/* $OpenBSD: scsi_ioctl.c,v 1.10 1999/08/24 01:20:22 csapuntz Exp $ */ /* $NetBSD: scsi_ioctl.c,v 1.23 1996/10/12 23:23:17 christos Exp $ */ /* * Copyright (c) 1994 Charles Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Contributed by HD Associates (hd@world.std.com). * Copyright (c) 1992, 1993 HD Associates * * Berkeley style copyright. */ #include #include #include #include #include #include #include #include #include #include #include #include #include struct scsi_ioctl { LIST_ENTRY(scsi_ioctl) si_list; struct buf si_bp; struct uio si_uio; struct iovec si_iov; scsireq_t si_screq; struct scsi_link *si_sc_link; }; LIST_HEAD(, scsi_ioctl) si_head; struct scsi_ioctl *si_get __P((void)); void si_free __P((struct scsi_ioctl *)); struct scsi_ioctl *si_find __P((struct buf *)); void scsistrategy __P((struct buf *)); struct scsi_ioctl * si_get() { struct scsi_ioctl *si; int s; si = malloc(sizeof(struct scsi_ioctl), M_TEMP, M_WAITOK); bzero(si, sizeof(struct scsi_ioctl)); s = splbio(); LIST_INSERT_HEAD(&si_head, si, si_list); splx(s); return (si); } void si_free(si) struct scsi_ioctl *si; { int s; s = splbio(); LIST_REMOVE(si, si_list); splx(s); free(si, M_TEMP); } struct scsi_ioctl * si_find(bp) struct buf *bp; { struct scsi_ioctl *si; int s; s = splbio(); for (si = si_head.lh_first; si != 0; si = si->si_list.le_next) if (bp == &si->si_bp) break; splx(s); return (si); } /* * We let the user interpret his own sense in the generic scsi world. * This routine is called at interrupt time if the SCSI_USER bit was set * in the flags passed to scsi_scsi_cmd(). No other completion processing * takes place, even if we are running over another device driver. * The lower level routines that call us here, will free the xs and restart * the device's queue if such exists. */ void scsi_user_done(xs) struct scsi_xfer *xs; { struct buf *bp; struct scsi_ioctl *si; scsireq_t *screq; struct scsi_link *sc_link; bp = xs->bp; if (!bp) { /* ALL user requests must have a buf */ sc_print_addr(xs->sc_link); printf("User command with no buf\n"); return; } si = si_find(bp); if (!si) { sc_print_addr(xs->sc_link); printf("User command with no ioctl\n"); return; } screq = &si->si_screq; sc_link = si->si_sc_link; SC_DEBUG(xs->sc_link, SDEV_DB2, ("user-done\n")); screq->retsts = 0; screq->status = xs->status; switch (xs->error) { case XS_NOERROR: SC_DEBUG(sc_link, SDEV_DB3, ("no error\n")); screq->datalen_used = xs->datalen - xs->resid; /* probably rubbish */ screq->retsts = SCCMD_OK; break; case XS_SENSE: SC_DEBUG(sc_link, SDEV_DB3, ("have sense\n")); screq->senselen_used = min(sizeof(xs->sense), SENSEBUFLEN); bcopy(&xs->sense, screq->sense, screq->senselen); screq->retsts = SCCMD_SENSE; break; case XS_DRIVER_STUFFUP: sc_print_addr(sc_link); printf("host adapter code inconsistency\n"); screq->retsts = SCCMD_UNKNOWN; break; case XS_TIMEOUT: SC_DEBUG(sc_link, SDEV_DB3, ("timeout\n")); screq->retsts = SCCMD_TIMEOUT; break; case XS_BUSY: SC_DEBUG(sc_link, SDEV_DB3, ("busy\n")); screq->retsts = SCCMD_BUSY; break; default: sc_print_addr(sc_link); printf("unknown error category from host adapter code\n"); screq->retsts = SCCMD_UNKNOWN; break; } biodone(bp); /* we're waiting on it in scsi_strategy() */ } /* Pseudo strategy function * Called by scsi_do_ioctl() via physio/physstrat if there is to * be data transfered, and directly if there is no data transfer. * * Should I reorganize this so it returns to physio instead * of sleeping in scsiio_scsi_cmd? Is there any advantage, other * than avoiding the probable duplicate wakeup in iodone? [PD] * * No, seems ok to me... [JRE] * (I don't see any duplicate wakeups) * * Can't be used with block devices or raw_read/raw_write directly * from the cdevsw/bdevsw tables because they couldn't have added * the screq structure. [JRE] */ void scsistrategy(bp) struct buf *bp; { struct scsi_ioctl *si; scsireq_t *screq; struct scsi_link *sc_link; int error; int flags = 0; int s; si = si_find(bp); if (!si) { printf("user_strat: No ioctl\n"); error = EINVAL; goto bad; } screq = &si->si_screq; sc_link = si->si_sc_link; SC_DEBUG(sc_link, SDEV_DB2, ("user_strategy\n")); /* * We're in trouble if physio tried to break up the transfer. */ if (bp->b_bcount != screq->datalen) { sc_print_addr(sc_link); printf("physio split the request.. cannot