/* $OpenBSD: ffs_inode.c,v 1.66 2013/12/12 19:00:09 tedu Exp $ */ /* $NetBSD: ffs_inode.c,v 1.10 1996/05/11 18:27:19 mycroft Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_inode.c 8.8 (Berkeley) 10/19/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int ffs_indirtrunc(struct inode *, daddr_t, daddr_t, daddr_t, int, long *); /* * Update the access, modified, and inode change times as specified by the * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. The IN_MODIFIED * flag is used to specify that the inode needs to be updated but that the * times have already been set. The access and modified times are taken from * the second and third parameters; the inode change time is always taken * from the current time. If waitfor is set, then wait for the disk write * of the inode to complete. */ int ffs_update(struct inode *ip, struct timespec *atime, struct timespec *mtime, int waitfor) { struct vnode *vp; struct fs *fs; struct buf *bp; int error; struct timespec ts; vp = ITOV(ip); if (vp->v_mount->mnt_flag & MNT_RDONLY) { ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE); return (0); } if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && waitfor != MNT_WAIT) return (0); getnanotime(&ts); if (ip->i_flag & IN_ACCESS) { DIP_ASSIGN(ip, atime, atime ? atime->tv_sec : ts.tv_sec); DIP_ASSIGN(ip, atimensec, atime ? atime->tv_nsec : ts.tv_nsec); } if (ip->i_flag & IN_UPDATE) { DIP_ASSIGN(ip, mtime, mtime ? mtime->tv_sec : ts.tv_sec); DIP_ASSIGN(ip, mtimensec, mtime ? mtime->tv_nsec : ts.tv_nsec); ip->i_modrev++; } if (ip->i_flag & IN_CHANGE) { DIP_ASSIGN(ip, ctime, ts.tv_sec); DIP_ASSIGN(ip, ctimensec, ts.tv_nsec); } ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE); fs = ip->i_fs; /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_inodefmt < FS_44INODEFMT) { ip->i_din1->di_ouid = ip->i_ffs1_uid; ip->i_din1->di_ogid = ip->i_ffs1_gid; } error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, &bp); if (error) { brelse(bp); return (error); } if (DOINGSOFTDEP(vp)) softdep_update_inodeblock(ip, bp, waitfor); else if (ip->i_effnlink != DIP(ip, nlink)) panic("ffs_update: bad link cnt"); #ifdef FFS2 if (ip->i_ump->um_fstype == UM_UFS2) *((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; else #endif *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; if (waitfor && !DOINGASYNC(vp)) { return (bwrite(bp)); } else { bdwrite(bp); return (0); } } #define SINGLE 0 /* index of single indirect block */ #define DOUBLE 1 /* index of double indirect block */ #define TRIPLE 2 /* index of triple indirect block */ /* * Truncate the inode oip to at most length size, freeing the * disk blocks. */ int ffs_truncate(struct inode *oip, off_t length, int flags, struct ucred *cred) { struct vnode *ovp; daddr_t lastblock; daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR]; daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR]; struct fs *fs; struct buf *bp; int offset, size, level; long count, nblocks, vflags, blocksreleased = 0; int i, aflags, error, allerror; off_t osize; if (length < 0) return (EINVAL); ovp = ITOV(oip); if (ovp->v_type != VREG && ovp->v_type != VDIR && ovp->v_type != VLNK) return (0); if (DIP(oip, size) == length) return (0); if (ovp->v_type == VLNK && (DIP(oip, size) < ovp->v_mount->mnt_maxsymlinklen || (ovp->v_mount->mnt_maxsymlinklen == 0 && oip->i_din1->di_blocks == 0))) { #ifdef DIAGNOSTIC if (length != 0) panic("ffs_truncate: partial truncate of symlink"); #endif memset(SHORTLINK(oip), 0, (size_t) DIP(oip, size)); DIP_ASSIGN(oip, size, 0); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (UFS_UPDATE(oip, MNT_WAIT)); } if ((error = getinoquota(oip)) != 0) return (error); uvm_vnp_setsize(ovp, length); oip->i_ci.ci_lasta = oip->i_ci.ci_clen = oip->i_ci.ci_cstart = oip->i_ci.ci_lastw = 0; if (DOINGSOFTDEP(ovp)) { if (length > 0 || softdep_slowdown(ovp)) { /* * If a file is only partially truncated, then * we have to clean up the data structures * describing the allocation past the truncation * point. Finding and deallocating those structures * is a lot of work. Since partial truncation occurs * rarely, we solve the problem by syncing the file * so that it will have no data structures left. */ if ((error = VOP_FSYNC(ovp, cred, MNT_WAIT, curproc)) != 0) return (error); } else { (void)ufs_quota_free_blocks(oip, DIP(oip, blocks), NOCRED); softdep_setup_freeblocks(oip, length); (void) vinvalbuf(ovp, 0, cred, curproc, 0, 0); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (UFS_UPDATE(oip, 