/* $OpenBSD: ffs_softdep.c,v 1.135 2016/11/07 00:26:33 guenther Exp $ */ /* * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. * * The soft updates code is derived from the appendix of a University * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, * "Soft Updates: A Solution to the Metadata Update Problem in File * Systems", CSE-TR-254-95, August 1995). * * Further information about soft updates can be obtained from: * * Marshall Kirk McKusick http://www.mckusick.com/softdep/ * 1614 Oxford Street mckusick@mckusick.com * Berkeley, CA 94709-1608 +1-510-843-9542 * USA * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.86 2001/02/04 16:08:18 phk Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define STATIC /* * Mapping of dependency structure types to malloc types. */ #define D_PAGEDEP 0 #define D_INODEDEP 1 #define D_NEWBLK 2 #define D_BMSAFEMAP 3 #define D_ALLOCDIRECT 4 #define D_INDIRDEP 5 #define D_ALLOCINDIR 6 #define D_FREEFRAG 7 #define D_FREEBLKS 8 #define D_FREEFILE 9 #define D_DIRADD 10 #define D_MKDIR 11 #define D_DIRREM 12 #define D_NEWDIRBLK 13 #define D_LAST 13 /* * Names of softdep types. */ const char *softdep_typenames[] = { "pagedep", "inodedep", "newblk", "bmsafemap", "allocdirect", "indirdep", "allocindir", "freefrag", "freeblks", "freefile", "diradd", "mkdir", "dirrem", "newdirblk", }; #define TYPENAME(type) \ ((unsigned)(type) <= D_LAST ? softdep_typenames[type] : "???") /* * Finding the current process. */ #define CURPROC curproc /* * End system adaptation definitions. */ /* * Internal function prototypes. */ STATIC void softdep_error(char *, int); STATIC void drain_output(struct vnode *, int); STATIC int getdirtybuf(struct buf *, int); STATIC void clear_remove(struct proc *); STATIC void clear_inodedeps(struct proc *); STATIC int flush_pagedep_deps(struct vnode *, struct mount *, struct diraddhd *); STATIC int flush_inodedep_deps(struct fs *, ufsino_t); STATIC int handle_written_filepage(struct pagedep *, struct buf *); STATIC void diradd_inode_written(struct diradd *, struct inodedep *); STATIC int handle_written_inodeblock(struct inodedep *, struct buf *); STATIC void handle_allocdirect_partdone(struct allocdirect *); STATIC void handle_allocindir_partdone(struct allocindir *); STATIC void initiate_write_filepage(struct pagedep *, struct buf *); STATIC void handle_written_mkdir(struct mkdir *, int); STATIC void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); #ifdef FFS2 STATIC void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); #endif STATIC void handle_workitem_freefile(struct freefile *); STATIC void handle_workitem_remove(struct dirrem *); STATIC struct dirrem *newdirrem(struct buf *, struct inode *, struct inode *, int, struct dirrem **); STATIC void free_diradd(struct diradd *); STATIC void free_allocindir(struct allocindir *, struct inodedep *); STATIC void free_newdirblk(struct newdirblk *); STATIC int indir_trunc(struct inode *, daddr_t, int, daddr_t, long *); STATIC void deallocate_dependencies(struct buf *, struct inodedep *); STATIC void free_allocdirect(struct allocdirectlst *, struct allocdirect *, int); STATIC int check_inode_unwritten(struct inodedep *); STATIC int free_inodedep(struct inodedep *); STATIC void handle_workitem_freeblocks(struct freeblks *); STATIC void merge_inode_lists(struct inodedep *); STATIC void setup_allocindir_phase2(struct buf *, struct inode *, struct allocindir *); STATIC struct allocindir *newallocindir(struct inode *, int, daddr_t, daddr_t); STATIC void handle_workitem_freefrag(struct freefrag *); STATIC struct freefrag *newfreefrag(struct inode *, daddr_t, long); STATIC void allocdirect_merge(struct allocdirectlst *, struct allocdirect *, struct allocdirect *); STATIC struct bmsafemap *bmsafemap_lookup(struct buf *); STATIC int newblk_lookup(struct fs *, daddr_t, int, struct newblk **); STATIC int inodedep_lookup(struct fs *, ufsino_t, int, struct inodedep **); STATIC int pagedep_lookup(struct inode *, daddr_t, int, struct pagedep **); STATIC void pause_timer(void *); STATIC int request_cleanup(int, int); STATIC int process_worklist_item(struct mount *, int); STATIC void add_to_worklist(struct worklist *); /* * Exported softdep operations. */ void softdep_disk_io_initiation(struct buf *); void softdep_disk_write_complete(struct buf *); void softdep_deallocate_dependencies(struct buf *); void softdep_move_dependencies(struct buf *, struct buf *); int softdep_count_dependencies(struct buf *bp, int, int); /* * Locking primitives. * * For a uniprocessor, all we need to do is protect against disk * interrupts. For a multiprocessor, this lock would have to be * a mutex. A single mutex is used throughout this file, though * finer grain locking could be used if contention warranted it. * * For a multiprocessor, the sleep call would accept a lock and * release it after the sleep processing was complete. In a uniprocessor * implementation there is no such interlock, so we simple mark * the places where it needs to be done with the `interlocked' form * of the lock calls. Since the uniprocessor sleep already interlocks * the spl, there is nothing that really needs to be done. */ #ifndef /* NOT */ DEBUG STATIC struct lockit { int lkt_spl; } lk = { 0 }; #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() #define FREE_LOCK(lk) splx((lk)->lkt_spl) #define ACQUIRE_LOCK_INTERLOCKED(lk,s) (lk)->lkt_spl = (s) #define FREE_LOCK_INTERLOCKED(lk) ((lk)->lkt_spl) #else /* DEBUG */ STATIC struct lockit { int lkt_spl; pid_t lkt_held; int lkt_line; } lk = { 0, -1 }; STATIC int lockcnt; STATIC void acquire_lock(struct lockit *, int); STATIC void free_lock(struct lockit *, int); STATIC void acquire_lock_interlocked(struct lockit *, int, int); STATIC int free_lock_interlocked(struct lockit *, int); #define ACQUIRE_LOCK(lk) acquire_lock(lk, __LINE__) #define FREE_LOCK(lk) free_lock(lk, __LINE__) #define ACQUIRE_LOCK_INTERLOCKED(lk,s) acquire_lock_interlocked(lk, (s), __LINE__) #define FREE_LOCK_INTERLOCKED(lk) free_lock_interlocked(lk, __LINE__) STATIC void acquire_lock(struct lockit *lk, int line) { pid_t holder; int original_line; if (lk->lkt_held != -1) { holder = lk->lkt_held; original_line = lk->lkt_line; FREE_LOCK(lk); if (holder == CURPROC->p_tid) panic("softdep_lock: locking against myself, acquired at line %d, relocked at line %d", original_line, line); else panic("softdep_lock: lock held by %d, acquired at line %d, relocked at line %d", holder, original_line, line); } lk->lkt_spl = splbio(); lk->lkt_held = CURPROC->p_tid; lk->lkt_line = line; lockcnt++; } STATIC void free_lock(struct lockit *lk, int line) { if (lk->lkt_held == -1) panic("softdep_unlock: lock not held at line %d", line); lk->lkt_held = -1; splx(lk->lkt_spl); } STATIC void acquire_lock_interlocked(struct lockit *lk, int s, int line) { pid_t holder; int original_line; if (lk->lkt_held != -1) { holder = lk->lkt_held; original_line = lk->lkt_line; FREE_LOCK_INTERLOCKED(lk); if (holder == CURPROC->p_tid) panic("softdep_lock: locking against myself, acquired at line %d, relocked at line %d", original_line, line); else panic("softdep_lock: lock held by %d, acquired at line %d, relocked at line %d", holder, original_line, line); } lk->lkt_held = CURPROC->p_tid; lk->lkt_line = line; lk->lkt_spl = s; lockcnt++; } STATIC int free_lock_interlocked(struct lockit *lk, int line) { if (lk->lkt_held == -1) panic("softdep_unlock_interlocked: lock not held at line %d", line); lk->lkt_held = -1; return (lk->lkt_spl); } #endif /* DEBUG */ /* * Place holder for real semaphores. */ struct sema { int value; pid_t holder; char *name; int prio; int timo; }; STATIC void sema_init(struct sema *, char *, int, int); STATIC int sema_get(struct sema *, struct lockit *); STATIC void sema_release(struct sema *); STATIC void sema_init(struct sema *semap, char *name, int prio, int timo) { semap->holder = -1; semap->value = 0; semap->name = name; semap->prio = prio; semap->timo = timo; } STATIC int sema_get(struct sema *semap, struct lockit *interlock) { int s; if (semap->value++ > 0) { if (interlock != NULL) s = FREE_LOCK_INTERLOCKED(interlock); tsleep((caddr_t)semap, semap->prio, semap->name, semap->timo); if (interlock != NULL) { ACQUIRE_LOCK_INTERLOCKED(interlock, s); FREE_LOCK(interlock); } return (0); } semap->holder = CURPROC->p_tid; if (interlock != NULL) FREE_LOCK(interlock); return (1); } STATIC void sema_release(struct sema *semap) { if (semap->value <= 0 || semap->holder != CURPROC->p_tid) { #ifdef DEBUG if (lk.lkt_held != -1) FREE_LOCK(&lk); #endif panic("sema_release: not held"); } if (--semap->value > 0) { semap->value = 0; wakeup(semap); } semap->holder = -1; } /* * Memory management. */ STATIC struct pool pagedep_pool; STATIC struct pool inodedep_pool; STATIC struct pool newblk_pool; STATIC struct pool bmsafemap_pool; STATIC struct pool allocdirect_pool; STATIC struct pool indirdep_pool; STATIC struct pool allocindir_pool; STATIC struct pool freefrag_pool; STATIC struct pool freeblks_pool; STATIC struct pool freefile_pool; STATIC struct pool diradd_pool; STATIC struct pool mkdir_pool; STATIC struct pool dirrem_pool; STATIC struct pool newdirblk_pool; static __inline void softdep_free(struct worklist *item, int type) { switch (type) { case D_PAGEDEP: pool_put(&pagedep_pool, item); break; case D_INODEDEP: pool_put(&inodedep_pool, item); break; case D_BMSAFEMAP: pool_put(&bmsafemap_pool, item); break; case D_ALLOCDIRECT: pool_put(&allocdirect_pool, item); break; case D_INDIRDEP: pool_put(&indirdep_pool, item); break; case D_ALLOCINDIR: pool_put(&allocindir_pool, item); break; case D_FREEFRAG: pool_put(&freefrag_pool, item); break; case D_FREEBLKS: pool_put(&freeblks_pool, item); break; case D_FREEFILE: pool_put(&freefile_pool, item); break; case D_DIRADD: pool_put(&diradd_pool, item); break; case D_MKDIR: pool_put(&mkdir_pool, item); break; case D_DIRREM: pool_put(&dirrem_pool, item); break; case D_NEWDIRBLK: pool_put(&newdirblk_pool, item); break; default: #ifdef DEBUG if (lk.lkt_held != -1) FREE_LOCK(&lk); #endif panic("softdep_free: unknown type %d", type); } } struct workhead softdep_freequeue; static __inline void softdep_freequeue_add(struct worklist *item) { int s; s = splbio(); LIST_INSERT_HEAD(&softdep_freequeue, item, wk_list); splx(s); } static __inline void softdep_freequeue_process(void) { struct worklist *wk; splassert(IPL_BIO); while ((wk = LIST_FIRST(&softdep_freequeue)) != NULL) { LIST_REMOVE(wk, wk_list); FREE_LOCK(&lk); softdep_free(wk, wk->wk_type); ACQUIRE_LOCK(&lk); } } /* * Worklist queue management. * These routines require that the lock be held. */ #ifndef /* NOT */ DEBUG #define WORKLIST_INSERT(head, item) do { \ (item)->wk_state |= ONWORKLIST; \ LIST_INSERT_HEAD(head, item, wk_list); \ } while (0) #define WORKLIST_REMOVE(item) do { \ (item)->wk_state &= ~ONWORKLIST; \ LIST_REMOVE(item, wk_list); \ } while (0) #define WORKITEM_FREE(item, type) softdep_freequeue_add((struct worklist *)item) #else /* DEBUG */ STATIC void worklist_insert(struct workhead *, struct worklist *); STATIC void worklist_remove(struct worklist *); STATIC void workitem_free(struct worklist *); #define WORKLIST_INSERT(head, item) worklist_insert(head, item) #define WORKLIST_REMOVE(item) worklist_remove(item) #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item) STATIC void worklist_insert(struct workhead *head, struct worklist *item) { if (lk.lkt_held == -1) panic("worklist_insert: lock not held"); if (item->wk_state & ONWORKLIST) { FREE_LOCK(&lk); panic("worklist_insert: already on list"); } item->wk_state |= ONWORKLIST; LIST_INSERT_HEAD(head, item, wk_list); } STATIC void worklist_remove(struct worklist *item) { if (lk.lkt_held == -1) panic("worklist_remove: lock not held"); if ((item->wk_state & ONWORKLIST) == 0) { FREE_LOCK(&lk); panic("worklist_remove: not on list"); } item->wk_state &= ~ONWORKLIST; LIST_REMOVE(item, wk_list); } STATIC void workitem_free(struct worklist *item) { if (item->wk_state & ONWORKLIST) { if (lk.lkt_held != -1) FREE_LOCK(&lk); panic("workitem_free: still on list"); } softdep_freequeue_add(item); } #endif /* DEBUG */ /* * Workitem queue management */ STATIC struct workhead softdep_workitem_pending; STATIC struct worklist *worklist_tail; STATIC int num_on_worklist; /* number of worklist items to be processed */ STATIC int softdep_worklist_busy; /* 1 => trying to do unmount */ STATIC int softdep_worklist_req; /* serialized waiters */ STATIC int max_softdeps; /* maximum number of structs before slowdown */ STATIC int tickdelay = 2; /* number of ticks to pause during slowdown */ STATIC int proc_waiting; /* tracks whether we have a timeout posted */ STATIC int *stat_countp; /* statistic to count in proc_waiting timeout */ STATIC struct timeout proc_waiting_timeout; STATIC struct proc *filesys_syncer; /* proc of filesystem syncer process */ STATIC int req_clear_inodedeps; /* syncer process flush some inodedeps */ #define FLUSH_INODES 1 STATIC int req_clear_remove; /* syncer process flush some freeblks */ #define FLUSH_REMOVE 2 /* * runtime statistics */ STATIC int stat_worklist_push; /* number of worklist cleanups */ STATIC int stat_blk_limit_push; /* number of times block limit neared */ STATIC int stat_ino_limit_push; /* number of times inode limit neared */ STATIC int stat_blk_limit_hit; /* number of times block slowdown imposed */ STATIC int stat_ino_limit_hit; /* number of times inode slowdown imposed */ STATIC int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ STATIC int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ STATIC int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ STATIC int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ STATIC int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ /* * Add an item to the end of the work queue. * This routine requires that the lock be held. * This is the only routine that adds items to the list. * The following routine is the only one that removes items * and does so in order from first to last. */ STATIC void add_to_worklist(struct worklist *wk) { if (wk->wk_state & ONWORKLIST) { #ifdef DEBUG if (lk.lkt_held != -1) FREE_LOCK(&lk); #endif panic("add_to_worklist: already on list"); } wk->wk_state |= ONWORKLIST; if (LIST_FIRST(&softdep_workitem_pending) == NULL) LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); else LIST_INSERT_AFTER(worklist_tail, wk, wk_list); worklist_tail = wk; num_on_worklist += 1; } /* * Process that runs once per second to handle items in the background queue. * * Note that we ensure that everything is done in the order in which they * appear in the queue. The code below depends on this property to ensure * that blocks of a file are freed before the inode itself is freed. This * ordering ensures that no new triples will be generated * until all the old ones have been purged from the dependency lists. */ int softdep_process_worklist(struct mount *matchmnt) { struct proc *p = CURPROC; int matchcnt, loopcount; struct timeval starttime; /* * First process any items on the delayed-free queue. */ ACQUIRE_LOCK(&lk); softdep_freequeue_process(); FREE_LOCK(&lk); /* * Record the process identifier of our caller so that we can give * this process preferential treatment in request_cleanup below. * We can't do this in softdep_initialize, because the syncer doesn't * have to run then. * NOTE! This function _could_ be called with a curproc != syncerproc. */ filesys_syncer = syncerproc; matchcnt = 0; /* * There is no danger of having multiple processes run this * code, but we have to single-thread it when softdep_flushfiles() * is in operation to get an accurate count of the number of items * related to its mount point that are in the list. */ if (matchmnt == NULL) { if (softdep_worklist_busy < 0) return(-1); softdep_worklist_busy += 1; } /* * If requested, try removing inode or removal dependencies. */ if (req_clear_inodedeps) { clear_inodedeps(p); req_clear_inodedeps -= 1; wakeup_one(&proc_waiting); } if (req_clear_remove) { clear_remove(p); req_clear_remove -= 1; wakeup_one(&proc_waiting); } loopcount = 1; getmicrouptime(&starttime); while (num_on_worklist > 0) { matchcnt += process_worklist_item(matchmnt, 0); /* * If a umount operation wants to run the worklist * accurately, abort. */ if (softdep_worklist_req && matchmnt == NULL) { matchcnt = -1; break; } /* * If requested, try removing inode or removal dependencies. */ if (req_clear_inodedeps) { clear_inodedeps(p); req_clear_inodedeps -= 1; wakeup_one(&proc_waiting); } if (req_clear_remove) { clear_remove(p); req_clear_remove -= 1; wakeup_one(&proc_waiting); } /* * We do not generally want to stop for buffer space, but if * we are really being a buffer hog, we will stop and wait. */ #if 0 if (loopcount++ % 128 == 0) bwillwrite(); #endif /* * Never allow processing to run