/* $OpenBSD: ffs_inode.c,v 1.15 1999/12/06 07:23:21 art Exp $ */ /* $NetBSD: ffs_inode.c,v 1.10 1996/05/11 18:27:19 mycroft Exp $ */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_inode.c 8.8 (Berkeley) 10/19/94 */ #include #include #include #include #include #include #include #include #include #include #include #include #if defined(UVM) #include #endif #include #include #include #include #include #include static int ffs_indirtrunc __P((struct inode *, daddr_t, daddr_t, daddr_t, int, long *)); /* * Update the access, modified, and inode change times as specified by the * IACCESS, IUPDATE, and ICHANGE flags respectively. The IMODIFIED flag is * used to specify that the inode needs to be updated but that the times have * already been set. The access and modified times are taken from the second * and third parameters; the inode change time is always taken from the current * time. If waitfor is set, then wait for the disk write of the inode to * complete. */ int ffs_update(v) void *v; { struct vop_update_args /* { struct vnode *a_vp; struct timespec *a_access; struct timespec *a_modify; int a_waitfor; } */ *ap = v; register struct fs *fs; struct buf *bp; struct inode *ip; int error; ip = VTOI(ap->a_vp); if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) { ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE); return (0); } else if ((ap->a_vp->v_mount->mnt_flag & MNT_NOATIME) && !(ip->i_flag & (IN_CHANGE | IN_UPDATE))) { ip->i_flag &= ~IN_ACCESS; } if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && ap->a_waitfor != MNT_WAIT) return (0); if (ip->i_flag & IN_ACCESS) { ip->i_ffs_atime = ap->a_access->tv_sec; ip->i_ffs_atimensec = ap->a_access->tv_nsec; } if (ip->i_flag & IN_UPDATE) { ip->i_ffs_mtime = ap->a_modify->tv_sec; ip->i_ffs_mtimensec = ap->a_modify->tv_nsec; ip->i_modrev++; } if (ip->i_flag & IN_CHANGE) { ip->i_ffs_ctime = time.tv_sec; ip->i_ffs_ctimensec = time.tv_usec * 1000; } ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE); fs = ip->i_fs; /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */ ip->i_din.ffs_din.di_ouid = ip->i_ffs_uid; /* XXX */ ip->i_din.ffs_din.di_ogid = ip->i_ffs_gid; /* XXX */ } /* XXX */ error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { brelse(bp); return (error); } if (DOINGSOFTDEP(ap->a_vp)) softdep_update_inodeblock(ip, bp, ap->a_waitfor); else if (ip->i_effnlink != ip->i_ffs_nlink) panic("ffs_update: bad link cnt"); *((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = ip->i_din.ffs_din; if (ap->a_waitfor && (ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) { return (bwrite(bp)); } else { bdwrite(bp); return (0); } } #define SINGLE 0 /* index of single indirect block */ #define DOUBLE 1 /* index of double indirect block */ #define TRIPLE 2 /* index of triple indirect block */ /* * Truncate the inode oip to at most length size, freeing the * disk blocks. */ int ffs_truncate(v) void *v; { struct vop_truncate_args /* { struct vnode *a_vp; off_t a_length; int a_flags; struct ucred *a_cred; struct proc *a_p; } */ *ap = v; register struct vnode *ovp = ap->a_vp; register daddr_t lastblock; register struct inode *oip; daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR]; daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR]; off_t length = ap->a_length; register struct fs *fs; struct buf *bp; int offset, size, level; long count, nblocks, vflags, blocksreleased = 0; struct timespec ts; register int i; int aflags, error, allerror; off_t osize; if (length < 0) return (EINVAL); oip = VTOI(ovp); if (oip->i_ffs_size == length) return (0); TIMEVAL_TO_TIMESPEC(&time, &ts); if (ovp->v_type == VLNK && (oip->i_ffs_size < ovp->v_mount->mnt_maxsymlinklen || (ovp->v_mount->mnt_maxsymlinklen == 0 && oip->i_din.ffs_din.di_blocks == 0))) { #ifdef DIAGNOSTIC if (length != 0) panic("ffs_truncate: partial truncate of symlink"); #endif bzero((char *)&oip->i_ffs_shortlink, (u_int)oip->i_ffs_size); oip->i_ffs_size = 0; oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, &ts, &ts, 1)); } #ifdef QUOTA if ((error = getinoquota(oip)) != 0) return (error); #endif #if defined(UVM) uvm_vnp_setsize(ovp, length); #else vnode_pager_setsize(ovp, (u_long)length); #endif ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0; if (DOINGSOFTDEP(ovp)) { if (length > 0) { /* * If a file is only partially truncated, then * we have to clean up the data structures * describing the