proceed\n"); error = EIO; goto bad; } if (screq->timeout == 0) { error = EINVAL; goto bad; } if (screq->cmdlen > sizeof(struct scsi_generic)) { sc_print_addr(sc_link); printf("cmdlen too big\n"); error = EFAULT; goto bad; } if (screq->flags & SCCMD_READ) flags |= SCSI_DATA_IN; if (screq->flags & SCCMD_WRITE) flags |= SCSI_DATA_OUT; if (screq->flags & SCCMD_TARGET) flags |= SCSI_TARGET; if (screq->flags & SCCMD_ESCAPE) flags |= SCSI_ESCAPE; error = scsi_scsi_cmd(sc_link, (struct scsi_generic *)screq->cmd, screq->cmdlen, (u_char *)bp->b_data, screq->datalen, 0, /* user must do the retries *//* ignored */ screq->timeout, bp, flags | SCSI_USER | SCSI_NOSLEEP); /* because there is a bp, scsi_scsi_cmd will return immediatly */ if (error) goto bad; SC_DEBUG(sc_link, SDEV_DB3, ("about to sleep\n")); s = splbio(); while ((bp->b_flags & B_DONE) == 0) tsleep(bp, PRIBIO, "scistr", 0); splx(s); SC_DEBUG(sc_link, SDEV_DB3, ("back from sleep\n")); return; bad: bp->b_flags |= B_ERROR; bp->b_error = error; biodone(bp); } /* * Something (e.g. another driver) has called us * with an sc_link for a target/lun/adapter, and a scsi * specific ioctl to perform, better try. * If user-level type command, we must still be running * in the context of the calling process */ int scsi_do_ioctl(sc_link, dev, cmd, addr, flag, p) struct scsi_link *sc_link; dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { int error; SC_DEBUG(sc_link, SDEV_DB2, ("scsi_do_ioctl(0x%lx)\n", cmd)); /* If we don't have write access, just skip to the safe ones. */ if ((flag & FWRITE) == 0) return scsi_do_safeioctl(sc_link, dev, cmd, addr, flag, p); switch(cmd) { case SCIOCCOMMAND: { scsireq_t *screq = (scsireq_t *)addr; struct scsi_ioctl *si; int len; si = si_get(); si->si_screq = *screq; si->si_sc_link = sc_link; len = screq->datalen; if (len) { si->si_iov.iov_base = screq->databuf; si->si_iov.iov_len = len; si->si_uio.uio_iov = &si->si_iov; si->si_uio.uio_iovcnt = 1; si->si_uio.uio_resid = len; si->si_uio.uio_offset = 0; si->si_uio.uio_segflg = UIO_USERSPACE; si->si_uio.uio_rw = (screq->flags & SCCMD_READ) ? UIO_READ : UIO_WRITE; si->si_uio.uio_procp = p; error = physio(scsistrategy, &si->si_bp, dev, (screq->flags & SCCMD_READ) ? B_READ : B_WRITE, sc_link->adapter->scsi_minphys, &si->si_uio); } else { /* if no data, no need to translate it.. */ si->si_bp.b_flags = 0; si->si_bp.b_data = 0; si->si_bp.b_bcount = 0; si->si_bp.b_dev = dev; si->si_bp.b_proc = p; scsistrategy(&si->si_bp); error = si->si_bp.b_error; } *screq = si->si_screq; si_free(si); return error; } case SCIOCDEBUG: { int level = *((int *)addr); SC_DEBUG(sc_link, SDEV_DB3, ("debug set to %d\n", level)); sc_link->flags &= ~SDEV_DBX; /* clear debug bits */ if (level & 1) sc_link->flags |= SDEV_DB1; if (level & 2) sc_link->flags |= SDEV_DB2; if (level & 4) sc_link->flags |= SDEV_DB3; if (level & 8) sc_link->flags |= SDEV_DB4; return 0; } case OSCIOCREPROBE: { struct oscsi_addr *sca = (struct oscsi_addr *)addr; return scsi_probe_busses(sca->scbus, sca->target, sca->lun); } case SCIOCREPROBE: { struct scsi_addr *sca = (struct scsi_addr *)addr; return scsi_probe_busses(sca->scbus, sca->target, sca->lun); } case SCIOCRECONFIG: case SCIOCDECONFIG: return EINVAL; case SCIOCRESET: { if ((flag & FWRITE) == 0) return EBADF; scsi_scsi_cmd(sc_link, 0, 0, 0, 0, GENRETRY, 2000, NULL, SCSI_RESET); return 0; } default: return scsi_do_safeioctl(sc_link, dev, cmd, addr, flag, p); } #ifdef DIAGNOSTIC panic("scsi_do_ioctl: impossible"); #endif } int scsi_do_safeioctl(sc_link, dev, cmd, addr, flag, p) struct scsi_link *sc_link; dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { SC_DEBUG(sc_link, SDEV_DB2, ("scsi_do_safeioctl(0x%lx)\n", cmd)); switch(cmd) { case OSCIOCIDENTIFY: { struct oscsi_addr *sca = (struct oscsi_addr *)addr; sca->scbus = sc_link->scsibus; sca->target = sc_link->target; sca->lun = sc_link->lun; return 0; } case SCIOCIDENTIFY: { struct scsi_addr *sca = (struct scsi_addr *)addr; sca->type = (sc_link->flags & SDEV_ATAPI) ? TYPE_ATAPI : TYPE_SCSI; sca->scbus = sc_link->scsibus; sca->target = sc_link->target; sca->lun = sc_link->lun; return 0; } case SCIOCCOMMAND: case SCIOCDEBUG: case SCIOCREPROBE: case OSCIOCREPROBE: case SCIOCRESET: return EBADF; case SCIOCRECONFIG: case SCIOCDECONFIG: return EINVAL; default: return ENOTTY; } }