for more than one * second. Otherwise the other syncer tasks may get * excessively backlogged. */ { struct timeval diff; struct timeval tv; getmicrouptime(&tv); timersub(&tv, &starttime, &diff); if (diff.tv_sec != 0 && matchmnt == NULL) { matchcnt = -1; break; } } /* * Process any new items on the delayed-free queue. */ ACQUIRE_LOCK(&lk); softdep_freequeue_process(); FREE_LOCK(&lk); } if (matchmnt == NULL) { softdep_worklist_busy -= 1; if (softdep_worklist_req && softdep_worklist_busy == 0) wakeup(&softdep_worklist_req); } return (matchcnt); } /* * Process one item on the worklist. */ STATIC int process_worklist_item(struct mount *matchmnt, int flags) { struct worklist *wk, *wkend; struct dirrem *dirrem; struct mount *mp; struct vnode *vp; int matchcnt = 0; ACQUIRE_LOCK(&lk); /* * Normally we just process each item on the worklist in order. * However, if we are in a situation where we cannot lock any * inodes, we have to skip over any dirrem requests whose * vnodes are resident and locked. */ LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) break; dirrem = WK_DIRREM(wk); vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev, dirrem->dm_oldinum); if (vp == NULL || !VOP_ISLOCKED(vp)) break; } if (wk == NULL) { FREE_LOCK(&lk); return (0); } /* * Remove the item to be processed. If we are removing the last * item on the list, we need to recalculate the tail pointer. * As this happens rarely and usually when the list is short, * we just run down the list to find it rather than tracking it * in the above loop. */ WORKLIST_REMOVE(wk); if (wk == worklist_tail) { LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list) if (LIST_NEXT(wkend, wk_list) == NULL) break; worklist_tail = wkend; } num_on_worklist -= 1; FREE_LOCK(&lk); switch (wk->wk_type) { case D_DIRREM: /* removal of a directory entry */ mp = WK_DIRREM(wk)->dm_mnt; #if 0 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) panic("%s: dirrem on suspended filesystem", "process_worklist_item"); #endif if (mp == matchmnt) matchcnt += 1; handle_workitem_remove(WK_DIRREM(wk)); break; case D_FREEBLKS: /* releasing blocks and/or fragments from a file */ mp = WK_FREEBLKS(wk)->fb_mnt; #if 0 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) panic("%s: freeblks on suspended filesystem", "process_worklist_item"); #endif if (mp == matchmnt) matchcnt += 1; handle_workitem_freeblocks(WK_FREEBLKS(wk)); break; case D_FREEFRAG: /* releasing a fragment when replaced as a file grows */ mp = WK_FREEFRAG(wk)->ff_mnt; #if 0 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) panic("%s: freefrag on suspended filesystem", "process_worklist_item"); #endif if (mp == matchmnt) matchcnt += 1; handle_workitem_freefrag(WK_FREEFRAG(wk)); break; case D_FREEFILE: /* releasing an inode when its link count drops to 0 */ mp = WK_FREEFILE(wk)->fx_mnt; #if 0 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) panic("%s: freefile on suspended filesystem", "process_worklist_item"); #endif if (mp == matchmnt) matchcnt += 1; handle_workitem_freefile(WK_FREEFILE(wk)); break; default: panic("%s_process_worklist: Unknown type %s", "softdep", TYPENAME(wk->wk_type)); /* NOTREACHED */ } return (matchcnt); } /* * Move dependencies from one buffer to another. */ void softdep_move_dependencies(struct buf *oldbp, struct buf *newbp) { struct worklist *wk, *wktail; if (LIST_FIRST(&newbp->b_dep) != NULL) panic("softdep_move_dependencies: need merge code"); wktail = NULL; ACQUIRE_LOCK(&lk); while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { LIST_REMOVE(wk, wk_list); if (wktail == NULL) LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); else LIST_INSERT_AFTER(wktail, wk, wk_list); wktail = wk; } FREE_LOCK(&lk); } /* * Purge the work list of all items associated with a particular mount point. */ int softdep_flushworklist(struct mount *oldmnt, int *countp, struct proc *p) { struct vnode *devvp; int count, error = 0; /* * Await our turn to clear out the queue, then serialize access. */ while (softdep_worklist_busy) { softdep_worklist_req += 1; tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0); softdep_worklist_req -= 1; } softdep_worklist_busy = -1; /* * Alternately flush the block device associated with the mount * point and process any dependencies that the flushing * creates. We continue until no more worklist dependencies * are found. */ *countp = 0; devvp = VFSTOUFS(oldmnt)->um_devvp; while ((count = softdep_process_worklist(oldmnt)) > 0) { *countp += count; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p); error = VOP_FSYNC(devvp, p->p_ucred, MNT_WAIT, p); VOP_UNLOCK(devvp, p); if (error) break; } softdep_worklist_busy = 0; if (softdep_worklist_req) wakeup(&softdep_worklist_req); return (error); } /* * Flush all vnodes and worklist items associated with a specified mount point. */ int softdep_flushfiles(struct mount *oldmnt, int flags, struct proc *p) { int error, count, loopcnt; /* * Alternately flush the vnodes associated with the mount * point and process any dependencies that the flushing * creates. In theory, this loop can happen at most twice, * but we give it a few extra just to be sure. */ for (loopcnt = 10; loopcnt > 0; loopcnt--) { /* * Do another flush in case any vnodes were brought in * as part of the cleanup operations. */ if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) break; if ((error = softdep_flushworklist(oldmnt, &count, p)) != 0 || count == 0) break; } /* * If we are unmounting then it is an error to fail. If we * are simply trying to downgrade to read-only, then filesystem * activity can keep us busy forever, so we just fail with EBUSY. */ if (loopcnt == 0) { error = EBUSY; } return (error); } /* * Structure hashing. * * There are three types of structures that can be looked up: * 1) pagedep structures identified by mount point, inode number, * and logical block. * 2) inodedep structures identified by mount point and inode number. * 3) newblk structures identified by mount point and * physical block number. * * The "pagedep" and "inodedep" dependency structures are hashed * separately from the file blocks and inodes to which they correspond. * This separation helps when the in-memory copy of an inode or * file block must be replaced. It also obviates the need to access * an inode or file page when simply updating (or de-allocating) * dependency structures. Lookup of newblk structures is needed to * find newly allocated blocks when trying to associate them with * their allocdirect or allocindir structure. * * The lookup routines optionally create and hash a new instance when * an existing entry is not found. */ #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ #define NODELAY 0x0002 /* cannot do background work */ SIPHASH_KEY softdep_hashkey; /* * Structures and routines associated with pagedep caching. */ LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; u_long pagedep_hash; /* size of hash table - 1 */ STATIC struct sema pagedep_in_progress; /* * Look up a pagedep. Return 1 if found, 0 if not found or found * when asked to allocate but not associated with any buffer. * If not found, allocate if DEPALLOC flag is passed. * Found or allocated entry is returned in pagedeppp. * This routine must be called with splbio interrupts blocked. */ STATIC int pagedep_lookup(struct inode *ip, daddr_t lbn, int flags, struct pagedep **pagedeppp) { SIPHASH_CTX ctx; struct pagedep *pagedep; struct pagedep_hashhead *pagedephd; struct mount *mp; int i; splassert(IPL_BIO); #ifdef DEBUG if (lk.lkt_held == -1) panic("pagedep_lookup: lock not held"); #endif mp = ITOV(ip)->v_mount; SipHash24_Init(&ctx, &softdep_hashkey); SipHash24_Update(&ctx, &mp, sizeof(mp)); SipHash24_Update(&ctx, &ip->i_number, sizeof(ip->i_number)); SipHash24_Update(&ctx, &lbn, sizeof(lbn)); pagedephd = &pagedep_hashtbl[SipHash24_End(&ctx) & pagedep_hash]; top: LIST_FOREACH(pagedep, pagedephd, pd_hash) if (ip->i_number == pagedep->pd_ino && lbn == pagedep->pd_lbn && mp == pagedep->pd_mnt) break; if (pagedep) { *pagedeppp = pagedep; if ((flags & DEPALLOC) != 0 && (pagedep->pd_state & ONWORKLIST) == 0) return (0); return (1); } if ((flags & DEPALLOC) == 0) { *pagedeppp = NULL; return (0); } if (sema_get(&pagedep_in_progress, &lk) == 0) { ACQUIRE_LOCK(&lk); goto top; } pagedep = pool_get(&pagedep_pool, PR_WAITOK | PR_ZERO); pagedep->pd_list.wk_type = D_PAGEDEP; pagedep->pd_mnt = mp; pagedep->pd_ino = ip->i_number; pagedep->pd_lbn = lbn; LIST_INIT(&pagedep->pd_dirremhd); LIST_INIT(&pagedep->pd_pendinghd); for (i = 0; i < DAHASHSZ; i++) LIST_INIT(&pagedep->pd_diraddhd[i]); ACQUIRE_LOCK(&lk); LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); sema_release(&pagedep_in_progress); *pagedeppp = pagedep; return (0); } /* * Structures and routines associated with inodedep caching. */ LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; STATIC u_long inodedep_hash; /* size of hash table - 1 */ STATIC long num_inodedep; /* number of inodedep allocated */ STATIC struct sema inodedep_in_progress; /* * Look up a inodedep. Return 1 if found, 0 if not found. * If not found, allocate if DEPALLOC flag is passed. * Found or allocated entry is returned in inodedeppp. * This routine must be called with splbio interrupts blocked. */ STATIC int inodedep_lookup(struct fs *fs, ufsino_t inum, int flags, struct inodedep **inodedeppp) { SIPHASH_CTX ctx; struct inodedep *inodedep; struct inodedep_hashhead *inodedephd; int firsttry; splassert(IPL_BIO); #ifdef DEBUG if (lk.lkt_held == -1) panic("inodedep_lookup: lock not held"); #endif firsttry = 1; SipHash24_Init(&ctx, &softdep_hashkey); SipHash24_Update(&ctx, &fs, sizeof(fs)); SipHash24_Update(&ctx, &inum, sizeof(inum)); inodedephd = &inodedep_hashtbl[SipHash24_End(&ctx) & inodedep_hash]; top: LIST_FOREACH(inodedep, inodedephd, id_hash) if (inum == inodedep->id_ino && fs == inodedep->id_fs) break; if (inodedep) { *inodedeppp = inodedep; return (1); } if ((flags & DEPALLOC) == 0) { *inodedeppp = NULL; return (0); } /* * If we are over our limit, try to improve the situation. */ if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 && request_cleanup(FLUSH_INODES, 1)) { firsttry = 0; goto top; } if (sema_get(&inodedep_in_progress, &lk) == 0) { ACQUIRE_LOCK(&lk); goto top; } num_inodedep += 1; inodedep = pool_get(&inodedep_pool, PR_WAITOK); inodedep->id_list.wk_type = D_INODEDEP; inodedep->id_fs = fs; inodedep->id_ino = inum; inodedep->id_state = ALLCOMPLETE; inodedep->id_nlinkdelta = 0; inodedep->id_savedino1 = NULL; inodedep->id_savedsize = -1; inodedep->id_buf = NULL; LIST_INIT(&inodedep->id_pendinghd); LIST_INIT(&inodedep->id_inowait); LIST_INIT(&inodedep->id_bufwait); TAILQ_INIT(&inodedep->id_inoupdt); TAILQ_INIT(&inodedep->id_newinoupdt); ACQUIRE_LOCK(&lk); LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); sema_release(&inodedep_in_progress); *inodedeppp = inodedep; return (0); } /* * Structures and routines associated with newblk caching. */ LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; u_long newblk_hash; /* size of hash table - 1 */ STATIC struct sema newblk_in_progress; /* * Look up a newblk. Return 1 if found, 0 if not found. * If not found, allocate if DEPALLOC flag is passed. * Found or allocated entry is returned in newblkpp. */ STATIC int newblk_lookup(struct fs *fs, daddr_t newblkno, int flags, struct newblk **newblkpp) { SIPHASH_CTX ctx; struct newblk *newblk; struct newblk_hashhead *newblkhd; SipHash24_Init(&ctx, &softdep_hashkey); SipHash24_Update(&ctx, &fs, sizeof(fs)); SipHash24_Update(&ctx, &newblkno, sizeof(newblkno)); newblkhd = &newblk_hashtbl[SipHash24_End(&ctx) & newblk_hash]; top: LIST_FOREACH(newblk, newblkhd, nb_hash) if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) break; if (newblk) { *newblkpp = newblk; return (1); } if ((flags & DEPALLOC) == 0) { *newblkpp = NULL; return (0); } if (sema_get(&newblk_in_progress, NULL) == 0) goto top; newblk = pool_get(&newblk_pool, PR_WAITOK); newblk->nb_state = 0; newblk->nb_fs = fs; newblk->nb_newblkno = newblkno; LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); sema_release(&newblk_in_progress); *newblkpp = newblk; return (0); } /* * Executed during filesystem system initialization before * mounting any file systems. */ void softdep_initialize(void) { bioops.io_start = softdep_disk_io_initiation; bioops.io_complete = softdep_disk_write_complete; bioops.io_deallocate = softdep_deallocate_dependencies; bioops.io_movedeps = softdep_move_dependencies; bioops.io_countdeps = softdep_count_dependencies; LIST_INIT(&mkdirlisthd); LIST_INIT(&softdep_workitem_pending); #ifdef KMEMSTATS max_softdeps = min (initialvnodes * 8, kmemstats[M_INODEDEP].ks_limit / (2 * sizeof(struct inodedep))); #else max_softdeps = initialvnodes * 4; #endif arc4random_buf(&softdep_hashkey, sizeof(softdep_hashkey)); pagedep_hashtbl = hashinit(initialvnodes / 5, M_PAGEDEP, M_WAITOK, &pagedep_hash); sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); inodedep_hashtbl = hashinit(initialvnodes, M_INODEDEP, M_WAITOK, &inodedep_hash); sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); newblk_hashtbl = hashinit(64, M_NEWBLK, M_WAITOK, &newblk_hash); sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); timeout_set(&proc_waiting_timeout, pause_timer, NULL); pool_init(&pagedep_pool, sizeof(struct pagedep), 0, IPL_NONE, PR_WAITOK, "pagedep", NULL); pool_init(&inodedep_pool, sizeof(struct inodedep), 0, IPL_NONE, PR_WAITOK, "inodedep", NULL); pool_init(&newblk_pool, sizeof(struct newblk), 0, IPL_NONE, PR_WAITOK, "newblk", NULL); pool_init(&bmsafemap_pool, sizeof(struct bmsafemap), 0, IPL_NONE, PR_WAITOK, "bmsafemap", NULL); pool_init(&allocdirect_pool, sizeof(struct allocdirect), 0, IPL_NONE, PR_WAITOK, "allocdir", NULL); pool_init(&indirdep_pool, sizeof(struct indirdep), 0, IPL_NONE, PR_WAITOK, "indirdep", NULL); pool_init(&allocindir_pool, sizeof(struct allocindir), 0, IPL_NONE, PR_WAITOK, "allocindir", NULL); pool_init(&freefrag_pool, sizeof(struct freefrag), 0, IPL_NONE, PR_WAITOK, "freefrag", NULL); pool_init(&freeblks_pool, sizeof(struct freeblks), 0, IPL_NONE, PR_WAITOK, "freeblks", NULL); pool_init(&freefile_pool, sizeof(struct freefile), 0, IPL_NONE, PR_WAITOK, "freefile", NULL); pool_init(&diradd_pool, sizeof(struct diradd), 0, IPL_NONE, PR_WAITOK, "diradd", NULL); pool_init(&mkdir_pool, sizeof(struct mkdir), 0, IPL_NONE, PR_WAITOK, "mkdir", NULL); pool_init(&dirrem_pool, sizeof(struct dirrem), 0, IPL_NONE, PR_WAITOK, "dirrem", NULL); pool_init(&newdirblk_pool, sizeof(struct newdirblk), 0, IPL_NONE, PR_WAITOK, "newdirblk", NULL); } /* * Called at mount time to notify the dependency code that a * filesystem wishes to use it. */ int softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs, struct ucred *cred) { struct csum_total cstotal; struct cg *cgp; struct buf *bp; int error, cyl; /* * When doing soft updates, the counters in the * superblock may have gotten out of sync, so we have * to scan the cylinder groups and recalculate them. */ if ((fs->fs_flags & FS_UNCLEAN) == 0) return (0); memset(&cstotal, 0, sizeof(cstotal)); for (cyl = 0; cyl < fs->fs_ncg; cyl++) { if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), fs->fs_cgsize, &bp)) != 0) { brelse(bp); return (error); } cgp = (struct cg *)bp->b_data; cstotal.cs_nffree += cgp->cg_cs.cs_nffree; cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; cstotal.cs_nifree += cgp->cg_cs.cs_nifree; cstotal.cs_ndir += cgp->cg_cs.cs_ndir; fs->fs_cs(fs, cyl) = cgp->cg_cs; brelse(bp); } #ifdef DEBUG if (memcmp(&cstotal, &fs->fs_cstotal, sizeof(cstotal))) printf("ffs_mountfs: superblock updated for soft updates\n"); #endif memcpy(&fs->fs_cstotal, &cstotal, sizeof(cstotal)); return (0); } /* * Protecting the freemaps (or bitmaps). * * To eliminate the need to execute fsck before mounting a file system * after a power failure, one must (conservatively) guarantee that the * on-disk copy of the bitmaps never indicate that a live inode or block is * free. So, when a block or inode is allocated, the bitmap should be * updated (on disk) before any new pointers. When a block or inode is * freed, the bitmap should not be updated until all pointers have been * reset. The latter dependency is handled by the delayed de-allocation * approach described below for block and inode de-allocation. The former * dependency is handled by calling the following procedure when a block or * inode is allocated. When an inode is allocated an "inodedep" is created * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. * Each "inodedep" is also inserted into the hash indexing structure so * that any additional link additions can be made dependent on the inode * allocation. * * The ufs file system maintains a number of free block counts (e.g., per * cylinder group, per cylinder and per pair) * in addition