl); if (doit) { nfsm_getfh(fhp, fhsize, 1); if (NFS_CMPFH(dnp, fhp, fhsize)) { vref(vp); newvp = vp; np = dnp; } else { error = nfs_nget(vp->v_mount, fhp, fhsize, &np); if (error) doit = 0; else newvp = NFSTOV(np); } } if (doit && bigenough) { dpossav2 = dpos; dpos = dpossav1; mdsav2 = md; md = mdsav1; nfsm_loadattr(newvp, (struct vattr *)0); dpos = dpossav2; md = mdsav2; dp->d_type = IFTODT(VTTOIF(np->n_vattr.va_type)); if (cnp->cn_namelen <= NCHNAMLEN) { ndp->ni_vp = newvp; cnp->cn_hash = hash32_str(cnp->cn_nameptr, HASHINIT); cache_purge(ndp->ni_dvp); nfs_cache_enter(ndp->ni_dvp, ndp->ni_vp, cnp); } } } else { /* Just skip over the file handle */ nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); i = fxdr_unsigned(int, *tl); nfsm_adv(nfsm_rndup(i)); } if (newvp != NULLVP) { vrele(newvp); newvp = NULLVP; } nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); more_dirs = fxdr_unsigned(int, *tl); } /* * If at end of rpc data, get the eof boolean */ if (!more_dirs) { nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); more_dirs = (fxdr_unsigned(int, *tl) == 0); } m_freem(mrep); } /* * Fill last record, iff any, out to a multiple of NFS_READDIRBLKSIZ * by increasing d_reclen for the last record. */ if (blksiz > 0) { left = NFS_READDIRBLKSIZ - blksiz; dp->d_reclen += left; uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; uiop->uio_iov->iov_len -= left; uiop->uio_resid -= left; } /* * We are now either at the end of the directory or have filled the * block. */ if (bigenough) { dnp->n_direofoffset = fxdr_hyper(&cookie.nfsuquad[0]); if (end_of_directory) *end_of_directory = 1; } else { if (uiop->uio_resid > 0) printf("EEK! readdirplusrpc resid > 0\n"); } nfsmout: if (newvp != NULLVP) vrele(newvp); return (error); } /* * Silly rename. To make the NFS filesystem that is stateless look a little * more like the "ufs" a remove of an active vnode is translated to a rename * to a funny looking filename that is removed by nfs_inactive on the * nfsnode. There is the potential for another process on a different client * to create the same funny name between the nfs_lookitup() fails and the * nfs_rename() completes, but... */ int nfs_sillyrename(dvp, vp, cnp) struct vnode *dvp, *vp; struct componentname *cnp; { struct sillyrename *sp; struct nfsnode *np; int error; cache_purge(dvp); np = VTONFS(vp); sp = malloc(sizeof(struct sillyrename), M_NFSREQ, M_WAITOK); sp->s_cred = crdup(cnp->cn_cred); sp->s_dvp = dvp; vref(dvp); if (vp->v_type == VDIR) { #ifdef DIAGNOSTIC printf("nfs: sillyrename dir\n"); #endif error = EINVAL; goto bad; } /* Fudge together a funny name */ sp->s_namlen = snprintf(sp->s_name, sizeof sp->s_name, ".nfsA%05x4.4", cnp->cn_proc->p_pid); if (sp->s_namlen > sizeof sp->s_name) sp->s_namlen = strlen(sp->s_name); /* Try lookitups until we get one that isn't there */ while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_proc, (struct nfsnode **)0) == 0) { sp->s_name[4]++; if (sp->s_name[4] > 'z') { error = EINVAL; goto bad; } } error = nfs_renameit(dvp, cnp, sp); if (error) goto bad; error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, cnp->cn_proc, &np); np->n_sillyrename = sp; return (0); bad: vrele(sp->s_dvp); crfree(sp->s_cred); free(sp, M_NFSREQ); return (error); } /* * Look up a file name and optionally either update the file handle or * allocate an nfsnode, depending on the value of npp. * npp == NULL --> just do the lookup * *npp == NULL --> allocate a new nfsnode and make sure attributes are * handled too * *npp != NULL --> update the file handle in the vnode */ int