0)); } } fs = oip->i_fs; osize = DIP(oip, size); /* * Lengthen the size of the file. We must ensure that the * last byte of the file is allocated. Since the smallest * value of osize is 0, length will be at least 1. */ if (osize < length) { if (length > fs->fs_maxfilesize) return (EFBIG); aflags = B_CLRBUF; if (flags & IO_SYNC) aflags |= B_SYNC; error = UFS_BUF_ALLOC(oip, length - 1, 1, cred, aflags, &bp); if (error) return (error); DIP_ASSIGN(oip, size, length); uvm_vnp_setsize(ovp, length); (void) uvm_vnp_uncache(ovp); if (aflags & B_SYNC) bwrite(bp); else bawrite(bp); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (UFS_UPDATE(oip, MNT_WAIT)); } uvm_vnp_setsize(ovp, length); /* * Shorten the size of the file. If the file is not being * truncated to a block boundary, the contents of the * partial block following the end of the file must be * zero'ed in case it ever becomes accessible again because * of subsequent file growth. Directories however are not * zero'ed as they should grow back initialized to empty. */ offset = blkoff(fs, length); if (offset == 0) { DIP_ASSIGN(oip, size, length); } else { lbn = lblkno(fs, length); aflags = B_CLRBUF; if (flags & IO_SYNC) aflags |= B_SYNC; error = UFS_BUF_ALLOC(oip, length - 1, 1, cred, aflags, &bp); if (error) return (error); /* * When we are doing soft updates and the UFS_BALLOC * above fills in a direct block hole with a full sized * block that will be truncated down to a fragment below, * we must flush out the block dependency with an FSYNC * so that we do not get a soft updates inconsistency * when we create the fragment below. */ if (DOINGSOFTDEP(ovp) && lbn < NDADDR && fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize && (error = VOP_FSYNC(ovp, cred, MNT_WAIT, curproc)) != 0) return (error); DIP_ASSIGN(oip, size, length); size = blksize(fs, oip, lbn); (void) uvm_vnp_uncache(ovp); if (ovp->v_type != VDIR) memset(bp->b_data + offset, 0, size - offset); bp->b_bcount = size; if (aflags & B_SYNC) bwrite(bp); else bawrite(bp); } /* * Calculate index into inode's block list of * last direct and indirect blocks (if any) * which we want to keep. Lastblock is -1 when * the file is truncated to 0. */ lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastiblock[SINGLE] = lastblock - NDADDR; lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); nblocks = btodb(fs->fs_bsize); /* * Update file and block pointers on disk before we start freeing * blocks. If we crash before free'ing blocks below, the blocks * will be returned to the free list. lastiblock values are also * normalized to -1 for calls to ffs_indirtrunc below. */ for (level = TRIPLE; level >= SINGLE; level--) { oldblks[NDADDR + level] = DIP(oip, ib[level]); if (lastiblock[level] < 0) { DIP_ASSIGN(oip, ib[level], 0); lastiblock[level] = -1; } } for (i = 0; i < NDADDR; i++) { oldblks[i] = DIP(oip, db[i]); if (i > lastblock) DIP_ASSIGN(oip, db[i], 0); } oip->i_flag |= IN_CHANGE | IN_UPDATE; if ((error = UFS_UPDATE(oip, MNT_WAIT)) != 0) allerror = error; /* * Having written the new inode to disk, save its new configuration * and put back the old block pointers long enough to process them. * Note that we save the new block configuration so we can check it * when we are done. */ for (i = 0; i < NDADDR; i++) { newblks[i] = DIP(oip, db[i]); DIP_ASSIGN(oip, db[i], oldblks[i]); } for (i = 0; i < NIADDR; i++) { newblks[NDADDR + i] = DIP(oip, ib[i]); DIP_ASSIGN(oip, ib[i], oldblks[NDADDR + i]); } DIP_ASSIGN(oip, size, osize); vflags = ((length > 0) ? V_SAVE : 0) | V_SAVEMETA; allerror = vinvalbuf(ovp, vflags, cred, curproc, 0, 0); /* * Indirect blocks first. */ indir_lbn[SINGLE] = -NDADDR; indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; for (level = TRIPLE; level >= SINGLE; level--) { bn = DIP(oip, ib[level]); if (bn != 0) { error = ffs_indirtrunc(oip, indir_lbn[level], fsbtodb(fs, bn), lastiblock[level], level, &count); if (error) allerror = error; blocksreleased += count; if (lastiblock[level] < 0) { DIP_ASSIGN(oip, ib[level], 0); ffs_blkfree(oip, bn, fs->fs_bsize); blocksreleased += nblocks; } } if (lastiblock[level] >= 0) goto done; } /* * All whole direct blocks or frags. */ for (i = NDADDR - 1; i > lastblock; i--) { long bsize; bn = DIP(oip, db[i]); if (bn == 0) continue; DIP_ASSIGN(oip, db[i], 0); bsize = blksize(fs, oip, i); ffs_blkfree(oip, bn, bsize); blocksreleased += btodb(bsize); } if (lastblock < 0) goto done; /* * Finally, look for a change in size of the * last direct block; release