to the bitmaps. These counts are used to improve efficiency * during allocation and therefore must be consistent with the bitmaps. * There is no convenient way to guarantee post-crash consistency of these * counts with simple update ordering, for two main reasons: (1) The counts * and bitmaps for a single cylinder group block are not in the same disk * sector. If a disk write is interrupted (e.g., by power failure), one may * be written and the other not. (2) Some of the counts are located in the * superblock rather than the cylinder group block. So, we focus our soft * updates implementation on protecting the bitmaps. When mounting a * filesystem, we recompute the auxiliary counts from the bitmaps. */ /* * Called just after updating the cylinder group block to allocate an inode. */ /* buffer for cylgroup block with inode map */ /* inode related to allocation */ /* new inode number being allocated */ void softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ufsino_t newinum) { struct inodedep *inodedep; struct bmsafemap *bmsafemap; /* * Create a dependency for the newly allocated inode. * Panic if it already exists as something is seriously wrong. * Otherwise add it to the dependency list for the buffer holding * the cylinder group map from which it was allocated. */ ACQUIRE_LOCK(&lk); if (inodedep_lookup(ip->i_fs, newinum, DEPALLOC | NODELAY, &inodedep) != 0) { FREE_LOCK(&lk); panic("softdep_setup_inomapdep: found inode"); } inodedep->id_buf = bp; inodedep->id_state &= ~DEPCOMPLETE; bmsafemap = bmsafemap_lookup(bp); LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); FREE_LOCK(&lk); } /* * Called just after updating the cylinder group block to * allocate block or fragment. */ /* buffer for cylgroup block with block map */ /* filesystem doing allocation */ /* number of newly allocated block */ void softdep_setup_blkmapdep(struct buf *bp, struct fs *fs, daddr_t newblkno) { struct newblk *newblk; struct bmsafemap *bmsafemap; /* * Create a dependency for the newly allocated block. * Add it to the dependency list for the buffer holding * the cylinder group map from which it was allocated. */ if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) panic("softdep_setup_blkmapdep: found block"); ACQUIRE_LOCK(&lk); newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); FREE_LOCK(&lk); } /* * Find the bmsafemap associated with a cylinder group buffer. * If none exists, create one. The buffer must be locked when * this routine is called and this routine must be called with * splbio interrupts blocked. */ STATIC struct bmsafemap * bmsafemap_lookup(struct buf *bp) { struct bmsafemap *bmsafemap; struct worklist *wk; splassert(IPL_BIO); #ifdef DEBUG if (lk.lkt_held == -1) panic("bmsafemap_lookup: lock not held"); #endif LIST_FOREACH(wk, &bp->b_dep, wk_list) if (wk->wk_type == D_BMSAFEMAP) return (WK_BMSAFEMAP(wk)); FREE_LOCK(&lk); bmsafemap = pool_get(&bmsafemap_pool, PR_WAITOK); bmsafemap->sm_list.wk_type = D_BMSAFEMAP; bmsafemap->sm_list.wk_state = 0; bmsafemap->sm_buf = bp; LIST_INIT(&bmsafemap->sm_allocdirecthd); LIST_INIT(&bmsafemap->sm_allocindirhd); LIST_INIT(&bmsafemap->sm_inodedephd); LIST_INIT(&bmsafemap->sm_newblkhd); ACQUIRE_LOCK(&lk); WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); return (bmsafemap); } /* * Direct block allocation dependencies. * * When a new block is allocated, the corresponding disk locations must be * initialized (with zeros or new data) before the on-disk inode points to * them. Also, the freemap from which the block was allocated must be * updated (on disk) before the inode's pointer. These two dependencies are * independent of each other and are needed for all file blocks and indirect * blocks that are pointed to directly by the inode. Just before the * "in-core" version of the inode is updated with a newly allocated block * number, a procedure (below) is called to setup allocation dependency * structures. These structures are removed when the corresponding * dependencies are satisfied or when the block allocation becomes obsolete * (i.e., the file is deleted, the block is de-allocated, or the block is a * fragment that gets upgraded). All of these cases are handled in * procedures described later. * * When a file extension causes a fragment to be upgraded, either to a larger * fragment or to a full block, the on-disk location may change (if the * previous fragment could not simply be extended). In this case, the old * fragment must be de-allocated, but not until after the inode's pointer has * been updated. In most cases, this is handled by later procedures, which * will construct a "freefrag" structure to be added to the workitem queue * when the inode update is complete (or obsolete). The main exception to * this is when an allocation occurs while a pending allocation dependency * (for the same block pointer) remains. This case is handled in the main * allocation dependency setup procedure by immediately freeing the * unreferenced fragments. */ /* inode to which block is being added */ /* block pointer within inode */ /* disk block number being added */ /* previous block number, 0 unless frag */ /* size of new block */ /* size of new block */ /* bp for allocated block */ void softdep_setup_allocdirect(struct inode *ip, daddr_t lbn, daddr_t newblkno, daddr_t oldblkno, long newsize, long oldsize, struct buf *bp) { struct allocdirect *adp, *oldadp; struct allocdirectlst *adphead; struct bmsafemap *bmsafemap; struct inodedep *inodedep; struct pagedep *pagedep; struct newblk *newblk; adp = pool_get(&allocdirect_pool, PR_WAITOK | PR_ZERO); adp->ad_list.wk_type = D_ALLOCDIRECT; adp->ad_lbn = lbn; adp->ad_newblkno = newblkno; adp->ad_oldblkno = oldblkno; adp->ad_newsize = newsize; adp->ad_oldsize = oldsize; adp->ad_state = ATTACHED; LIST_INIT(&adp->ad_newdirblk); if (newblkno == oldblkno) adp->ad_freefrag = NULL; else adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) panic("softdep_setup_allocdirect: lost block"); ACQUIRE_LOCK(&lk); inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); adp->ad_inodedep = inodedep; if (newblk->nb_state == DEPCOMPLETE) { adp->ad_state |= DEPCOMPLETE; adp->ad_buf = NULL; } else { bmsafemap = newblk->nb_bmsafemap; adp->ad_buf = bmsafemap->sm_buf; LIST_REMOVE(newblk, nb_deps); LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); } LIST_REMOVE(newblk, nb_hash); pool_put(&newblk_pool, newblk); if (bp == NULL) { /* * XXXUBC - Yes, I know how to fix this, but not right now. */ panic("softdep_setup_allocdirect: Bonk art in the head"); } WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); if (lbn >= NDADDR) { /* allocating an indirect block */ if (oldblkno != 0) { FREE_LOCK(&lk); panic("softdep_setup_allocdirect: non-zero indir"); } } else { /* * Allocating a direct block. * * If we are allocating a directory block, then we must * allocate an associated pagedep to track additions and * deletions. */ if ((DIP(ip, mode) & IFMT) == IFDIR && pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); } /* * The list of allocdirects must be kept in sorted and ascending * order so that the rollback routines can quickly determine the * first uncommitted block (the size of the file stored on disk * ends at the end of the lowest committed fragment, or if there * are no fragments, at the end of the highest committed block). * Since files generally grow, the typical case is that the new * block is to be added at the end of the list. We speed this * special case by checking against the last allocdirect in the * list before laboriously traversing the list looking for the * insertion point. */ adphead = &inodedep->id_newinoupdt; oldadp = TAILQ_LAST(adphead, allocdirectlst); if (oldadp == NULL || oldadp->ad_lbn <= lbn) { /* insert at end of list */ TAILQ_INSERT_TAIL(adphead, adp, ad_next); if (oldadp != NULL && oldadp->ad_lbn == lbn) allocdirect_merge(adphead, adp, oldadp); FREE_LOCK(&lk); return; } TAILQ_FOREACH(oldadp, adphead, ad_next) { if (oldadp->ad_lbn >= lbn) break; } if (oldadp == NULL) { FREE_LOCK(&lk); panic("softdep_setup_allocdirect: lost entry"); } /* insert in middle of list */ TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); if (oldadp->ad_lbn == lbn) allocdirect_merge(adphead, adp, oldadp); FREE_LOCK(&lk); } /* * Replace an old allocdirect dependency with a newer one. * This routine must be called with splbio interrupts blocked. */ /* head of list holding allocdirects */ /* allocdirect being added */ /* existing allocdirect being checked */ STATIC void allocdirect_merge(struct allocdirectlst *adphead, struct allocdirect *newadp, struct allocdirect *oldadp) { struct worklist *wk; struct freefrag *freefrag; struct newdirblk *newdirblk; splassert(IPL_BIO); #ifdef DEBUG if (lk.lkt_held == -1) panic("allocdirect_merge: lock not held"); #endif if (newadp->ad_oldblkno != oldadp->ad_newblkno || newadp->ad_oldsize != oldadp->ad_newsize || newadp->ad_lbn >= NDADDR) { FREE_LOCK(&lk); panic("allocdirect_merge: old %lld != new %lld || lbn %lld >= " "%d", (long long)newadp->ad_oldblkno, (long long)oldadp->ad_newblkno, (long long)newadp->ad_lbn, NDADDR); } newadp->ad_oldblkno = oldadp->ad_oldblkno; newadp->ad_oldsize = oldadp->ad_oldsize; /* * If the old dependency had a fragment to free or had never * previously had a block allocated, then the new dependency * can immediately post its freefrag and adopt the old freefrag. * This action is done by swapping the freefrag dependencies. * The new dependency gains the old one's freefrag, and the * old one gets the new one and then immediately puts it on * the worklist when it is freed by free_allocdirect. It is * not possible to do this swap when the old dependency had a * non-zero size but no previous fragment to free. This condition * arises when the new block is an extension of the old block. * Here, the first part of the fragment allocated to the new * dependency is part of the block currently claimed on disk by * the old dependency, so cannot legitimately be freed until the * conditions for the new dependency are fulfilled. */ if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { freefrag = newadp->ad_freefrag; newadp->ad_freefrag = oldadp->ad_freefrag; oldadp->ad_freefrag = freefrag; } /* * If we are tracking a new directory-block allocation, * move it from the old allocdirect to the new allocdirect. */ if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { newdirblk = WK_NEWDIRBLK(wk); WORKLIST_REMOVE(&newdirblk->db_list); if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) panic("allocdirect_merge: extra newdirblk"); WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); } free_allocdirect(adphead, oldadp, 0); } /* * Allocate a new freefrag structure if needed. */ STATIC struct freefrag * newfreefrag(struct inode *ip, daddr_t blkno, long size) { struct freefrag *freefrag; struct fs *fs; if (blkno == 0) return (NULL); fs = ip->i_fs; if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) panic("newfreefrag: frag size"); freefrag = pool_get(&freefrag_pool, PR_WAITOK); freefrag->ff_list.wk_type = D_FREEFRAG; freefrag->ff_state = DIP(ip, uid) & ~ONWORKLIST; /* used below */ freefrag->ff_inum = ip->i_number; freefrag->ff_mnt = ITOV(ip)->v_mount; freefrag->ff_devvp = ip->i_devvp; freefrag->ff_blkno = blkno; freefrag->ff_fragsize = size; return (freefrag); } /* * This workitem de-allocates fragments that were replaced during * file block allocation. */ STATIC void handle_workitem_freefrag(struct freefrag *freefrag) { struct inode tip; struct ufs1_dinode dtip1; tip.i_vnode = NULL; tip.i_din1 = &dtip1; tip.i_fs = VFSTOUFS(freefrag->ff_mnt)->um_fs; tip.i_ump = VFSTOUFS(freefrag->ff_mnt); tip.i_dev = freefrag->ff_devvp->v_rdev; tip.i_number = freefrag->ff_inum; tip.i_ffs1_uid = freefrag->ff_state & ~ONWORKLIST; /* set above */ ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize); pool_put(&freefrag_pool, freefrag); } /* * Indirect block allocation dependencies. * * The same dependencies that exist for a direct block also exist when * a new block is allocated and pointed to by an entry in a block of * indirect pointers. The undo/redo states described above are also * used here. Because an indirect block contains many pointers that * may have dependencies, a second copy of the entire in-memory indirect * block is kept. The buffer cache copy is always completely up-to-date. * The second copy, which is used only as a source for disk writes, * contains only the safe pointers (i.e., those that have no remaining * update dependencies). The second copy is freed when all pointers * are safe. The cache is not allowed to replace indirect blocks with * pending update dependencies. If a buffer containing an indirect * block with dependencies is written, these routines will mark it * dirty again. It can only be successfully written once all the * dependencies are removed. The ffs_fsync routine in conjunction with * softdep_sync_metadata work together to get all the dependencies * removed so that a file can be successfully written to disk. Three * procedures are used when setting up indirect block pointer * dependencies. The division is necessary because of the organization * of the "balloc" routine and because of the distinction between file * pages and file metadata blocks. */ /* * Allocate a new allocindir structure. */ /* inode for file being extended */ /* offset of pointer in indirect block */ /* disk block number being added */ /* previous block number, 0 if none */ STATIC struct allocindir * newallocindir(struct inode *ip, int ptrno, daddr_t newblkno, daddr_t oldblkno) { struct allocindir *aip; aip = pool_get(&allocindir_pool, PR_WAITOK | PR_ZERO); aip->ai_list.wk_type = D_ALLOCINDIR; aip->ai_state = ATTACHED; aip->ai_offset = ptrno; aip->ai_newblkno = newblkno; aip->ai_oldblkno = oldblkno; aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); return (aip); } /* * Called just before setting an indirect block pointer * to a newly allocated file page. */ /* inode for file being extended */ /* allocated block number within file */ /* buffer with indirect blk referencing page */ /* offset of pointer in indirect block */ /* disk block number being added */ /* previous block number, 0 if none */ /* buffer holding allocated page */ void softdep_setup_allocindir_page(struct inode *ip, daddr_t lbn, struct buf *bp, int ptrno, daddr_t newblkno, daddr_t oldblkno, struct buf *nbp) { struct allocindir *aip; struct pagedep *pagedep; aip = newallocindir(ip, ptrno, newblkno, oldblkno); ACQUIRE_LOCK(&lk); /* * If we are allocating a directory page, then we must * allocate an associated pagedep to track additions and * deletions. */ if ((DIP(ip, mode) & IFMT) == IFDIR && pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); if (nbp == NULL) { /* * XXXUBC - Yes, I know how to fix this, but not right now. */ panic("softdep_setup_allocindir_page: Bonk art in the head"); } WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); FREE_LOCK(&lk); setup_allocindir_phase2(bp, ip, aip); } /* * Called just before setting an indirect block pointer to a * newly allocated indirect block. */ /* newly allocated indirect block */ /* inode for file being extended */ /* indirect block referencing allocated block */ /* offset of pointer in indirect block */ /* disk block number being added */ void softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip, struct buf *bp, int ptrno, daddr_t newblkno) { struct allocindir *aip; aip = newallocindir(ip, ptrno, newblkno, 0); ACQUIRE_LOCK(&lk); WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); FREE_LOCK(&lk); setup_allocindir_phase2(bp, ip, aip); } /* * Called to finish the allocation of the "aip" allocated * by one of the two routines above. */ /* in-memory copy of the indirect block */ /* inode for file being extended */ /* allocindir allocated by the above routines */ STATIC void setup_allocindir_phase2(struct buf *bp, struct inode *ip, struct allocindir *aip) { struct worklist *wk; struct indirdep *indirdep, *newindirdep; struct bmsafemap *bmsafemap; struct allocindir *oldaip; struct freefrag *freefrag; struct newblk *newblk; if (bp->b_lblkno >= 0) panic("setup_allocindir_phase2: not indir blk"); for (indirdep = NULL, newindirdep = NULL; ; ) { ACQUIRE_LOCK(&lk); LIST_FOREACH(wk, &bp->b_dep, wk_list) { if (wk->wk_type != D_INDIRDEP) continue; indirdep = WK_INDIRDEP(wk); break; } if (indirdep == NULL && newindirdep) { indirdep = newindirdep; WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); newindirdep = NULL; } FREE_LOCK(&lk); if (indirdep) { if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, &newblk) == 0) panic("setup_allocindir: lost block"); ACQUIRE_LOCK(&lk); if (newblk->nb_state == DEPCOMPLETE) { aip->ai_state |= DEPCOMPLETE; aip->ai_buf = NULL; } else { bmsafemap = newblk->nb_bmsafemap; aip->ai_buf = bmsafemap->sm_buf; LIST_REMOVE(newblk, nb_deps); LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, aip, ai_deps); } LIST_REMOVE(newblk, nb_hash); pool_put(&newblk_pool, newblk); aip->ai_indirdep = indirdep; /* * Check to see if there is an existing dependency * for this block. If there is, merge the old * dependency into the new one. */ if (aip->ai_oldblkno == 0) oldaip = NULL; else LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) if (oldaip->ai_offset == aip->ai_offset) break; freefrag = NULL; if (oldaip != NULL) { if (oldaip->ai_newblkno != aip->ai_oldblkno) { FREE_LOCK(&lk); panic("setup_allocindir_phase2: blkno"); } aip->ai_oldblkno = oldaip->ai_oldblkno; freefrag = aip->ai_freefrag; aip->ai_freefrag = oldaip->ai_freefrag; oldaip->ai_freefrag = NULL; free_allocindir(oldaip, NULL); } LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); if (ip->i_ump->um_fstype == UM_UFS1) ((int32_t *)indirdep->ir_savebp->b_data) [aip->ai_offset] = aip->ai_oldblkno; else ((int64_t *)indirdep->ir_savebp->b_data) [aip->ai_offset] = aip->ai_oldblkno; FREE_LOCK(&lk); if (freefrag != NULL) handle_workitem_freefrag(freefrag); } if (newindirdep) { if (indirdep->ir_savebp != NULL) brelse(newindirdep->ir_savebp); WORKITEM_FREE(newindirdep, D_INDIRDEP); } if (indirdep) break; newindirdep = pool_get(&indirdep_pool, PR_WAITOK); newindirdep->ir_list.wk_type = D_INDIRDEP; newindirdep->ir_state = ATTACHED; if (ip->i_ump->um_fstype == UM_UFS1) newindirdep->ir_state |= UFS1FMT; LIST_INIT(&newindirdep->ir_deplisthd); LIST_INIT(&newindirdep->ir_donehd); if (bp->b_blkno == bp->b_lblkno) { VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL); } newindirdep->ir_savebp = getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); #if 0 BUF_KERNPROC(newindirdep->ir_savebp); #endif memcpy(newindirdep->ir_savebp->b_data, bp->b_data, bp->b_bcount); } } /* * Block de-allocation dependencies. * * When blocks are de-allocated, the on-disk pointers must be nullified before * the blocks are made available for use by other files. (The true * requirement is that old pointers must be nullified before new on-disk * pointers are set. We chose this slightly more stringent requirement to * reduce complexity.) Our implementation handles this dependency by updating * the inode (or indirect block) appropriately but delaying the actual block * de-allocation (i.e., freemap and free space count manipulation) until * after the updated versions reach stable storage. After the disk is * updated, the blocks can be safely de-allocated whenever it is convenient. * This implementation handles only the common case of reducing a file's * length to zero. Other cases are handled by the conventional synchronous * write approach. * * The ffs implementation with which we worked double-checks * the state of the block pointers and file size as it reduces * a file's length. Some of this code is replicated here in our * soft updates implementation. The freeblks->fb_chkcnt field is * used to transfer a part of this information to the procedure * that eventually de-allocates the blocks. * * This routine should be called from the routine that shortens * a file's length, before the inode's size or block pointers * are modified. It will save the block pointer information for * later release and zero the inode so that the calling routine * can release it. */ /* The inode whose length is to be reduced */ /* The new length for the file */ void softdep_setup_freeblocks(struct inode *ip, off_t length) { struct freeblks *freeblks; struct inodedep *inodedep; struct allocdirect *adp; struct vnode *vp; struct buf *bp; struct fs *fs; int i, delay, error; fs = ip->i_fs; if (length != 0) panic("softdep_setup_freeblocks: non-zero length"); freeblks = pool_get(&freeblks_pool, PR_WAITOK | PR_ZERO); freeblks->fb_list.wk_type = D_FREEBLKS; freeblks->fb_state = ATTACHED; freeblks->fb_uid = DIP(ip, uid); freeblks->fb_previousinum = ip->i_number; freeblks->fb_devvp = ip->i_devvp; freeblks->fb_mnt = ITOV(ip)->v_mount; freeblks->fb_oldsize = DIP(ip, size); freeblks->fb_newsize = length; freeblks->fb_chkcnt = DIP(ip, blocks); for (i = 0; i < NDADDR; i++) { freeblks->fb_dblks[i] = DIP(ip, db[i]); DIP_ASSIGN(ip, db[i], 0); } for (i = 0; i < NIADDR; i++) { freeblks->fb_iblks[i] = DIP(ip, ib[i]); DIP_ASSIGN(ip, ib[i], 0); } DIP_ASSIGN(ip, blocks, 0); DIP_ASSIGN(ip, size, 0); /* * Push the zero'ed inode to to its disk buffer so that we are free * to delete its dependencies below. Once the dependencies are gone * the buffer can be safely released. */ if ((error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, &bp)) != 0) softdep_error("softdep_setup_freeblocks", error); if (ip->i_ump->um_fstype == UM_UFS1) *((struct ufs1_dinode *) bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; else *((struct ufs2_dinode *) bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; /* * Find and eliminate any inode dependencies. */ ACQUIRE_LOCK(&lk); (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); if ((inodedep->id_state & IOSTARTED) != 0) { FREE_LOCK(&lk); panic("softdep_setup_freeblocks: inode busy"); } /* * Add the freeblks structure to the list of operations that * must await the zero'ed inode being written to disk. If we * still have a bitmap dependency (delay == 0), then the inode * has never been written to disk, so we can process the * freeblks below once we have deleted the dependencies. */ delay = (inodedep->id_state & DEPCOMPLETE); if (delay) WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); /* * Because the file length has been truncated to zero, any * pending block allocation dependency structures associated * with this inode are obsolete and can simply be de-allocated. * We must first merge the two dependency lists to get rid of * any duplicate freefrag structures, then purge the merged list. * If we still have a bitmap dependency, then the inode has never * been written to disk, so we can free any fragments without delay. */ merge_inode_lists(inodedep); while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) free_allocdirect(&inodedep->id_inoupdt, adp, delay); FREE_LOCK(&lk); bdwrite(bp); /* * We must wait for any I/O in progress to finish so that * all potential buffers on the dirty list will be visible. * Once they are all there, walk the list and get rid of * any dependencies. */ vp = ITOV(ip); ACQUIRE_LOCK(&lk); drain_output(vp, 1); while ((bp = LIST_FIRST(&vp->v_dirtyblkhd))) { if (getdirtybuf(bp, MNT_WAIT) <= 0) break; (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); deallocate_dependencies(bp, inodedep); bp->b_flags |= B_INVAL | B_NOCACHE; FREE_LOCK(&lk); brelse(bp); ACQUIRE_LOCK(&lk); } if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) (void) free_inodedep(inodedep); if (delay) { freeblks->fb_state |= DEPCOMPLETE; /* * If the inode with zeroed block pointers is now on disk we * can start freeing blocks. Add freeblks to the worklist * instead of calling handle_workitem_freeblocks() directly as * it is more likely that additional IO is needed to complete * the request than in the !delay case. */ if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) add_to_worklist(&freeblks->fb_list); } FREE_LOCK(&lk); /* * If the inode has never been written to disk (delay == 0), * then we can process the freeblks now that we have deleted * the dependencies. */ if (!delay) handle_workitem_freeblocks(freeblks); } /* * Reclaim any dependency structures from a buffer that is about to * be reallocated to a new vnode. The buffer must be locked, thus, * no I/O completion operations can occur while we are manipulating * its associated dependencies. The mutex is held so that other I/O's * associated with related dependencies do not occur. */ STATIC void deallocate_dependencies(struct buf *bp, struct inodedep *inodedep) { struct worklist *wk; struct indirdep *indirdep; struct allocindir *aip; struct pagedep *pagedep; struct dirrem *dirrem; struct diradd *dap; int i; while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { switch (wk->wk_type) { case D_INDIRDEP: indirdep = WK_INDIRDEP(wk); /* * None of the indirect pointers will ever be visible, * so they can simply be tossed. GOINGAWAY ensures * that allocated pointers will be saved in the buffer * cache until they are freed. Note that they will * only be able to be found by their physical address * since the inode mapping the logical address will * be gone. The save buffer used for the safe copy * was allocated in setup_allocindir_phase2 using * the physical address so it could be used for this * purpose. Hence we swap the safe copy with the real * copy, allowing the safe copy to be freed and holding * on to the real copy for later use in indir_trunc. */ if (indirdep->ir_state & GOINGAWAY) { FREE_LOCK(&lk); panic("deallocate_dependencies: already gone"); } indirdep->ir_state |= GOINGAWAY; while ((aip = LIST_FIRST(&indirdep->ir_deplisthd))) free_allocindir(aip, inodedep); if (bp->b_lblkno >= 0 || bp->b_blkno != indirdep->ir_savebp->b_lblkno) { FREE_LOCK(&lk); panic("deallocate_dependencies: not indir"); } memcpy(indirdep->ir_savebp->b_data, bp->b_data, bp->b_bcount); WORKLIST_REMOVE(wk); WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); continue; case D_PAGEDEP: pagedep = WK_PAGEDEP(wk); /* * None of the directory additions will ever be * visible, so they can simply be tossed. */ for (i = 0; i < DAHASHSZ; i++) while ((dap = LIST_FIRST(&pagedep->pd_diraddhd[i]))) free_diradd(dap); while ((dap = LIST_FIRST(&pagedep->pd_pendinghd))) free_diradd(dap); /* * Copy any directory remove dependencies to the list * to be processed after the zero'ed inode is written. * If the inode has already been written, then they * can be dumped directly onto the work list. */ while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd))) { LIST_REMOVE(dirrem, dm_next); dirrem->dm_dirinum = pagedep->pd_ino; if (inodedep == NULL || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) add_to_worklist(&dirrem->dm_list); else WORKLIST_INSERT(&inodedep->id_bufwait, &dirrem->dm_list); } if ((pagedep->pd_state & NEWBLOCK) != 0) { LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) if (wk->wk_type == D_NEWDIRBLK && WK_NEWDIRBLK(wk)->db_pagedep == pagedep) break; if (wk != NULL) { WORKLIST_REMOVE(wk); free_newdirblk(WK_NEWDIRBLK(wk)); } else { FREE_LOCK(&lk); panic("deallocate_dependencies: " "lost pagedep"); } } WORKLIST_REMOVE(&pagedep->pd_list); LIST_REMOVE(pagedep, pd_hash); WORKITEM_FREE(pagedep, D_PAGEDEP); continue; case D_ALLOCINDIR: free_allocindir(WK_ALLOCINDIR(wk), inodedep); continue; case D_ALLOCDIRECT: case D_INODEDEP: FREE_LOCK(&lk); panic("deallocate_dependencies: Unexpected type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ default: FREE_LOCK(&lk); panic("deallocate_dependencies: Unknown type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } } /* * Free an allocdirect. Generate a new freefrag work request if appropriate. * This routine must be called with splbio interrupts blocked. */ STATIC void free_allocdirect(struct allocdirectlst *adphead, struct allocdirect *adp, int delay) { struct newdirblk *newdirblk; struct worklist *wk; splassert(IPL_BIO); #ifdef DEBUG if (lk.lkt_held == -1) panic("free_allocdirect: lock not held"); #endif if ((adp->ad_state & DEPCOMPLETE) == 0) LIST_REMOVE(adp, ad_deps); TAILQ_REMOVE(adphead, adp, ad_next); if ((adp->ad_state & COMPLETE) == 0) WORKLIST_REMOVE(&adp->ad_list); if (adp->ad_freefrag != NULL) { if (delay) WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, &adp->ad_freefrag->ff_list); else add_to_worklist(&adp->ad_freefrag->ff_list); } if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { newdirblk = WK_NEWDIRBLK(wk); WORKLIST_REMOVE(&newdirblk->db_list); if (LIST_FIRST(&adp->ad_newdirblk) != NULL) panic("free_allocdirect: extra newdirblk"); if (delay) WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, &newdirblk->db_list); else free_newdirblk(newdirblk); } WORKITEM_FREE(adp, D_ALLOCDIRECT); } /* * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. * This routine must be called with splbio interrupts blocked. */ void free_newdirblk(struct newdirblk *newdirblk) { struct pagedep *pagedep; struct diradd *dap; int i; splassert(IPL_BIO); #ifdef DEBUG if (lk.lkt_held == -1) panic("free_newdirblk: lock not held"); #endif /* * If the pagedep is still linked onto the directory buffer * dependency chain, then some of the entries on the * pd_pendinghd list may not be committed to disk yet. In * this case, we will simply clear the NEWBLOCK flag and * let the pd_pendinghd list be processed when the pagedep * is next written. If the pagedep is no longer on the buffer * dependency chain, then all the entries on the pd_pending * list are committed to disk and we can free them here. */ pagedep = newdirblk->db_pagedep; pagedep->pd_state &= ~NEWBLOCK; if ((pagedep->pd_state & ONWORKLIST) == 0) while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) free_diradd(dap); /* * If no dependencies remain, the pagedep will be freed. */ for (i = 0; i < DAHASHSZ; i++) if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) break; if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { LIST_REMOVE(pagedep, pd_hash); WORKITEM_FREE(pagedep, D_PAGEDEP); } WORKITEM_FREE(newdirblk, D_NEWDIRBLK); } /* * Prepare an inode to be freed. The actual free operation is not * done until the zero'ed inode has been written to disk. */ void softdep_freefile(struct vnode *pvp, ufsino_t ino, mode_t mode) { struct inode *ip = VTOI(pvp); struct inodedep *inodedep; struct freefile *freefile; /* * This sets up the inode de-allocation dependency. */ freefile = pool_get(&freefile_pool, PR_WAITOK); freefile->fx_list.wk_type = D_FREEFILE; freefile->fx_list.wk_state = 0; freefile->fx_mode = mode; freefile->fx_oldinum = ino; freefile->fx_devvp = ip->i_devvp; freefile->fx_mnt = ITOV(ip)->v_mount; /* * If the inodedep does not exist, then the zero'ed inode has * been written to disk. If the allocated inode has never been * written to disk, then the on-disk inode is zero'ed. In either * case we can free the file immediately. */ ACQUIRE_LOCK(&lk); if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || check_inode_unwritten(inodedep)) { FREE_LOCK(&lk); handle_workitem_freefile(freefile); return; } WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); FREE_LOCK(&lk); } /* * Check to see if an inode has never been written to disk. If * so free the inodedep and return success, otherwise return failure. * This routine must be called with splbio interrupts blocked. * * If we still have a bitmap dependency, then the inode has never * been written to disk. Drop the dependency as it is no longer * necessary since the inode is being deallocated. We set the * ALLCOMPLETE flags since the bitmap now properly shows that the * inode is not allocated. Even if the inode is actively being * written, it has been rolled back to its zero'ed state, so we * are ensured that a zero inode is what is on the disk. For short * lived files, this change will usually result in removing all the * dependencies from the inode so that it can be freed immediately. */ STATIC int check_inode_unwritten(struct inodedep *inodedep) { splassert(IPL_BIO); if ((inodedep->id_state & DEPCOMPLETE) != 0 || LIST_FIRST(&inodedep->id_pendinghd) != NULL || LIST_FIRST(&inodedep->id_bufwait) != NULL || LIST_FIRST(&inodedep->id_inowait) != NULL || TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || inodedep->id_nlinkdelta != 0) return (0); inodedep->id_state |= ALLCOMPLETE; LIST_REMOVE(inodedep, id_deps); inodedep->id_buf = NULL; if (inodedep->id_state & ONWORKLIST) WORKLIST_REMOVE(&inodedep->id_list); if (inodedep->id_savedino1 != NULL) { free(inodedep->id_savedino1, M_INODEDEP, 0); inodedep->id_savedino1 = NULL; } if (free_inodedep(inodedep) == 0) { FREE_LOCK(&lk); panic("check_inode_unwritten: busy inode"); } return (1); } /* * Try to free an inodedep structure. Return 1 if it could be freed. */ STATIC int free_inodedep(struct inodedep *inodedep) { if ((inodedep->id_state & ONWORKLIST) != 0 || (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || LIST_FIRST(&inodedep->id_pendinghd) != NULL || LIST_FIRST(&inodedep->id_bufwait) != NULL || LIST_FIRST(&inodedep->id_inowait) != NULL || TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) return (0); LIST_REMOVE(inodedep, id_hash); WORKITEM_FREE(inodedep, D_INODEDEP); num_inodedep -= 1; return (1); } /* * This workitem routine performs the block de-allocation. * The workitem is added to the pending list after the updated * inode block has been written to disk. As mentioned above, * checks regarding the number of blocks de-allocated (compared * to the number of blocks allocated for the file) are also * performed in this function. */ STATIC void