nfs_lookitup(dvp, name, len, cred, procp, npp) struct vnode *dvp; char *name; int len; struct ucred *cred; struct proc *procp; struct nfsnode **npp; { u_int32_t *tl; int32_t t1; struct vnode *newvp = (struct vnode *)0; struct nfsnode *np, *dnp = VTONFS(dvp); caddr_t dpos, cp2; int error = 0, fhlen, attrflag; struct mbuf *mreq, *mrep, *md, *mb; nfsfh_t *nfhp; int v3 = NFS_ISV3(dvp); nfsstats.rpccnt[NFSPROC_LOOKUP]++; mb = mreq = nfsm_reqhead(NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len)); nfsm_fhtom(&mb, dvp, v3); nfsm_strtom(name, len, NFS_MAXNAMLEN); error = nfs_request(dvp, mreq, NFSPROC_LOOKUP, procp, cred, &mrep, &md, &dpos); if (error && !v3) { m_freem(mrep); goto nfsmout; } if (npp && !error) { nfsm_getfh(nfhp, fhlen, v3); if (*npp) { np = *npp; np->n_fhp = &np->n_fh; bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen); np->n_fhsize = fhlen; newvp = NFSTOV(np); } else if (NFS_CMPFH(dnp, nfhp, fhlen)) { vref(dvp); newvp = dvp; np = dnp; } else { error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np); if (error) { m_freem(mrep); return (error); } newvp = NFSTOV(np); } if (v3) { nfsm_postop_attr(newvp, attrflag); if (!attrflag && *npp == NULL) { m_freem(mrep); vrele(newvp); return (ENOENT); } } else nfsm_loadattr(newvp, (struct vattr *)0); } m_freem(mrep); nfsmout: if (npp && *npp == NULL) { if (error) { if (newvp) vrele(newvp); } else *npp = np; } return (error); } /* * Nfs Version 3 commit rpc */ int nfs_commit(vp, offset, cnt, procp) struct vnode *vp; u_quad_t offset; int cnt; struct proc *procp; { u_int32_t *tl; int32_t t1; struct nfsmount *nmp = VFSTONFS(vp->v_mount); caddr_t dpos, cp2; int error = 0, wccflag = NFSV3_WCCRATTR; struct mbuf *mreq, *mrep, *md, *mb; if ((nmp->nm_flag & NFSMNT_HASWRITEVERF) == 0) return (0); nfsstats.rpccnt[NFSPROC_COMMIT]++; mb = mreq = nfsm_reqhead(NFSX_FH(1)); nfsm_fhtom(&mb, vp, 1); tl = nfsm_build(&mb, 3 * NFSX_UNSIGNED); txdr_hyper(offset, tl); tl += 2; *tl = txdr_unsigned(cnt); error = nfs_request(vp, mreq, NFSPROC_COMMIT, procp, VTONFS(vp)->n_wcred, &mrep, &md, &dpos); nfsm_wcc_data(vp, wccflag); if (!error) { nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF); if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl, NFSX_V3WRITEVERF)) { bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); error = NFSERR_STALEWRITEVERF; } } m_freem(mrep); nfsmout: return (error); } /* * Kludge City.. * - make nfs_bmap() essentially a no-op that does no translation * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc * (Maybe I could use the process's page mapping, but I was concerned that * Kernel Write might not be enabled and also figured copyout() would do * a lot more work than bcopy() and also it currently happens in the * context of the swapper process (2). */ int nfs_bmap(v) void *v; { struct vop_bmap_args *ap = v; struct vnode *vp = ap->a_vp; if (ap->a_vpp != NULL) *ap->a_vpp = vp; if (ap->a_bnp != NULL) *ap->a_bnp = ap->a_bn * btodb(vp->v_mount->mnt_stat.f_iosize); return (0); } /* * Strategy routine. * For async requests when nfsiod(s) are running, queue the request by * calling nfs_asyncio(), otherwise just all nfs_doio() to do the * request. */ int nfs_strategy(v) void *v; { struct vop_strategy_args *ap = v; struct buf *bp = ap->a_bp; struct proc *p; int error = 0; if ((bp->b_flags & (B_PHYS|B_ASYNC)) == (B_PHYS|B_ASYNC)) panic("nfs physio/async"); if (bp->b_flags & B_ASYNC) p = NULL; else p = curproc; /* XXX */ /* * If the op is asynchronous and an i/o daemon is waiting * queue the request, wake it up and wait for completion * otherwise just do it ourselves. */ if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(bp)) error = nfs_doio(bp, p); return (error); } /* * fsync vnode op. Just call nfs_flush() with commit == 1. */ int nfs_fsync(v) void *v; { struct vop_fsync_args *ap = v; return (nfs_flush(ap->a_vp, ap->a_cred, ap->a_waitfor, ap->a_p, 1)); } /* * Flush all the blocks associated with a vnode. * Walk through the buffer pool and push any dirty pages * associated with the vnode. */ int nfs_flush(vp, cred, waitfor, p, commit) struct vnode *vp; struct ucred *cred; int waitfor; struct proc *p; int commit; { struct nfsnode *np = VTONFS(vp); struct buf *bp; int i; struct buf *nbp; struct nfsmount *nmp = VFSTONFS(vp->v_mount); int s, error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos; int passone = 1; u_quad_t off = (u_quad_t)-1, endoff = 0, toff; #ifndef NFS_COMMITBVECSIZ #define NFS_COMMITBVECSIZ 20 #endif struct buf *bvec[NFS_COMMITBVECSIZ]; if (nmp->nm_flag & NFSMNT_INT) slpflag = PCATCH; if (!commit) passone = 0; /* * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the * server, but nas not been committed to stable storage on the server * yet. On the first pass, the byte range is worked out and the commit * rpc is done. On the second pass, nfs_writebp() is called to do the * job. */ again: bvecpos = 0; if (NFS_ISV3(vp) && commit) { s = splbio(); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp != NULL; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bvecpos >= NFS_COMMITBVECSIZ) break; if ((bp->b_flags & (B_BUSY | B_DELWRI | B_NEEDCOMMIT)) != (B_DELWRI | B_NEEDCOMMIT)) continue; bremfree(bp); bp->b_flags |= B_WRITEINPROG; buf_acquire(bp); /* * A list of these buffers is kept so that the * second loop knows which buffers have actually * been committed. This is necessary, since there * may be a race between the commit rpc and new * uncommitted writes on the file. */ bvec[bvecpos++] = bp; toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; if (toff < off) off = toff; toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff); if (toff > endoff) endoff = toff; } splx(s); } if (bvecpos > 0) { /* * Commit data on the server, as required. */ retv = nfs_commit(vp, off, (int)(endoff - off), p); if (retv == NFSERR_STALEWRITEVERF) nfs_clearcommit(vp->v_mount); /* * Now, either mark the blocks I/O done or mark the * blocks dirty, depending on whether the commit * succeeded. */ for (i = 0; i < bvecpos; i++) { bp = bvec[i]; bp->b_flags &= ~(B_NEEDCOMMIT | B_WRITEINPROG); if (retv) brelse(bp); else { s = splbio(); buf_undirty(bp); vp->v_numoutput++; bp->b_flags |= B_ASYNC; bp->b_flags &= ~(B_READ|B_DONE|B_ERROR); bp->b_dirtyoff = bp->b_dirtyend = 0; biodone(bp); splx(s); } } } /* * Start/do any write(s) that are required. */ loop: s = splbio(); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp != NULL; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_flags & B_BUSY) { if (waitfor != MNT_WAIT || passone) continue; bp->b_flags |= B_WANTED; error = tsleep((caddr_t)bp, slpflag | (PRIBIO + 1), "nfsfsync", slptimeo); splx(s); if (error) { if (nfs_sigintr(nmp, (struct nfsreq *)0, p)) return (EINTR); if (slpflag == PCATCH) { slpflag = 0; slptimeo = 2 * hz; } } goto loop; } if ((bp->b_flags & B_DELWRI) == 0) panic("nfs_fsync: not dirty"); if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) continue; bremfree(bp); if (passone || !commit) { bp->b_flags |= B_ASYNC; } else { bp->b_flags |= (B_ASYNC|B_WRITEINPROG|B_NEEDCOMMIT); } buf_acquire(bp); splx(s); VOP_BWRITE(bp); goto loop; } splx(s); if (passone) { passone = 0; goto again; } if (waitfor == MNT_WAIT) { loop2: s = splbio(); error = vwaitforio(vp, slpflag, "nfs_fsync", slptimeo); splx(s); if (error) { if (nfs_sigintr(nmp, (struct nfsreq *)0, p)) return (EINTR); if (slpflag == PCATCH) { slpflag = 0; slptimeo = 2 * hz; } goto loop2; } if (LIST_FIRST(&vp->v_dirtyblkhd) && commit) { #if 0 vprint("nfs_fsync: dirty", vp); #endif goto loop; } } if (np->n_flag & NWRITEERR) { error = np->n_error; np->n_flag &= ~NWRITEERR; } return (error); } /* * Return POSIX pathconf information applicable to nfs. * * The NFS V2 protocol doesn't support this, so just return EINVAL * for V2. */ /* ARGSUSED */ int nfs_pathconf(v) void *v; { #if 0 struct vop_pathconf_args *ap = v; #endif return (EINVAL); } /* * NFS advisory byte-level locks. */ int nfs_advlock(v) void *v; { struct vop_advlock_args *ap = v; struct nfsnode *np = VTONFS(ap->a_vp); return (lf_advlock(&np->n_lockf, np->n_size, ap->a_id, ap->a_op, ap->a_fl, ap->a_flags)); } /* * Print out the contents of an nfsnode. */ int nfs_print(v) void *v; { struct vop_print_args *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); printf("tag VT_NFS, fileid %ld fsid 0x%lx", np->n_vattr.va_fileid, np->n_vattr.va_fsid); #ifdef FIFO if (vp->v_type == VFIFO) fifo_printinfo(vp); #endif printf("\n"); return (0); } /* * Just call nfs_writebp() with the force argument set to 1. */ int nfs_bwrite(v) void *v; { struct vop_bwrite_args *ap = v; return (nfs_writebp(ap->a_bp, 1)); } /* * This is a clone of vop_generic_bwrite(), except that B_WRITEINPROG isn't set unless * the force flag is one and it also handles the B_NEEDCOMMIT flag. */ int nfs_writebp(bp, force) struct buf *bp; int force; { int oldflags = bp->b_flags, retv = 1; struct proc *p = curproc; /* XXX */ off_t off; size_t cnt; int s; struct vnode *vp; struct nfsnode *np; if(!(bp->b_flags & B_BUSY)) panic("bwrite: buffer is not busy???"); vp = bp->b_vp; np = VTONFS(vp); bp->b_flags &= ~(B_READ|B_DONE|B_ERROR); s = splbio(); buf_undirty(bp); if ((oldflags & B_ASYNC) && !(oldflags & B_DELWRI) && p) ++p->p_stats->p_ru.ru_oublock; bp->b_vp->v_numoutput++; splx(s); /* * If B_NEEDCOMMIT is set, a commit rpc may do the trick. If not * an actual write will have to be scheduled via. VOP_STRATEGY(). * If B_WRITEINPROG is already set, then push it with a write anyhow. */ if ((oldflags & (B_NEEDCOMMIT | B_WRITEINPROG)) == B_NEEDCOMMIT) { off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff; cnt = bp->b_dirtyend - bp->b_dirtyoff; rw_enter_write(&np->n_commitlock); if (!(bp->b_flags & B_NEEDCOMMIT)) { rw_exit_write(&np->n_commitlock); return (0); } /* * If it's already been commited by somebody else, * bail. */ if (!nfs_in_committed_range(vp, bp)) { int pushedrange = 0; /* * Since we're going to do this, push as much * as we can. */ if (nfs_in_tobecommitted_range(vp, bp)) { pushedrange = 1; off = np->n_pushlo; cnt = np->n_pushhi - np->n_pushlo; } bp->b_flags |= B_WRITEINPROG; retv = nfs_commit(bp->b_vp, off, cnt, bp->b_proc); bp->b_flags &= ~B_WRITEINPROG; if (retv == 0) { if (pushedrange) nfs_merge_commit_ranges(vp); else nfs_add_committed_range(vp, bp); } } else retv = 0; /* It has already been commited. */ rw_exit_write(&np->n_commitlock); if (!retv) { bp->b_dirtyoff = bp->b_dirtyend = 0; bp->b_flags &= ~B_NEEDCOMMIT; s = splbio(); biodone(bp); splx(s); } else if (retv == NFSERR_STALEWRITEVERF) nfs_clearcommit(bp->b_vp->v_mount); } if (retv) { if (force) bp->b_flags |= B_WRITEINPROG; VOP_STRATEGY(bp); } if( (oldflags & B_ASYNC) == 0) { int rtval; bp->b_flags |= B_RAW; rtval = biowait(bp); if (!