any frags. */ bn = DIP(oip, db[lastblock]); if (bn != 0) { long oldspace, newspace; /* * Calculate amount of space we're giving * back as old block size minus new block size. */ oldspace = blksize(fs, oip, lastblock); DIP_ASSIGN(oip, size, length); newspace = blksize(fs, oip, lastblock); if (newspace == 0) panic("ffs_truncate: newspace"); if (oldspace - newspace > 0) { /* * Block number of space to be free'd is * the old block # plus the number of frags * required for the storage we're keeping. */ bn += numfrags(fs, newspace); ffs_blkfree(oip, bn, oldspace - newspace); blocksreleased += btodb(oldspace - newspace); } } done: #ifdef DIAGNOSTIC for (level = SINGLE; level <= TRIPLE; level++) if (newblks[NDADDR + level] != DIP(oip, ib[level])) panic("ffs_truncate1"); for (i = 0; i < NDADDR; i++) if (newblks[i] != DIP(oip, db[i])) panic("ffs_truncate2"); #endif /* DIAGNOSTIC */ /* * Put back the real size. */ DIP_ASSIGN(oip, size, length); if (DIP(oip, blocks) >= blocksreleased) DIP_ADD(oip, blocks, -blocksreleased); else /* sanity */ DIP_ASSIGN(oip, blocks, 0); oip->i_flag |= IN_CHANGE; (void)ufs_quota_free_blocks(oip, blocksreleased, NOCRED); return (allerror); } #ifdef FFS2 #define BAP(ip, i) (((ip)->i_ump->um_fstype == UM_UFS2) ? bap2[i] : bap1[i]) #define BAP_ASSIGN(ip, i, value) \ do { \ if ((ip)->i_ump->um_fstype == UM_UFS2) \ bap2[i] = (value); \ else \ bap1[i] = (value); \ } while (0) #else #define BAP(ip, i) bap1[i] #define BAP_ASSIGN(ip, i, value) do { bap1[i] = (value); } while (0) #endif /* FFS2 */ /* * Release blocks associated with the inode ip and stored in the indirect * block bn. Blocks are free'd in LIFO order up to (but not including) * lastbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. * * NB: triple indirect blocks are untested. */ int ffs_indirtrunc(struct inode *ip, daddr_t lbn, daddr_t dbn, daddr_t lastbn, int level, long *countp) { int i; struct buf *bp; struct fs *fs = ip->i_fs; struct vnode *vp; void *copy = NULL; daddr_t nb, nlbn, last; long blkcount, factor; int nblocks, blocksreleased = 0; int error = 0, allerror = 0; int32_t *bap1 = NULL; #ifdef FFS2 int64_t *bap2 = NULL; #endif /* * Calculate index in current block of last * block to be kept. -1 indicates the entire * block so we need not calculate the index. */ factor = 1; for (i = SINGLE; i < level; i++) factor *= NINDIR(fs); last = lastbn; if (lastbn > 0) last /= factor; nblocks = btodb(fs->fs_bsize); /* * Get buffer of block pointers, zero those entries corresponding * to blocks to be free'd, and update on disk copy first. Since * double(triple) indirect before single(double) indirect, calls * to bmap on these blocks will fail. However, we already have * the on disk address, so we have to set the b_blkno field * explicitly instead of letting bread do everything for us. */ vp = ITOV(ip); bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0); if (!(bp->b_flags & (B_DONE | B_DELWRI))) { curproc->p_ru.ru_inblock++; /* pay for read */ bcstats.pendingreads++; bcstats.numreads++; bp->b_flags |= B_READ; if (bp->b_bcount > bp->b_bufsize) panic("ffs_indirtrunc: bad buffer size"); bp->b_blkno = dbn; VOP_STRATEGY(bp); error = biowait(bp); } if (error) { brelse(bp); *countp = 0; return (error); } #ifdef FFS2 if (ip->i_ump->um_fstype == UM_UFS2) bap2 = (int64_t *)bp->b_data; else #endif bap1 = (int32_t *)bp->b_data; if (lastbn != -1) { copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK); memcpy(copy, bp->b_data, fs->fs_bsize); for (i = last + 1; i < NINDIR(fs); i++) BAP_ASSIGN(ip, i, 0); if (!DOINGASYNC(vp)) { error = bwrite(bp); if (error) allerror = error; } else { bawrite(bp); } #ifdef FFS2 if (ip->i_ump->um_fstype == UM_UFS2) bap2 = (int64_t *)copy; else #endif bap1 = (int32_t *)copy; } /* * Recursively free totally unused blocks. */ for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; i--, nlbn += factor) { nb = BAP(ip, i); if (nb == 0) continue; if (level > SINGLE) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), -1, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } ffs_blkfree(ip, nb, fs->fs_bsize); blocksreleased += nblocks; } /* * Recursively free last partial block. */ if (level > SINGLE && lastbn >= 0) { last = lastbn % factor; nb = BAP(ip, i); if (nb != 0) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), last, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } } if (copy != NULL) { free(copy, M_TEMP); } else { bp->b_flags |= B_INVAL; brelse(bp); } *countp = blocksreleased; return (allerror); }