handle_workitem_freeblocks(struct freeblks *freeblks) { struct inode tip; daddr_t bn; union { struct ufs1_dinode di1; struct ufs2_dinode di2; } di; struct fs *fs; int i, level, bsize; long nblocks, blocksreleased = 0; int error, allerror = 0; daddr_t baselbns[NIADDR], tmpval; if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UM_UFS1) tip.i_din1 = &di.di1; else tip.i_din2 = &di.di2; tip.i_fs = fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; tip.i_number = freeblks->fb_previousinum; tip.i_ump = VFSTOUFS(freeblks->fb_mnt); tip.i_dev = freeblks->fb_devvp->v_rdev; DIP_ASSIGN(&tip, size, freeblks->fb_oldsize); DIP_ASSIGN(&tip, uid, freeblks->fb_uid); tip.i_vnode = NULL; tmpval = 1; baselbns[0] = NDADDR; for (i = 1; i < NIADDR; i++) { tmpval *= NINDIR(fs); baselbns[i] = baselbns[i - 1] + tmpval; } nblocks = btodb(fs->fs_bsize); blocksreleased = 0; /* * Indirect blocks first. */ for (level = (NIADDR - 1); level >= 0; level--) { if ((bn = freeblks->fb_iblks[level]) == 0) continue; if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level, baselbns[level], &blocksreleased)) != 0) allerror = error; ffs_blkfree(&tip, bn, fs->fs_bsize); blocksreleased += nblocks; } /* * All direct blocks or frags. */ for (i = (NDADDR - 1); i >= 0; i--) { if ((bn = freeblks->fb_dblks[i]) == 0) continue; bsize = blksize(fs, &tip, i); ffs_blkfree(&tip, bn, bsize); blocksreleased += btodb(bsize); } #ifdef DIAGNOSTIC if (freeblks->fb_chkcnt != blocksreleased) printf("handle_workitem_freeblocks: block count\n"); if (allerror) softdep_error("handle_workitem_freeblks", allerror); #endif /* DIAGNOSTIC */ WORKITEM_FREE(freeblks, D_FREEBLKS); } /* * Release blocks associated with the inode ip and stored in the indirect * block dbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. */ STATIC int indir_trunc(struct inode *ip, daddr_t dbn, int level, daddr_t lbn, long *countp) { struct buf *bp; int32_t *bap1 = NULL; int64_t nb, *bap2 = NULL; struct fs *fs; struct worklist *wk; struct indirdep *indirdep; int i, lbnadd, nblocks, ufs1fmt; int error, allerror = 0; fs = ip->i_fs; lbnadd = 1; for (i = level; i > 0; i--) lbnadd *= NINDIR(fs); /* * Get buffer of block pointers to be freed. This routine is not * called until the zero'ed inode has been written, so it is safe * to free blocks as they are encountered. Because the inode has * been zero'ed, calls to bmap on these blocks will fail. So, we * have to use the on-disk address and the block device for the * filesystem to look them up. If the file was deleted before its * indirect blocks were all written to disk, the routine that set * us up (deallocate_dependencies) will have arranged to leave * a complete copy of the indirect block in memory for our use. * Otherwise we have to read the blocks in from the disk. */ ACQUIRE_LOCK(&lk); if ((bp = incore(ip->i_devvp, dbn)) != NULL && (wk = LIST_FIRST(&bp->b_dep)) != NULL) { if (wk->wk_type != D_INDIRDEP || (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || (indirdep->ir_state & GOINGAWAY) == 0) { FREE_LOCK(&lk); panic("indir_trunc: lost indirdep"); } WORKLIST_REMOVE(wk); WORKITEM_FREE(indirdep, D_INDIRDEP); if (LIST_FIRST(&bp->b_dep) != NULL) { FREE_LOCK(&lk); panic("indir_trunc: dangling dep"); } FREE_LOCK(&lk); } else { FREE_LOCK(&lk); error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, &bp); if (error) return (error); } /* * Recursively free indirect blocks. */ if (ip->i_ump->um_fstype == UM_UFS1) { ufs1fmt = 1; bap1 = (int32_t *)bp->b_data; } else { ufs1fmt = 0; bap2 = (int64_t *)bp->b_data; } nblocks = btodb(fs->fs_bsize); for (i = NINDIR(fs) - 1; i >= 0; i--) { if (ufs1fmt) nb = bap1[i]; else nb = bap2[i]; if (nb == 0) continue; if (level != 0) { if ((error = indir_trunc(ip, fsbtodb(fs, nb), level - 1, lbn + (i * lbnadd), countp)) != 0) allerror = error; } ffs_blkfree(ip, nb, fs->fs_bsize); *countp += nblocks; } bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); return (allerror); } /* * Free an allocindir. * This routine must be called with splbio interrupts blocked. */ STATIC void free_allocindir(struct allocindir *aip, struct inodedep *inodedep) { struct freefrag *freefrag; splassert(IPL_BIO); #ifdef DEBUG if (lk.lkt_held == -1) panic("free_allocindir: lock not held"); #endif if ((aip->ai_state & DEPCOMPLETE) == 0) LIST_REMOVE(aip, ai_deps); if (aip->ai_state & ONWORKLIST) WORKLIST_REMOVE(&aip->ai_list); LIST_REMOVE(aip, ai_next); if ((freefrag = aip->ai_freefrag) != NULL) { if (inodedep == NULL) add_to_worklist(&freefrag->ff_list); else WORKLIST_INSERT(&inodedep->id_bufwait, &freefrag->ff_list); } WORKITEM_FREE(aip, D_ALLOCINDIR); } /* * Directory entry addition dependencies. * * When adding a new directory entry, the inode (with its incremented link * count) must be written to disk before the directory entry's pointer to it. * Also, if the inode is newly allocated, the corresponding freemap must be * updated (on disk) before the directory entry's pointer. These requirements * are met via undo/redo on the directory entry's pointer, which consists * simply of the inode number. * * As directory entries are added and deleted, the free space within a * directory block can become fragmented. The ufs file system will compact * a fragmented directory block to make space for a new entry. When this * occurs, the offsets of previously added entries change. Any "diradd" * dependency structures corresponding to these entries must be updated with * the new offsets. */ /* * This routine is called after the in-memory inode's link * count has been incremented, but before the directory entry's * pointer to the inode has been set. */ /* buffer containing directory block */ /* inode for directory */ /* offset of new entry in directory */ /* inode referenced by new directory entry */ /* non-NULL => contents of new mkdir */ /* entry is in a newly allocated block */ int softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset, long newinum, struct buf *newdirbp, int isnewblk) { int offset; /* offset of new entry within directory block */ daddr_t lbn; /* block in directory containing new entry */ struct fs *fs; struct diradd *dap; struct allocdirect *adp; struct pagedep *pagedep; struct inodedep *inodedep; struct newdirblk *newdirblk = NULL; struct mkdir *mkdir1, *mkdir2; fs = dp->i_fs; lbn = lblkno(fs, diroffset); offset = blkoff(fs, diroffset); dap = pool_get(&diradd_pool, PR_WAITOK | PR_ZERO); dap->da_list.wk_type = D_DIRADD; dap->da_offset = offset; dap->da_newinum = newinum; dap->da_state = ATTACHED; if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { newdirblk = pool_get(&newdirblk_pool, PR_WAITOK); newdirblk->db_list.wk_type = D_NEWDIRBLK; newdirblk->db_state = 0; } if (newdirbp == NULL) { dap->da_state |= DEPCOMPLETE; ACQUIRE_LOCK(&lk); } else { dap->da_state |= MKDIR_BODY | MKDIR_PARENT; mkdir1 = pool_get(&mkdir_pool, PR_WAITOK); mkdir1->md_list.wk_type = D_MKDIR; mkdir1->md_state = MKDIR_BODY; mkdir1->md_diradd = dap; mkdir2 = pool_get(&mkdir_pool, PR_WAITOK); mkdir2->md_list.wk_type = D_MKDIR; mkdir2->md_state = MKDIR_PARENT; mkdir2->md_diradd = dap; /* * Dependency on "." and ".." being written to disk. */ mkdir1->md_buf = newdirbp; ACQUIRE_LOCK(&lk); LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); FREE_LOCK(&lk); bdwrite(newdirbp); /* * Dependency on link count increase for parent directory */ ACQUIRE_LOCK(&lk); if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { dap->da_state &= ~MKDIR_PARENT; WORKITEM_FREE(mkdir2, D_MKDIR); } else { LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); } } /* * Link into parent directory pagedep to await its being written. */ if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); dap->da_pagedep = pagedep; LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, da_pdlist); /* * Link into its inodedep. Put it on the id_bufwait list if the inode * is not yet written. If it is written, do the post-inode write * processing to put it on the id_pendinghd list. */ (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) diradd_inode_written(dap, inodedep); else WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); if (isnewblk) { /* * Directories growing into indirect blocks are rare * enough and the frequency of new block allocation * in those cases even more rare, that we choose not * to bother tracking them. Rather we simply force the * new directory entry to disk. */ if (lbn >= NDADDR) { FREE_LOCK(&lk); /* * We only have a new allocation when at the * beginning of a new block, not when we are * expanding into an existing block. */ if (blkoff(fs, diroffset) == 0) return (1); return (0); } /* * We only have a new allocation when at the beginning * of a new fragment, not when we are expanding into an * existing fragment. Also, there is nothing to do if we * are already tracking this block. */ if (fragoff(fs, diroffset) != 0) { FREE_LOCK(&lk); return (0); } if ((pagedep->pd_state & NEWBLOCK) != 0) { WORKITEM_FREE(newdirblk, D_NEWDIRBLK); FREE_LOCK(&lk); return (0); } /* * Find our associated allocdirect and have it track us. */ if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) panic("softdep_setup_directory_add: lost inodedep"); adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); if (adp == NULL || adp->ad_lbn != lbn) { FREE_LOCK(&lk); panic("softdep_setup_directory_add: lost entry"); } pagedep->pd_state |= NEWBLOCK; newdirblk->db_pagedep = pagedep; WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); } FREE_LOCK(&lk); return (0); } /* * This procedure is called to change the offset of a directory * entry when compacting a directory block which must be owned * exclusively by the caller. Note that the actual entry movement * must be done in this procedure to ensure that no I/O completions * occur while the move is in progress. */ /* inode for directory */ /* address of dp->i_offset */ /* address of old directory location */ /* address of new directory location */ /* size of directory entry */ void softdep_change_directoryentry_offset(struct inode *dp, caddr_t base, caddr_t oldloc, caddr_t newloc, int entrysize) { int offset, oldoffset, newoffset; struct pagedep *pagedep; struct diradd *dap; daddr_t lbn; ACQUIRE_LOCK(&lk); lbn = lblkno(dp->i_fs, dp->i_offset); offset = blkoff(dp->i_fs, dp->i_offset); if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) goto done; oldoffset = offset + (oldloc - base); newoffset = offset + (newloc - base); LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { if (dap->da_offset != oldoffset) continue; dap->da_offset = newoffset; if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) break; LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], dap, da_pdlist); break; } if (dap == NULL) { LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { if (dap->da_offset == oldoffset) { dap->da_offset = newoffset; break; } } } done: memmove(newloc, oldloc, entrysize); FREE_LOCK(&lk); } /* * Free a diradd dependency structure. This routine must be called * with splbio interrupts blocked. */ STATIC void free_diradd(struct diradd *dap) { struct dirrem *dirrem; struct pagedep *pagedep; struct inodedep *inodedep; struct mkdir *mkdir, *nextmd; splassert(IPL_BIO); #ifdef DEBUG if (lk.lkt_held == -1) panic("free_diradd: lock not held"); #endif WORKLIST_REMOVE(&dap->da_list); LIST_REMOVE(dap, da_pdlist); if ((dap->da_state & DIRCHG) == 0) { pagedep = dap->da_pagedep; } else { dirrem = dap->da_previous; pagedep = dirrem->dm_pagedep; dirrem->dm_dirinum = pagedep->pd_ino; add_to_worklist(&dirrem->dm_list); } if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 0, &inodedep) != 0) (void) free_inodedep(inodedep); if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { nextmd = LIST_NEXT(mkdir, md_mkdirs); if (mkdir->md_diradd != dap) continue; dap->da_state &= ~mkdir->md_state; WORKLIST_REMOVE(&mkdir->md_list); LIST_REMOVE(mkdir, md_mkdirs); WORKITEM_FREE(mkdir, D_MKDIR); } if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { FREE_LOCK(&lk); panic("free_diradd: unfound ref"); } } WORKITEM_FREE(dap, D_DIRADD); } /* * Directory entry removal dependencies. * * When removing a directory entry, the entry's inode pointer must be * zero'ed on disk before the corresponding inode's link count is decremented * (possibly freeing the inode for re-use). This dependency is handled by * updating the directory entry but delaying the inode count reduction until * after the directory block has been written to disk. After this point, the * inode count can be decremented whenever it is convenient. */ /* * This routine should be called immediately after removing * a directory entry. The inode's link count should not be * decremented by the calling procedure -- the soft updates * code will do this task when it is safe. */ /* buffer containing directory block */ /* inode for the directory being modified */ /* inode for directory entry being removed */ /* indicates if doing RMDIR */ void softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip, int isrmdir) { struct dirrem *dirrem, *prevdirrem; /* * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. */ dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); /* * If the COMPLETE flag is clear, then there were no active * entries and we want to roll back to a zeroed entry until * the new inode is committed to disk. If the COMPLETE flag is * set then we have deleted an entry that never made it to * disk. If the entry we deleted resulted from a name change, * then the old name still resides on disk. We cannot delete * its inode (returned to us in prevdirrem) until the zeroed * directory entry gets to disk. The new inode has never been * referenced on the disk, so can be deleted immediately. */ if ((dirrem->dm_state & COMPLETE) == 0) { LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, dm_next); FREE_LOCK(&lk); } else { if (prevdirrem != NULL) LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, prevdirrem, dm_next); dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; FREE_LOCK(&lk); handle_workitem_remove(dirrem); } } STATIC long num_dirrem; /* number of dirrem allocated */ /* * Allocate a new dirrem if appropriate and return it along with * its associated pagedep. Called without a lock, returns with lock. */ /* buffer containing directory block */ /* inode for the directory being modified */ /* inode for directory entry being removed */ /* indicates if doing RMDIR */ /* previously referenced inode, if any */ STATIC struct dirrem * newdirrem(struct buf *bp, struct inode *dp, struct inode *ip, int isrmdir, struct dirrem **prevdirremp) { int offset; daddr_t lbn; struct diradd *dap; struct dirrem *dirrem; struct pagedep *pagedep; /* * Whiteouts have no deletion dependencies. */ if (ip == NULL) panic("newdirrem: whiteout"); /* * If we are over our limit, try to improve the situation. * Limiting the number of dirrem structures will also limit * the number of freefile and freeblks structures. */ if (num_dirrem > max_softdeps / 2) (void) request_cleanup(FLUSH_REMOVE, 0); num_dirrem += 1; dirrem = pool_get(&dirrem_pool, PR_WAITOK | PR_ZERO); dirrem->dm_list.wk_type = D_DIRREM; dirrem->dm_state = isrmdir ? RMDIR : 0; dirrem->dm_mnt = ITOV(ip)->v_mount; dirrem->dm_oldinum = ip->i_number; *prevdirremp = NULL; ACQUIRE_LOCK(&lk); lbn = lblkno(dp->i_fs, dp->i_offset); offset = blkoff(dp->i_fs, dp->i_offset); if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); dirrem->dm_pagedep = pagedep; /* * Check for a diradd dependency for the same directory entry. * If present, then both dependencies become obsolete and can * be de-allocated. Check for an entry on both the pd_dirraddhd * list and the pd_pendinghd list. */ LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) if (dap->da_offset == offset) break; if (dap == NULL) { LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) if (dap->da_offset == offset) break; if (dap == NULL) return (dirrem); } /* * Must be ATTACHED at this point. */ if ((dap->da_state & ATTACHED) == 0) { FREE_LOCK(&lk); panic("newdirrem: not ATTACHED"); } if (dap->da_newinum != ip->i_number) { FREE_LOCK(&lk); panic("newdirrem: inum %u should be %u", ip->i_number, dap->da_newinum); } /* * If we are deleting a changed name that never made it to disk, * then return the dirrem describing the previous inode (which * represents the inode currently referenced from this entry on disk). */ if ((dap->da_state & DIRCHG) != 0) { *prevdirremp = dap->da_previous; dap->da_state &= ~DIRCHG; dap->da_pagedep = pagedep; } /* * We are deleting an entry that never made it to disk. * Mark it COMPLETE so we can delete its inode immediately. */ dirrem->dm_state |= COMPLETE; free_diradd(dap); return (dirrem); } /* * Directory entry change dependencies. * * Changing an existing directory entry requires that an add operation * be completed first followed by a