allocation past the truncation * point. Finding and deallocating those structures * is a lot of work. Since partial truncation occurs * rarely, we solve the problem by syncing the file * so that it will have no data structures left. */ if ((error = VOP_FSYNC(ovp, ap->a_cred, MNT_WAIT, ap->a_p)) != 0) return (error); } else { #ifdef QUOTA (void) chkdq(oip, -oip->i_ffs_blocks, NOCRED, 0); #endif softdep_setup_freeblocks(oip, length); (void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, &ts, &ts, 0)); } } fs = oip->i_fs; osize = oip->i_ffs_size; /* * Lengthen the size of the file. We must ensure that the * last byte of the file is allocated. Since the smallest * value of osize is 0, length will be at least 1. */ if (osize < length) { if (length > fs->fs_maxfilesize) return (EFBIG); aflags = B_CLRBUF; if (ap->a_flags & IO_SYNC) aflags |= B_SYNC; error = VOP_BALLOC(ovp, length -1, 1, ap->a_cred, aflags, &bp); if (error) return (error); oip->i_ffs_size = length; #if defined(UVM) uvm_vnp_setsize(ovp, length); (void) uvm_vnp_uncache(ovp); #else vnode_pager_setsize(ovp, (u_long)length); (void) vnode_pager_uncache(ovp); #endif if (aflags & B_SYNC) bwrite(bp); else bawrite(bp); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (VOP_UPDATE(ovp, &ts, &ts, 1)); } #if defined(UVM) uvm_vnp_setsize(ovp, length); #else vnode_pager_setsize(ovp, (u_long)length); #endif /* * Shorten the size of the file. If the file is not being * truncated to a block boundary, the contents of the * partial block following the end of the file must be * zero'ed in case it ever become accessible again because * of subsequent file growth. Directories however are not * zero'ed as they should grow back initialized to empty. */ offset = blkoff(fs, length); if (offset == 0) { oip->i_ffs_size = length; } else { lbn = lblkno(fs, length); aflags = B_CLRBUF; if (ap->a_flags & IO_SYNC) aflags |= B_SYNC; error = VOP_BALLOC(ovp, length - 1, 1, ap->a_cred, aflags, &bp); if (error) return (error); oip->i_ffs_size = length; size = blksize(fs, oip, lbn); #if defined(UVM) (void) uvm_vnp_uncache(ovp); #else (void) vnode_pager_uncache(ovp); #endif if (ovp->v_type != VDIR) bzero((char *)bp->b_data + offset, (u_int)(size - offset)); allocbuf(bp, size); if (aflags & B_SYNC) bwrite(bp); else bawrite(bp); } /* * Calculate index into inode's block list of * last direct and indirect blocks (if any) * which we want to keep. Lastblock is -1 when * the file is truncated to 0. */ lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastiblock[SINGLE] = lastblock - NDADDR; lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); nblocks = btodb(fs->fs_bsize); /* * Update file and block pointers on disk before we start freeing * blocks. If we crash before free'ing blocks below, the blocks * will be returned to the free list. lastiblock values are also * normalized to -1 for calls to ffs_indirtrunc below. */ bcopy((caddr_t)&oip->i_ffs_db[0], (caddr_t)oldblks, sizeof oldblks); for (level = TRIPLE; level >= SINGLE; level--) if (lastiblock[level] < 0) { oip->i_ffs_ib[level] = 0; lastiblock[level] = -1; } for (i = NDADDR - 1; i > lastblock; i--) oip->i_ffs_db[i] = 0; oip->i_flag |= IN_CHANGE | IN_UPDATE; if ((error = VOP_UPDATE(ovp, &ts, &ts, 1)) != 0) allerror = error; /* * Having written the new inode to disk, save its new configuration * and put back the old block pointers long enough to process them. * Note that we save the new block configuration so we can check it * when we are done. */ bcopy((caddr_t)&oip->i_ffs_db[0], (caddr_t)newblks, sizeof newblks); bcopy((caddr_t)oldblks, (caddr_t)&oip->i_ffs_db[0], sizeof oldblks); oip->i_ffs_size = osize; vflags = ((length > 0) ? V_SAVE : 0) | V_SAVEMETA; allerror = vinvalbuf(ovp, vflags, ap->a_cred, ap->a_p, 0, 0); /* * Indirect blocks first. */ indir_lbn[SINGLE] = -NDADDR; indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; for (level = TRIPLE; level >= SINGLE; level--) { bn = oip->i_ffs_ib[level]; if (bn != 0) { error = ffs_indirtrunc(oip, indir_lbn[level], fsbtodb(fs, bn), lastiblock[level], level, &count); if (error) allerror = error; blocksreleased += count; if (lastiblock[level] < 0) { oip->i_ffs_ib[level] = 0; ffs_blkfree(oip, bn, fs->fs_bsize); blocksreleased += nblocks; } } if (lastiblock[level] >= 0) goto done; } /* * All whole direct blocks or frags. */ for (i = NDADDR - 1; i > lastblock; i--) { register long bsize; bn = oip->i_ffs_db[i]; if (bn == 0) continue; oip->i_ffs_db[i] = 0; bsize = blksize(fs, oip, i); ffs_blkfree(oip, bn, bsize); blocksreleased += btodb(bsize); } if (lastblock < 0) goto done; /* * Finally, look for a change in size of the * last direct block; release any frags. */ bn = oip->i_ffs_db[lastblock]; if (bn != 0) { long oldspace, newspace; /* * Calculate amount of space we're giving * back as old block size minus new block size. */ oldspace = blksize(fs, oip, lastblock); oip->i_ffs_size = length; newspace = blksize(fs, oip, lastblock); if (newspace == 0) panic("itrunc: newspace"); if (oldspace - newspace > 0) { /* * Block number of space to be free'd is * the old block # plus the number of frags * required for the storage we're keeping. */ bn += numfrags(fs, newspace); ffs_blkfree(oip, bn, oldspace - newspace); blocksreleased += btodb(oldspace - newspace); } } done: #ifdef DIAGNOSTIC for (level = SINGLE; level <= TRIPLE; level++) if (newblks[NDADDR + level] != oip->i_ffs_ib[level]) panic("itrunc1"); for (i = 0; i < NDADDR; i++) if (newblks[i] != oip->i_ffs_db[i]) panic("itrunc2"); #endif /* DIAGNOSTIC */ /* * Put back the real size. */ oip->i_ffs_size = length; oip->i_ffs_blocks -= blocksreleased; if (oip->i_ffs_blocks < 0) /* sanity */ oip->i_ffs_blocks = 0; oip->i_flag |= IN_CHANGE; #ifdef QUOTA (void) chkdq(oip, -blocksreleased, NOCRED, 0); #endif return (allerror); } /* * Release blocks associated with the inode ip and stored in the indirect * block bn. Blocks are free'd in LIFO order up to (but not including) * lastbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. * * NB: triple indirect blocks are untested. */ static int ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp) register struct inode *ip; daddr_t lbn, lastbn; daddr_t dbn; int level; long *countp; { register int i; struct buf *bp; register struct fs *fs = ip->i_fs; register daddr_t *bap; struct vnode *vp; daddr_t *copy, nb, nlbn, last; long blkcount, factor; int nblocks, blocksreleased = 0; int error = 0, allerror = 0; /* * Calculate index in current block of last * block to be kept. -1 indicates the entire * block so we need not calculate the index. */ factor = 1; for (i = SINGLE; i < level; i++) factor *= NINDIR(fs); last = lastbn; if (lastbn > 0) last /= factor; nblocks = btodb(fs->fs_bsize); /* * Get buffer of block pointers, zero those entries corresponding * to blocks to be free'd, and update on disk copy first. Since * double(triple) indirect before single(double) indirect, calls * to bmap on these blocks will fail. However, we already have * the on disk address, so we have to set the b_blkno field * explicitly instead of letting bread do everything for us. */ vp = ITOV(ip); bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0); if (bp->b_flags & (B_DONE | B_DELWRI)) { /* Braces must be here in case trace evaluates to nothing. */ trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn); } else { trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn); curproc->p_stats->p_ru.ru_inblock++; /* pay for read */ bp->b_flags |= B_READ; if (bp->b_bcount > bp->b_bufsize) panic("ffs_indirtrunc: bad buffer size"); bp->b_blkno = dbn; VOP_STRATEGY(bp); error = biowait(bp); } if (error) { brelse(bp); *countp = 0; return (error); } bap = (daddr_t *)bp->b_data; if (lastbn != -1) { MALLOC(copy, daddr_t *, fs->fs_bsize, M_TEMP, M_WAITOK); bcopy((caddr_t)bap, (caddr_t)copy, (u_int)fs->fs_bsize); bzero((caddr_t)&bap[last + 1], (u_int)(NINDIR(fs) - (last + 1)) * sizeof (daddr_t)); if ((vp->v_mount->mnt_flag & MNT_ASYNC) == 0) { error = bwrite(bp); if (error) allerror = error; } else { bawrite(bp); } bap = copy; } /* * Recursively free totally unused blocks. */ for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; i--, nlbn += factor) { nb = bap[i]; if (nb == 0) continue; if (level > SINGLE) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), (daddr_t)-1, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } ffs_blkfree(ip, nb, fs->fs_bsize); blocksreleased += nblocks; } /* * Recursively free last partial block. */ if (level > SINGLE && lastbn >= 0) { last = lastbn % factor; nb = bap[i]; if (nb != 0) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), last, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } } if (lastbn != -1) { FREE(copy, M_TEMP); } else { bp->b_flags |= B_INVAL; brelse(bp); } *countp = blocksreleased; return (allerror); }