(oldflags & B_DELWRI) && p) { ++p->p_stats->p_ru.ru_oublock; } brelse(bp); return (rtval); } return (0); } /* * nfs special file access vnode op. * Essentially just get vattr and then imitate iaccess() since the device is * local to the client. */ int nfsspec_access(v) void *v; { struct vop_access_args *ap = v; struct vattr va; struct vnode *vp = ap->a_vp; int error; /* * Disallow write attempts on filesystems mounted read-only; * unless the file is a socket, fifo, or a block or character * device resident on the filesystem. */ if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { switch (vp->v_type) { case VREG: case VDIR: case VLNK: return (EROFS); default: break; } } error = VOP_GETATTR(vp, &va, ap->a_cred, ap->a_p); if (error) return (error); return (vaccess(vp->v_type, va.va_mode, va.va_uid, va.va_gid, ap->a_mode, ap->a_cred)); } int nfs_poll(v) void *v; { struct vop_poll_args *ap = v; /* * We should really check to see if I/O is possible. */ return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)); } /* * Read wrapper for special devices. */ int nfsspec_read(v) void *v; { struct vop_read_args *ap = v; struct nfsnode *np = VTONFS(ap->a_vp); /* * Set access flag. */ np->n_flag |= NACC; getnanotime(&np->n_atim); return (VOCALL(spec_vnodeop_p, VOFFSET(vop_read), ap)); } /* * Write wrapper for special devices. */ int nfsspec_write(v) void *v; { struct vop_write_args *ap = v; struct nfsnode *np = VTONFS(ap->a_vp); /* * Set update flag. */ np->n_flag |= NUPD; getnanotime(&np->n_mtim); return (VOCALL(spec_vnodeop_p, VOFFSET(vop_write), ap)); } /* * Close wrapper for special devices. * * Update the times on the nfsnode then do device close. */ int nfsspec_close(v) void *v; { struct vop_close_args *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; if (np->n_flag & (NACC | NUPD)) { np->n_flag |= NCHG; if (vp->v_usecount == 1 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { VATTR_NULL(&vattr); if (np->n_flag & NACC) vattr.va_atime = np->n_atim; if (np->n_flag & NUPD) vattr.va_mtime = np->n_mtim; (void)VOP_SETATTR(vp, &vattr, ap->a_cred, ap->a_p); } } return (VOCALL(spec_vnodeop_p, VOFFSET(vop_close), ap)); } #ifdef FIFO /* * Read wrapper for fifos. */ int nfsfifo_read(v) void *v; { struct vop_read_args *ap = v; extern int (**fifo_vnodeop_p)(void *); struct nfsnode *np = VTONFS(ap->a_vp); /* * Set access flag. */ np->n_flag |= NACC; getnanotime(&np->n_atim); return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_read), ap)); } /* * Write wrapper for fifos. */ int nfsfifo_write(v) void *v; { struct vop_write_args *ap = v; extern int (**fifo_vnodeop_p)(void *); struct nfsnode *np = VTONFS(ap->a_vp); /* * Set update flag. */ np->n_flag |= NUPD; getnanotime(&np->n_mtim); return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_write), ap)); } /* * Close wrapper for fifos. * * Update the times on the nfsnode then do fifo close. */ int nfsfifo_close(v) void *v; { struct vop_close_args *ap = v; struct vnode *vp = ap->a_vp; struct nfsnode *np = VTONFS(vp); struct vattr vattr; extern int (**fifo_vnodeop_p)(void *); if (np->n_flag & (NACC | NUPD)) { if (np->n_flag & NACC) { getnanotime(&np->n_atim); } if (np->n_flag & NUPD) { getnanotime(&np->n_mtim); } np->n_flag |= NCHG; if (vp->v_usecount == 1 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { VATTR_NULL(&vattr); if (np->n_flag & NACC) vattr.va_atime = np->n_atim; if (np->n_flag & NUPD) vattr.va_mtime = np->n_mtim; (void)VOP_SETATTR(vp, &vattr, ap->a_cred, ap->a_p); } } return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_close), ap)); } int nfsfifo_reclaim(void *v) { fifo_reclaim(v); return (nfs_reclaim(v)); } #endif /* ! FIFO */