deletion. The semantics for the addition * are identical to the description of adding a new entry above except * that the rollback is to the old inode number rather than zero. Once * the addition dependency is completed, the removal is done as described * in the removal routine above. */ /* * This routine should be called immediately after changing * a directory entry. The inode's link count should not be * decremented by the calling procedure -- the soft updates * code will perform this task when it is safe. */ /* buffer containing directory block */ /* inode for the directory being modified */ /* inode for directory entry being removed */ /* new inode number for changed entry */ /* indicates if doing RMDIR */ void softdep_setup_directory_change(struct buf *bp, struct inode *dp, struct inode *ip, long newinum, int isrmdir) { int offset; struct diradd *dap; struct dirrem *dirrem, *prevdirrem; struct pagedep *pagedep; struct inodedep *inodedep; offset = blkoff(dp->i_fs, dp->i_offset); dap = pool_get(&diradd_pool, PR_WAITOK | PR_ZERO); dap->da_list.wk_type = D_DIRADD; dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; dap->da_offset = offset; dap->da_newinum = newinum; /* * Allocate a new dirrem and ACQUIRE_LOCK. */ dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); pagedep = dirrem->dm_pagedep; /* * The possible values for isrmdir: * 0 - non-directory file rename * 1 - directory rename within same directory * inum - directory rename to new directory of given inode number * When renaming to a new directory, we are both deleting and * creating a new directory entry, so the link count on the new * directory should not change. Thus we do not need the followup * dirrem which is usually done in handle_workitem_remove. We set * the DIRCHG flag to tell handle_workitem_remove to skip the * followup dirrem. */ if (isrmdir > 1) dirrem->dm_state |= DIRCHG; /* * If the COMPLETE flag is clear, then there were no active * entries and we want to roll back to the previous inode until * the new inode is committed to disk. If the COMPLETE flag is * set, then we have deleted an entry that never made it to disk. * If the entry we deleted resulted from a name change, then the old * inode reference still resides on disk. Any rollback that we do * needs to be to that old inode (returned to us in prevdirrem). If * the entry we deleted resulted from a create, then there is * no entry on the disk, so we want to roll back to zero rather * than the uncommitted inode. In either of the COMPLETE cases we * want to immediately free the unwritten and unreferenced inode. */ if ((dirrem->dm_state & COMPLETE) == 0) { dap->da_previous = dirrem; } else { if (prevdirrem != NULL) { dap->da_previous = prevdirrem; } else { dap->da_state &= ~DIRCHG; dap->da_pagedep = pagedep; } dirrem->dm_dirinum = pagedep->pd_ino; add_to_worklist(&dirrem->dm_list); } /* * Link into its inodedep. Put it on the id_bufwait list if the inode * is not yet written. If it is written, do the post-inode write * processing to put it on the id_pendinghd list. */ if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { dap->da_state |= COMPLETE; LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); } else { LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, da_pdlist); WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); } FREE_LOCK(&lk); } /* * Called whenever the link count on an inode is changed. * It creates an inode dependency so that the new reference(s) * to the inode cannot be committed to disk until the updated * inode has been written. */ /* the inode with the increased link count */ /* do background work or not */ void softdep_change_linkcnt(struct inode *ip, int nodelay) { struct inodedep *inodedep; int flags; /* * If requested, do not allow background work to happen. */ flags = DEPALLOC; if (nodelay) flags |= NODELAY; ACQUIRE_LOCK(&lk); (void) inodedep_lookup(ip->i_fs, ip->i_number, flags, &inodedep); if (DIP(ip, nlink) < ip->i_effnlink) { FREE_LOCK(&lk); panic("softdep_change_linkcnt: bad delta"); } inodedep->id_nlinkdelta = DIP(ip, nlink) - ip->i_effnlink; FREE_LOCK(&lk); } /* * This workitem decrements the inode's link count. * If the link count reaches zero, the file is removed. */ STATIC void handle_workitem_remove(struct dirrem *dirrem) { struct proc *p = CURPROC; /* XXX */ struct inodedep *inodedep; struct vnode *vp; struct inode *ip; ufsino_t oldinum; int error; if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) { softdep_error("handle_workitem_remove: vget", error); return; } ip = VTOI(vp); ACQUIRE_LOCK(&lk); if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0) { FREE_LOCK(&lk); panic("handle_workitem_remove: lost inodedep"); } /* * Normal file deletion. */ if ((dirrem->dm_state & RMDIR) == 0) { DIP_ADD(ip, nlink, -1); ip->i_flag |= IN_CHANGE; if (DIP(ip, nlink) < ip->i_effnlink) { FREE_LOCK(&lk); panic("handle_workitem_remove: bad file delta"); } inodedep->id_nlinkdelta = DIP(ip, nlink) - ip->i_effnlink; FREE_LOCK(&lk); vput(vp); num_dirrem -= 1; WORKITEM_FREE(dirrem, D_DIRREM); return; } /* * Directory deletion. Decrement reference count for both the * just deleted parent directory entry and the reference for ".". * Next truncate the directory to length zero. When the * truncation completes, arrange to have the reference count on * the parent decremented to account for the loss of "..". */ DIP_ADD(ip, nlink, -2); ip->i_flag |= IN_CHANGE; if (DIP(ip, nlink) < ip->i_effnlink) panic("handle_workitem_remove: bad dir delta"); inodedep->id_nlinkdelta = DIP(ip, nlink) - ip->i_effnlink; FREE_LOCK(&lk); if ((error = UFS_TRUNCATE(ip, (off_t)0, 0, p->p_ucred)) != 0) softdep_error("handle_workitem_remove: truncate", error); /* * Rename a directory to a new parent. Since, we are both deleting * and creating a new directory entry, the link count on the new * directory should not change. Thus we skip the followup dirrem. */ if (dirrem->dm_state & DIRCHG) { vput(vp); num_dirrem -= 1; WORKITEM_FREE(dirrem, D_DIRREM); return; } /* * If the inodedep does not exist, then the zero'ed inode has * been written to disk. If the allocated inode has never been * written to disk, then the on-disk inode is zero'ed. In either * case we can remove the file immediately. */ ACQUIRE_LOCK(&lk); dirrem->dm_state = 0; oldinum = dirrem->dm_oldinum; dirrem->dm_oldinum = dirrem->dm_dirinum; if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || check_inode_unwritten(inodedep)) { FREE_LOCK(&lk); vput(vp); handle_workitem_remove(dirrem); return; } WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); FREE_LOCK(&lk); ip->i_flag |= IN_CHANGE; UFS_UPDATE(VTOI(vp), 0); vput(vp); } /* * Inode de-allocation dependencies. * * When an inode's link count is reduced to zero, it can be de-allocated. We * found it convenient to postpone de-allocation until after the inode is * written to disk with its new link count (zero). At this point, all of the * on-disk inode's block pointers are nullified and, with careful dependency * list ordering, all dependencies related to the inode will be satisfied and * the corresponding dependency structures de-allocated. So, if/when the * inode is reused, there will be no mixing of old dependencies with new * ones. This artificial dependency is set up by the block de-allocation * procedure above (softdep_setup_freeblocks) and completed by the * following procedure. */ STATIC void handle_workitem_freefile(struct freefile *freefile) { struct fs *fs; struct vnode vp; struct inode tip; #ifdef DEBUG struct inodedep *idp; #endif int error; fs = VFSTOUFS(freefile->fx_mnt)->um_fs; #ifdef DEBUG ACQUIRE_LOCK(&lk); error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); FREE_LOCK(&lk); if (error) panic("handle_workitem_freefile: inodedep survived"); #endif tip.i_ump = VFSTOUFS(freefile->fx_mnt); tip.i_dev = freefile->fx_devvp->v_rdev; tip.i_fs = fs; tip.i_vnode = &vp; vp.v_data = &tip; if ((error = ffs_freefile(&tip, freefile->fx_oldinum, freefile->fx_mode)) != 0) { softdep_error("handle_workitem_freefile", error); } WORKITEM_FREE(freefile, D_FREEFILE); } /* * Disk writes. * * The dependency structures constructed above are most actively used when file * system blocks are written to disk. No constraints are placed on when a * block can be written, but unsatisfied update dependencies are made safe by * modifying (or replacing) the source memory for the duration of the disk * write. When the disk write completes, the memory block is again brought * up-to-date. * * In-core inode structure reclamation. * * Because there are a finite number of "in-core" inode structures, they are * reused regularly. By transferring all inode-related dependencies to the * in-memory inode block and indexing them separately (via "inodedep"s), we * can allow "in-core" inode structures to be reused at any time and avoid * any increase in contention. * * Called just before entering the device driver to initiate a new disk I/O. * The buffer must be locked, thus, no I/O completion operations can occur * while we are manipulating its associated dependencies. */ /* structure describing disk write to occur */ void softdep_disk_io_initiation(struct buf *bp) { struct worklist *wk, *nextwk; struct indirdep *indirdep; struct inodedep *inodedep; struct buf *sbp; /* * We only care about write operations. There should never * be dependencies for reads. */ if (bp->b_flags & B_READ) panic("softdep_disk_io_initiation: read"); ACQUIRE_LOCK(&lk); /* * Do any necessary pre-I/O processing. */ for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { nextwk = LIST_NEXT(wk, wk_list); switch (wk->wk_type) { case D_PAGEDEP: initiate_write_filepage(WK_PAGEDEP(wk), bp); continue; case D_INODEDEP: inodedep = WK_INODEDEP(wk); if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) initiate_write_inodeblock_ufs1(inodedep, bp); #ifdef FFS2 else initiate_write_inodeblock_ufs2(inodedep, bp); #endif continue; case D_INDIRDEP: indirdep = WK_INDIRDEP(wk); if (indirdep->ir_state & GOINGAWAY) panic("disk_io_initiation: indirdep gone"); /* * If there are no remaining dependencies, this * will be writing the real pointers, so the * dependency can be freed. */ if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { sbp = indirdep->ir_savebp; sbp->b_flags |= B_INVAL | B_NOCACHE; /* inline expand WORKLIST_REMOVE(wk); */ wk->wk_state &= ~ONWORKLIST; LIST_REMOVE(wk, wk_list); WORKITEM_FREE(indirdep, D_INDIRDEP); FREE_LOCK(&lk); brelse(sbp); ACQUIRE_LOCK(&lk); continue; } /* * Replace up-to-date version with safe version. */ FREE_LOCK(&lk); indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, M_WAITOK); ACQUIRE_LOCK(&lk); indirdep->ir_state &= ~ATTACHED; indirdep->ir_state |= UNDONE; memcpy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); memcpy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); continue; case D_MKDIR: case D_BMSAFEMAP: case D_ALLOCDIRECT: case D_ALLOCINDIR: continue; default: FREE_LOCK(&lk); panic("handle_disk_io_initiation: Unexpected type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } FREE_LOCK(&lk); } /* * Called from within the procedure above to deal with unsatisfied * allocation dependencies in a directory. The buffer must be locked, * thus, no I/O completion operations can occur while we are * manipulating its associated dependencies. */ STATIC void initiate_write_filepage(struct pagedep *pagedep, struct buf *bp) { struct diradd *dap; struct direct *ep; int i; if (pagedep->pd_state & IOSTARTED) { /* * This can only happen if there is a driver that does not * understand chaining. Here biodone will reissue the call * to strategy for the incomplete buffers. */ printf("initiate_write_filepage: already started\n"); return; } pagedep->pd_state |= IOSTARTED; for (i = 0; i < DAHASHSZ; i++) { LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { ep = (struct direct *) ((char *)bp->b_data + dap->da_offset); if (ep->d_ino != dap->da_newinum) { FREE_LOCK(&lk); panic("%s: dir inum %u != new %u", "initiate_write_filepage", ep->d_ino, dap->da_newinum); } if (dap->da_state & DIRCHG) ep->d_ino = dap->da_previous->dm_oldinum; else ep->d_ino = 0; dap->da_state &= ~ATTACHED; dap->da_state |= UNDONE; } } } /* * Called from within the procedure above to deal with unsatisfied * allocation dependencies in an inodeblock. The buffer must be * locked, thus, no I/O completion operations can occur while we * are manipulating its associated dependencies. */ /* The inode block */ STATIC void initiate_write_inodeblock_ufs1(struct inodedep *inodedep, struct buf *bp) { struct allocdirect *adp, *lastadp; struct ufs1_dinode *dp; struct fs *fs; #ifdef DIAGNOSTIC daddr_t prevlbn = 0; int32_t d1, d2; #endif int i, deplist; if (inodedep->id_state & IOSTARTED) { FREE_LOCK(&lk); panic("initiate_write_inodeblock: already started"); } inodedep->id_state |= IOSTARTED; fs = inodedep->id_fs; dp = (struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, inodedep->id_ino); /* * If the bitmap is not yet written, then the allocated * inode cannot be written to disk. */ if ((inodedep->id_state & DEPCOMPLETE) == 0) { if (inodedep->id_savedino1 != NULL) { FREE_LOCK(&lk); panic("initiate_write_inodeblock: already doing I/O"); } FREE_LOCK(&lk); inodedep->id_savedino1 = malloc(sizeof(struct ufs1_dinode), M_INODEDEP, M_WAITOK); ACQUIRE_LOCK(&lk); *inodedep->id_savedino1 = *dp; memset(dp, 0, sizeof(struct ufs1_dinode)); return; } /* * If no dependencies, then there is nothing to roll back. */ inodedep->id_savedsize = dp->di_size; if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) return; /* * Set the dependencies to busy. */ for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = TAILQ_NEXT(adp, ad_next)) { #ifdef DIAGNOSTIC if (deplist != 0 && prevlbn >= adp->ad_lbn) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: lbn order"); } prevlbn = adp->ad_lbn; if (adp->ad_lbn < NDADDR && (d1 = dp->di_db[adp->ad_lbn]) != (d2 = adp->ad_newblkno)) { FREE_LOCK(&lk); panic("%s: direct pointer #%lld mismatch %d != %d", "softdep_write_inodeblock", (long long)adp->ad_lbn, d1, d2); } if (adp->ad_lbn >= NDADDR && (d1 = dp->di_ib[adp->ad_lbn - NDADDR]) != (d2 = adp->ad_newblkno)) { FREE_LOCK(&lk); panic("%s: indirect pointer #%lld mismatch %d != %d", "softdep_write_inodeblock", (long long)(adp->ad_lbn - NDADDR), d1, d2); } deplist |= 1 << adp->ad_lbn; if ((adp->ad_state & ATTACHED) == 0) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: Unknown state 0x%x", adp->ad_state); } #endif /* DIAGNOSTIC */ adp->ad_state &= ~ATTACHED; adp->ad_state |= UNDONE; } /* * The on-disk inode cannot claim to be any larger than the last * fragment that has been written. Otherwise, the on-disk inode * might have fragments that were not the last block in the file * which would corrupt the filesystem. */ for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { if (adp->ad_lbn >= NDADDR) break; dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; /* keep going until hitting a rollback to a frag */ if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) continue; dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; for (i = adp->ad_lbn + 1; i < NDADDR; i++) { #ifdef DIAGNOSTIC if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: lost dep1"); } #endif /* DIAGNOSTIC */ dp->di_db[i] = 0; } for (i = 0; i < NIADDR; i++) { #ifdef DIAGNOSTIC if (dp->di_ib[i] != 0 && (deplist & ((1 << NDADDR) << i)) == 0) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: lost dep2"); } #endif /* DIAGNOSTIC */ dp->di_ib[i] = 0; } return; } /* * If we have zero'ed out the last allocated block of the file, * roll back the size to the last currently allocated block. * We know that this last allocated block is a full-sized as * we already checked for fragments in the loop above. */ if (lastadp != NULL && dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { for (i = lastadp->ad_lbn; i >= 0; i--) if (dp->di_db[i] != 0) break; dp->di_size = (i + 1) * fs->fs_bsize; } /* * The only dependencies are for indirect blocks. * * The file size for indirect block additions is not guaranteed. * Such a guarantee would be non-trivial to achieve. The conventional * synchronous write implementation also does not make this guarantee. * Fsck should catch and fix discrepancies. Arguably, the file size * can be over-estimated without destroying integrity when the file * moves into the indirect blocks (i.e., is large). If we want to * postpone fsck, we are stuck with this argument. */ for (; adp; adp = TAILQ_NEXT(adp, ad_next)) dp->di_ib[adp->ad_lbn - NDADDR] = 0; } #ifdef FFS2 /* * Version of initiate_write_inodeblock that handles FFS2 dinodes. */ /* The inode block */ STATIC void initiate_write_inodeblock_ufs2(struct inodedep *inodedep, struct buf *bp) { struct allocdirect *adp, *lastadp; struct ufs2_dinode *dp; struct fs *fs = inodedep->id_fs; #ifdef DIAGNOSTIC daddr_t prevlbn = -1, d1, d2; #endif int deplist, i; if (inodedep->id_state & IOSTARTED) panic("initiate_write_inodeblock_ufs2: already started"); inodedep->id_state |= IOSTARTED; fs = inodedep->id_fs; dp = (struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, inodedep->id_ino); /* * If the bitmap is not yet written, then the allocated * inode cannot be written to disk. */ if ((inodedep->id_state & DEPCOMPLETE) == 0) { if (inodedep->id_savedino2 != NULL) panic("initiate_write_inodeblock_ufs2: I/O underway"); inodedep->id_savedino2 = malloc(sizeof(struct ufs2_dinode), M_INODEDEP, M_WAITOK); *inodedep->id_savedino2 = *dp; memset(dp, 0, sizeof(struct ufs2_dinode)); return; } /* * If no dependencies, then there is nothing to roll back. */ inodedep->id_savedsize = dp->di_size; if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) return; #ifdef notyet inodedep->id_savedextsize = dp->di_extsize; if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && TAILQ_FIRST(&inodedep->id_extupdt) == NULL) return; /* * Set the ext data dependencies to busy. */ for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = TAILQ_NEXT(adp, ad_next)) { #ifdef DIAGNOSTIC if (deplist != 0 && prevlbn >= adp->ad_lbn) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: lbn order"); } prevlbn = adp->ad_lbn; if ((d1 = dp->di_extb[adp->ad_lbn]) != (d2 = adp->ad_newblkno)) { FREE_LOCK(&lk); panic("%s: direct pointer #%lld mismatch %lld != %lld", "softdep_write_inodeblock", (long long)adp->ad_lbn, d1, d2); } deplist |= 1 << adp->ad_lbn; if ((adp->ad_state & ATTACHED) == 0) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: Unknown state 0x%x", adp->ad_state); } #endif /* DIAGNOSTIC */ adp->ad_state &= ~ATTACHED; adp->ad_state |= UNDONE; } /* * The on-disk inode cannot claim to be any larger than the last * fragment that has been written. Otherwise, the on-disk inode * might have fragments that were not the last block in the ext * data which would corrupt the filesystem. */ for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; /* keep going until hitting a rollback to a frag */ if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) continue; dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; for (i = adp->ad_lbn + 1; i < NXADDR; i++) { #ifdef DIAGNOSTIC if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: lost dep1"); } #endif /* DIAGNOSTIC */ dp->di_extb[i] = 0; } lastadp = NULL; break; } /* * If we have zero'ed out the last allocated block of the ext * data, roll back the size to the last currently allocated block. * We know that this last allocated block is a full-sized as * we already checked for fragments in the loop above. */ if (lastadp != NULL && dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { for (i = lastadp->ad_lbn; i >= 0; i--) if (dp->di_extb[i] != 0) break; dp->di_extsize = (i + 1) * fs->fs_bsize; } #endif /* notyet */ /* * Set the file data dependencies to busy. */ for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = TAILQ_NEXT(adp, ad_next)) { #ifdef DIAGNOSTIC if (deplist != 0 && prevlbn >= adp->ad_lbn) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: lbn order"); } prevlbn = adp->ad_lbn; if (adp->ad_lbn < NDADDR && (d1 = dp->di_db[adp->ad_lbn]) != (d2 = adp->ad_newblkno)) { FREE_LOCK(&lk); panic("%s: direct pointer #%lld mismatch %lld != %lld", "softdep_write_inodeblock", (long long)adp->ad_lbn, d1, d2); } if (adp->ad_lbn >= NDADDR && (d1 = dp->di_ib[adp->ad_lbn - NDADDR]) != (d2 = adp->ad_newblkno)) { FREE_LOCK(&lk); panic("%s: indirect pointer #%lld mismatch %lld != %lld", "softdep_write_inodeblock", (long long)(adp->ad_lbn - NDADDR), d1, d2); } deplist |= 1 << adp->ad_lbn; if ((adp->ad_state & ATTACHED) == 0) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: Unknown state 0x%x", adp->ad_state); } #endif /* DIAGNOSTIC */ adp->ad_state &= ~ATTACHED; adp->ad_state |= UNDONE; } /* * The on-disk inode cannot claim to be any larger than the last * fragment that has been written. Otherwise, the on-disk inode * might have fragments that were not the last block in the file * which would corrupt the filesystem. */ for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { if (adp->ad_lbn >= NDADDR) break; dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; /* keep going until hitting a rollback to a frag */ if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) continue; dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; for (i = adp->ad_lbn + 1; i < NDADDR; i++) { #ifdef DIAGNOSTIC if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: lost dep2"); } #endif /* DIAGNOSTIC */ dp->di_db[i] = 0; } for (i = 0; i < NIADDR; i++) { #ifdef DIAGNOSTIC if (dp->di_ib[i] != 0 && (deplist & ((1 << NDADDR) << i)) == 0) { FREE_LOCK(&lk); panic("softdep_write_inodeblock: lost dep3"); } #endif /* DIAGNOSTIC */ dp->di_ib[i] = 0; } return; } /* * If we have zero'ed out the last allocated block of the file, * roll back the size to the last currently allocated block. * We know that this last allocated block is a full-sized as * we already checked for fragments in the loop above. */ if (lastadp != NULL && dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { for (i = lastadp->ad_lbn; i >= 0; i--) if (dp->di_db[i] != 0) break; dp->di_size = (i + 1) * fs->fs_bsize; } /* * The only dependencies are for indirect blocks. * * The file size for indirect block additions is not guaranteed. * Such a guarantee would be non-trivial to achieve. The conventional * synchronous write implementation also does not make this guarantee. * Fsck should catch and fix discrepancies. Arguably, the file size * can be over-estimated without destroying integrity when the file * moves into the indirect blocks (i.e., is large). If we want to * postpone fsck, we are stuck with this argument. */ for (; adp; adp = TAILQ_NEXT(adp, ad_next)) dp->di_ib[adp->ad_lbn - NDADDR] = 0; } #endif /* FFS2 */ /* * This routine is called during the completion interrupt * service routine for a disk write (from the procedure called * by the device driver to inform the file system caches of * a request completion). It should be called early in this * procedure, before the block is made available to other * processes or other routines are called. */ /* describes the completed disk write */ void softdep_disk_write_complete(struct buf *bp) { struct worklist *wk; struct workhead reattach; struct newblk *newblk; struct allocindir *aip; struct allocdirect *adp; struct indirdep *indirdep; struct inodedep *inodedep; struct bmsafemap *bmsafemap; /* * If an error occurred while doing the write, then the data * has not hit the disk and the dependencies cannot be unrolled. */ if ((bp->b_flags & B_ERROR) && !(bp->b_flags & B_INVAL)) return; #ifdef DEBUG if (lk.lkt_held != -1) panic("softdep_disk_write_complete: lock is held"); lk.lkt_held = -2; #endif LIST_INIT(&reattach); while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { WORKLIST_REMOVE(wk); switch (wk->wk_type) { case D_PAGEDEP: if (handle_written_filepage(WK_PAGEDEP(wk), bp)) WORKLIST_INSERT(&reattach, wk); continue; case D_INODEDEP: if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) WORKLIST_INSERT(&reattach, wk); continue; case D_BMSAFEMAP: bmsafemap = WK_BMSAFEMAP(wk); while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { newblk->nb_state |= DEPCOMPLETE; newblk->nb_bmsafemap = NULL; LIST_REMOVE(newblk, nb_deps); } while ((adp = LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { adp->ad_state |= DEPCOMPLETE; adp->ad_buf = NULL; LIST_REMOVE(adp, ad_deps); handle_allocdirect_partdone(adp); } while ((aip = LIST_FIRST(&bmsafemap->sm_allocindirhd))) { aip->ai_state |= DEPCOMPLETE; aip->ai_buf = NULL; LIST_REMOVE(aip, ai_deps); handle_allocindir_partdone(aip); } while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { inodedep->id_state |= DEPCOMPLETE; LIST_REMOVE(inodedep, id_deps); inodedep->id_buf = NULL; } WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); continue; case D_MKDIR: handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); continue; case D_ALLOCDIRECT: adp = WK_ALLOCDIRECT(wk); adp->ad_state |= COMPLETE; handle_allocdirect_partdone(adp); continue; case D_ALLOCINDIR: aip = WK_ALLOCINDIR(wk); aip->ai_state |= COMPLETE; handle_allocindir_partdone(aip); continue; case D_INDIRDEP: indirdep = WK_INDIRDEP(wk); if (indirdep->ir_state & GOINGAWAY) panic("disk_write_complete: indirdep gone"); memcpy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); free(indirdep->ir_saveddata, M_INDIRDEP, 0); indirdep->ir_saveddata = NULL; indirdep->ir_state &= ~UNDONE; indirdep->ir_state |= ATTACHED; while ((aip = LIST_FIRST(&indirdep->ir_donehd))) { handle_allocindir_partdone(aip); if (aip == LIST_FIRST(&indirdep->ir_donehd)) panic("disk_write_complete: not gone"); } WORKLIST_INSERT(&reattach, wk); if ((bp->b_flags & B_DELWRI) == 0) stat_indir_blk_ptrs++; buf_dirty(bp); continue; default: panic("handle_disk_write_complete: Unknown type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } /* * Reattach any requests that must be redone. */ while ((wk = LIST_FIRST(&reattach)) != NULL) { WORKLIST_REMOVE(wk); WORKLIST_INSERT(&bp->b_dep, wk); } #ifdef DEBUG if (lk.lkt_held != -2) panic("softdep_disk_write_complete: lock lost"); lk.lkt_held = -1; #endif } /* * Called from within softdep_disk_write_complete above. Note that * this routine is always called from interrupt level with further * splbio interrupts blocked. */ /* the completed allocdirect */ STATIC void handle_allocdirect_partdone(struct allocdirect *adp) { struct allocdirect *listadp; struct inodedep *inodedep; long bsize, delay; splassert(IPL_BIO); if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) return; if (adp->ad_buf != NULL) panic("handle_allocdirect_partdone: dangling dep"); /* * The on-disk inode cannot claim to be any larger than the last * fragment that has been written. Otherwise, the on-disk inode * might have fragments that were not the last block in the file * which would corrupt the filesystem. Thus, we cannot free any * allocdirects after one whose ad_oldblkno claims a fragment as * these blocks must be rolled back to zero before writing the inode. * We check the currently active set of allocdirects in id_inoupdt. */ inodedep = adp->ad_inodedep; bsize = inodedep->id_fs->fs_bsize; TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) { /* found our block */ if (listadp == adp) break; /* continue if ad_oldlbn is not a fragment */ if (listadp->ad_oldsize == 0 || listadp->ad_oldsize == bsize) continue; /* hit a fragment */ return; } /* * If we have reached the end of the current list without * finding the just finished dependency, then it must be * on the future dependency list. Future dependencies cannot * be freed until they are moved to the current list. */ if (listadp == NULL) { #ifdef DEBUG TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next) /* found our block */ if (listadp == adp) break; if (listadp == NULL) panic("handle_allocdirect_partdone: lost dep"); #endif /* DEBUG */ return; } /* * If we have found the just finished dependency, then free * it along with anything that follows it that is complete. * If the inode still has a bitmap dependency, then it has * never been written to disk, hence the on-disk inode cannot * reference the old fragment so we can free it without delay. */ delay = (inodedep->id_state & DEPCOMPLETE); for (; adp; adp = listadp) { listadp = TAILQ_NEXT(adp, ad_next); if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) return; free_allocdirect(&inodedep->id_inoupdt, adp, delay); } } /* * Called from within softdep_disk_write_complete above. Note that * this routine is always called from interrupt level with further * splbio interrupts blocked. */ /* the completed allocindir */ STATIC void handle_allocindir_partdone(struct allocindir *aip) { struct indirdep *indirdep; splassert(IPL_BIO); if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) return; if (aip->ai_buf != NULL) panic("handle_allocindir_partdone: dangling dependency"); indirdep = aip->ai_indirdep; if (indirdep->ir_state & UNDONE) { LIST_REMOVE(aip, ai_next); LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); return; } if (indirdep->ir_state & UFS1FMT) ((int32_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = aip->ai_newblkno; else ((int64_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = aip->ai_newblkno; LIST_REMOVE(aip, ai_next); if (aip->ai_freefrag != NULL) add_to_worklist(&aip->ai_freefrag->ff_list); WORKITEM_FREE(aip, D_ALLOCINDIR); } /* * Called from within softdep_disk_write_complete above to restore * in-memory inode block contents to their most up-to-date state. Note * that this routine is always called from interrupt level with further * splbio interrupts blocked. */ /* buffer containing the inode block */ STATIC int handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp) { struct worklist *wk, *filefree; struct allocdirect *adp, *nextadp; struct ufs1_dinode *dp1 = NULL; struct ufs2_dinode *dp2 = NULL; int hadchanges, fstype; splassert(IPL_BIO); if ((inodedep->id_state & IOSTARTED) == 0) panic("handle_written_inodeblock: not started"); inodedep->id_state &= ~IOSTARTED; if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { fstype = UM_UFS1; dp1 = (struct ufs1_dinode *) bp->b_data + ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); } else { fstype = UM_UFS2; dp2 = (struct ufs2_dinode *) bp->b_data + ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); } /* * If we had to rollback the inode allocation because of * bitmaps being incomplete, then simply restore it. * Keep the block dirty so that it will not be reclaimed until * all associated dependencies have been cleared and the * corresponding updates written to disk. */ if (inodedep->id_savedino1 != NULL) { if (fstype == UM_UFS1) *dp1 = *inodedep->id_savedino1; else *dp2 = *inodedep->id_savedino2; free(inodedep->id_savedino1, M_INODEDEP, 0); inodedep->id_savedino1 = NULL; if ((bp->b_flags & B_DELWRI) == 0) stat_inode_bitmap++; buf_dirty(bp); return (1); } inodedep->id_state |= COMPLETE; /* * Roll forward anything that had to be rolled back before * the inode could be updated. */ hadchanges = 0; for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { nextadp = TAILQ_NEXT(adp, ad_next); if (adp->ad_state & ATTACHED) panic("handle_written_inodeblock: new entry"); if (fstype == UM_UFS1) { if (adp->ad_lbn < NDADDR) { if (dp1->di_db[adp->ad_lbn] != adp->ad_oldblkno) panic("%s: %s #%lld mismatch %d != " "%lld", "handle_written_inodeblock", "direct pointer", (long long)adp->ad_lbn, dp1->di_db[adp->ad_lbn], (long long)adp->ad_oldblkno); dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; } else { if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) panic("%s: %s #%lld allocated as %d", "handle_written_inodeblock", "indirect pointer", (long long)(adp->ad_lbn - NDADDR), dp1->di_ib[adp->ad_lbn - NDADDR]); dp1->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno; } } else { if (adp->ad_lbn < NDADDR) { if (dp2->di_db[adp->ad_lbn] != adp->ad_oldblkno) panic("%s: %s #%lld mismatch %lld != " "%lld", "handle_written_inodeblock", "direct pointer", (long long)adp->ad_lbn, dp2->di_db[adp->ad_lbn], (long long)adp->ad_oldblkno); dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; } else { if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) panic("%s: %s #%lld allocated as %lld", "handle_written_inodeblock", "indirect pointer", (long long)(adp->ad_lbn - NDADDR), dp2->di_ib[adp->ad_lbn - NDADDR]); dp2->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno; } } adp->ad_state &= ~UNDONE; adp->ad_state |= ATTACHED; hadchanges = 1; } if (hadchanges && (bp->b_flags & B_DELWRI) == 0) stat_direct_blk_ptrs++; /* * Reset the file size to its most up-to-date value. */ if (inodedep->id_savedsize == -1) panic("handle_written_inodeblock: bad size"); if (fstype == UM_UFS1) { if (dp1->di_size != inodedep->id_savedsize) { dp1->di_size = inodedep->id_savedsize; hadchanges = 1; } } else { if (dp2->di_size != inodedep->id_savedsize) { dp2->di_size = inodedep->id_savedsize; hadchanges = 1; } } inodedep->id_savedsize = -1; /* * If there were any rollbacks in the inode block, then it must be * marked dirty so that its will eventually get written back in * its correct form. */ if (hadchanges) buf_dirty(bp); /* * Process any allocdirects that completed during the update. */ if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) handle_allocdirect_partdone(adp); /* * Process deallocations that were held pending until the * inode had been written to disk. Freeing of the inode * is delayed until after all blocks have been freed to * avoid creation of new triples * before the old ones have been deleted. */ filefree = NULL; while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { WORKLIST_REMOVE(wk); switch (wk->wk_type) { case D_FREEFILE: /* * We defer adding filefree to the worklist until * all other additions have been made to ensure * that it will be done after all the old blocks * have been freed. */ if (filefree != NULL) panic("handle_written_inodeblock: filefree"); filefree = wk; continue; case D_MKDIR: handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); continue; case D_DIRADD: diradd_inode_written(WK_DIRADD(wk), inodedep); continue; case D_FREEBLKS: wk->wk_state |= COMPLETE; if ((wk->wk_state & ALLCOMPLETE) != ALLCOMPLETE) continue; /* FALLTHROUGH */ case D_FREEFRAG: case D_DIRREM: add_to_worklist(wk); continue; case D_NEWDIRBLK: free_newdirblk(WK_NEWDIRBLK(wk)); continue; default: panic("handle_written_inodeblock: Unknown type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } if (filefree != NULL) { if (free_inodedep(inodedep) == 0) panic("handle_written_inodeblock: live inodedep"); add_to_worklist(filefree); return (0); } /* * If no outstanding dependencies, free it. */ if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) return (0); return (hadchanges); } /* * Process a diradd entry after its dependent inode has been written. * This routine must be called with splbio interrupts blocked. */ STATIC void diradd_inode_written(struct diradd *dap, struct inodedep *inodedep) { struct pagedep *pagedep; splassert(IPL_BIO); dap->da_state |= COMPLETE; if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { if (dap->da_state & DIRCHG) pagedep = dap->da_previous->dm_pagedep; else pagedep = dap->da_pagedep; LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); } WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); } /* * Handle the completion of a mkdir dependency. */ STATIC void handle_written_mkdir(struct mkdir *mkdir, int type) { struct diradd *dap; struct pagedep *pagedep; splassert(IPL_BIO); if (mkdir->md_state != type) panic("handle_written_mkdir: bad type"); dap = mkdir->md_diradd; dap->da_state &= ~type; if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) dap->da_state |= DEPCOMPLETE; if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { if (dap->da_state & DIRCHG) pagedep = dap->da_previous->dm_pagedep; else pagedep = dap->da_pagedep; LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); } LIST_REMOVE(mkdir, md_mkdirs); WORKITEM_FREE(mkdir, D_MKDIR); } /* * Called from within softdep_disk_write_complete above. * A write operation was just completed. Removed inodes can * now be freed and associated block pointers may be committed. * Note that this routine is always called from interrupt level * with further splbio interrupts blocked. */ /* buffer containing the written page */ STATIC int handle_written_filepage(struct pagedep *pagedep, struct buf *bp) { struct dirrem *dirrem; struct diradd *dap, *nextdap; struct direct *ep; int i, chgs; splassert(IPL_BIO); if ((pagedep->pd_state & IOSTARTED) == 0) panic("handle_written_filepage: not started"); pagedep->pd_state &= ~IOSTARTED; /* * Process any directory removals that have been committed. */ while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { LIST_REMOVE(dirrem, dm_next); dirrem->dm_dirinum = pagedep->pd_ino; add_to_worklist(&dirrem->dm_list); } /* * Free any directory additions that have been committed. * If it is a newly allocated block, we have to wait until * the on-disk directory inode claims the new block. */ if ((pagedep->pd_state & NEWBLOCK) == 0) while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) free_diradd(dap); /* * Uncommitted directory entries must be restored. */ for (chgs = 0, i = 0; i < DAHASHSZ; i++) { for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; dap = nextdap) { nextdap = LIST_NEXT(dap, da_pdlist); if (dap->da_state & ATTACHED) panic("handle_written_filepage: attached"); ep = (struct direct *) ((char *)bp->b_data + dap->da_offset); ep->d_ino = dap->da_newinum; dap->da_state &= ~UNDONE; dap->da_state |= ATTACHED; chgs = 1; /* * If the inode referenced by the directory has * been written out, then the dependency can be * moved to the pending list. */ if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); } } } /* * If there were any rollbacks in the directory, then it must be * marked dirty so that its will eventually get written back in * its correct form. */ if (chgs) { if ((bp->b_flags & B_DELWRI) == 0) stat_dir_entry++; buf_dirty(bp); return (1); } /* * If we are not waiting for a new directory block to be * claimed by its inode, then the pagedep will be freed. * Otherwise it will remain to track any new entries on * the page in case they are fsync'ed. */ if ((pagedep->pd_state & NEWBLOCK) == 0) { LIST_REMOVE(pagedep, pd_hash); WORKITEM_FREE(pagedep, D_PAGEDEP); } return (0); } /* * Writing back in-core inode structures. * * The file system only accesses an inode's contents when it occupies an * "in-core" inode structure. These "in-core" structures are separate from * the page frames used to cache inode blocks. Only the latter are * transferred to/from the disk. So, when the updated contents of the * "in-core" inode structure are copied to the corresponding in-memory inode * block, the dependencies are also transferred. The following procedure is * called when copying a dirty "in-core" inode to a cached inode block. */ /* * Called when an inode is loaded from disk. If the effective link count * differed from the actual link count when it was last flushed, then we * need to ensure that the correct effective link count is put back. */ /* the "in_core" copy of the inode */ void softdep_load_inodeblock(struct inode *ip) { struct inodedep *inodedep; /* * Check for alternate nlink count. */ ip->i_effnlink = DIP(ip, nlink); ACQUIRE_LOCK(&lk); if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { FREE_LOCK(&lk); return; } ip->i_effnlink -= inodedep->id_nlinkdelta; FREE_LOCK(&lk); } /* * This routine is called just before the "in-core" inode * information is to be copied to the in-memory inode block. * Recall that an inode block contains several inodes. If * the force flag is set, then the dependencies will be * cleared so that the update can always be made. Note that * the buffer is locked when this routine is called, so we * will never be in the middle of writing the inode block * to disk. */ /* the "in_core" copy of the inode */ /* the buffer containing the inode block */ /* nonzero => update must be allowed */ void softdep_update_inodeblock(struct inode *ip, struct buf *bp, int waitfor) { struct inodedep *inodedep; struct worklist *wk; int error, gotit; /* * If the effective link count is not equal to the actual link * count, then we must track the difference in an inodedep while * the inode is (potentially) tossed out of the cache. Otherwise, * if there is no existing inodedep, then there are no dependencies * to track. */ ACQUIRE_LOCK(&lk); if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { FREE_LOCK(&lk); if (ip->i_effnlink != DIP(ip, nlink)) panic("softdep_update_inodeblock: bad link count"); return; } if (inodedep->id_nlinkdelta != DIP(ip, nlink) - ip->i_effnlink) { FREE_LOCK(&lk); panic("softdep_update_inodeblock: bad delta"); } /* * Changes have been initiated. Anything depending on these * changes cannot occur until this inode has been written. */ inodedep->id_state &= ~COMPLETE; if ((inodedep->id_state & ONWORKLIST) == 0) WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); /* * Any new dependencies associated with the incore inode must * now be moved to the list associated with the buffer holding * the in-memory copy of the inode. Once merged process any * allocdirects that are completed by the merger. */ merge_inode_lists(inodedep); if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); /* * Now that the inode has been pushed into the buffer, the * operations dependent on the inode being written to disk * can be moved to the id_bufwait so that they will be * processed when the buffer I/O completes. */ while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { WORKLIST_REMOVE(wk); WORKLIST_INSERT(&inodedep->id_bufwait, wk); } /* * Newly allocated inodes cannot be written until the bitmap * that allocates them have been written (indicated by * DEPCOMPLETE being set in id_state). If we are doing a * forced sync (e.g., an fsync on a file), we force the bitmap * to be written so that the update can be done. */ do { if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { FREE_LOCK(&lk); return; } bp = inodedep->id_buf; gotit = getdirtybuf(bp, MNT_WAIT); } while (gotit == -1); FREE_LOCK(&lk); if (gotit && (error = bwrite(bp)) != 0) softdep_error("softdep_update_inodeblock: bwrite", error); if ((inodedep->id_state & DEPCOMPLETE) == 0) panic("softdep_update_inodeblock: update failed"); } /* * Merge the new inode dependency list (id_newinoupdt) into the old * inode dependency list (id_inoupdt). This routine must be called * with splbio interrupts blocked. */ STATIC void merge_inode_lists(struct inodedep *inodedep) { struct allocdirect *listadp, *newadp; splassert(IPL_BIO); newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) { if (listadp->ad_lbn < newadp->ad_lbn) { listadp = TAILQ_NEXT(listadp, ad_next); continue; } TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); if (listadp->ad_lbn == newadp->ad_lbn) { allocdirect_merge(&inodedep->id_inoupdt, newadp, listadp); listadp = newadp; } newadp = TAILQ_FIRST(&inodedep->id_newinoupdt); } while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) { TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next); TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next); } } /* * If we are doing an fsync, then we must ensure that any directory * entries for the inode have been written after the inode gets to disk. */ /* the "in_core" copy of the inode */ int softdep_fsync(struct vnode *vp) { struct inodedep *inodedep; struct pagedep *pagedep; struct worklist *wk; struct diradd *dap; struct mount *mnt; struct vnode *pvp; struct inode *ip; struct inode *pip; struct buf *bp; struct fs *fs; struct proc *p = CURPROC; /* XXX */ int error, flushparent; ufsino_t parentino; daddr_t lbn; ip = VTOI(vp); fs = ip->i_fs; ACQUIRE_LOCK(&lk); if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { FREE_LOCK(&lk); return (0); } if (LIST_FIRST(&inodedep->id_inowait) != NULL || LIST_FIRST(&inodedep->id_bufwait) != NULL || TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) { FREE_LOCK(&lk); panic("softdep_fsync: pending ops"); } for (error = 0, flushparent = 0; ; ) { if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) break; if (wk->wk_type != D_DIRADD) { FREE_LOCK(&lk); panic("softdep_fsync: Unexpected type %s", TYPENAME(wk->wk_type)); } dap = WK_DIRADD(wk); /* * Flush our parent if this directory entry has a MKDIR_PARENT * dependency or is contained in a newly allocated block. */ if (dap->da_state & DIRCHG) pagedep = dap->da_previous->dm_pagedep; else pagedep = dap->da_pagedep; mnt = pagedep->pd_mnt; parentino = pagedep->pd_ino; lbn = pagedep->pd_lbn; if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) { FREE_LOCK(&lk); panic("softdep_fsync: dirty"); } if ((dap->da_state & MKDIR_PARENT) || (pagedep->pd_state & NEWBLOCK)) flushparent = 1; else flushparent = 0; /* * If we are being fsync'ed as part of vgone'ing this vnode, * then we will not be able to release and recover the * vnode below, so we just have to give up on writing its * directory entry out. It will eventually be written, just * not now, but then the user was not asking to have it * written, so we are not breaking any promises. */ if (vp->v_flag & VXLOCK) break; /* * We prevent deadlock by always fetching inodes from the * root, moving down the directory tree. Thus, when fetching * our parent directory, we must unlock ourselves before * requesting the lock on our parent. See the comment in * ufs_lookup for details on possible races. */ FREE_LOCK(&lk); VOP_UNLOCK(vp, p); error = VFS_VGET(mnt, parentino, &pvp); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); if (error != 0) return (error); /* * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps * that are contained in direct blocks will be resolved by * doing a UFS_UPDATE. Pagedeps contained in indirect blocks * may require a complete sync'ing of the directory. So, we * try the cheap and fast UFS_UPDATE first, and if that fails, * then we do the slower VOP_FSYNC of the directory. */ pip = VTOI(pvp); if (flushparent) { error = UFS_UPDATE(pip, 1); if (error) { vput(pvp); return (error); } if (pagedep->pd_state & NEWBLOCK) { error = VOP_FSYNC(pvp, p->p_ucred, MNT_WAIT, p); if (error) { vput(pvp); return (error); } } } /* * Flush directory page containing the inode's name. */ error = bread(pvp, lbn, fs->fs_bsize, &bp); if (error == 0) { bp->b_bcount = blksize(fs, pip, lbn); error = bwrite(bp); } else brelse(bp); vput(pvp); if (error != 0) return (error); ACQUIRE_LOCK(&lk); if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) break; } FREE_LOCK(&lk); return (0); } /* * Flush all the dirty bitmaps associated with the block device * before flushing the rest of the dirty blocks so as to reduce * the number of dependencies that will have to be rolled back. */ void softdep_fsync_mountdev(struct vnode *vp, int waitfor) { struct buf *bp, *nbp; struct worklist *wk; if (!vn_isdisk(vp, NULL)) panic("softdep_fsync_mountdev: vnode not a disk"); ACQUIRE_LOCK(&lk); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); /* * If it is already scheduled, skip to the next buffer. */ splassert(IPL_BIO); if (bp->b_flags & B_BUSY) continue; if ((bp->b_flags & B_DELWRI) == 0) { FREE_LOCK(&lk); panic("softdep_fsync_mountdev: not dirty"); } /* * We are only interested in bitmaps with outstanding * dependencies. */ if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || wk->wk_type != D_BMSAFEMAP) { continue; } bremfree(bp); buf_acquire(bp); FREE_LOCK(&lk); (void) bawrite(bp); ACQUIRE_LOCK(&lk); /* * Since we may have slept during the I/O, we need * to start from a known point. */ nbp = LIST_FIRST(&vp->v_dirtyblkhd); } if (waitfor == MNT_WAIT) drain_output(vp, 1); FREE_LOCK(&lk); } /* * This routine is called when we are trying to synchronously flush a * file. This routine must eliminate any filesystem metadata dependencies * so that the syncing routine can succeed by pushing the dirty blocks * associated with the file. If any I/O errors occur, they are returned. */ int softdep_sync_metadata(struct vop_fsync_args *ap) { struct vnode *vp = ap->a_vp; struct pagedep *pagedep; struct allocdirect *adp; struct allocindir *aip; struct buf *bp, *nbp; struct worklist *wk; int i, gotit, error, waitfor; /* * Check whether this vnode is involved in a filesystem * that is doing soft dependency processing. */ if (!vn_isdisk(vp, NULL)) { if (!DOINGSOFTDEP(vp)) return (0); } else if (vp->v_specmountpoint == NULL || (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP) == 0) return (0); /* * Ensure that any direct block dependencies have been cleared. */ ACQUIRE_LOCK(&lk); if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { FREE_LOCK(&lk); return (error); } /* * For most files, the only metadata dependencies are the * cylinder group maps that allocate their inode or blocks. * The block allocation dependencies can be found by traversing * the dependency lists for any buffers that remain on their * dirty buffer list. The inode allocation dependency will * be resolved when the inode is updated with MNT_WAIT. * This work is done in two passes. The first pass grabs most * of the buffers and begins asynchronously writing them. The * only way to wait for these asynchronous writes is to sleep * on the filesystem vnode which may stay busy for a long time * if the filesystem is active. So, instead, we make a second * pass over the dependencies blocking on each write. In the * usual case we will be blocking against a write that we * initiated, so when it is done the dependency will have been * resolved. Thus the second pass is expected to end quickly. */ waitfor = MNT_NOWAIT; top: /* * We must wait for any I/O in progress to finish so that * all potential buffers on the dirty list will be visible. */ drain_output(vp, 1); bp = LIST_FIRST(&vp->v_dirtyblkhd); gotit = getdirtybuf(bp, MNT_WAIT); if (gotit == 0) { FREE_LOCK(&lk); return (0); } else if (gotit == -1) goto top; loop: /* * As we hold the buffer locked, none of its dependencies * will disappear. */ LIST_FOREACH(wk, &bp->b_dep, wk_list) { switch (wk->wk_type) { case D_ALLOCDIRECT: adp = WK_ALLOCDIRECT(wk); if (adp->ad_state & DEPCOMPLETE) break; nbp = adp->ad_buf; gotit = getdirtybuf(nbp, waitfor); if (gotit == 0) break; else if (gotit == -1) goto loop; FREE_LOCK(&lk); if (waitfor == MNT_NOWAIT) { bawrite(nbp); } else if ((error = VOP_BWRITE(nbp)) != 0) { bawrite(bp); return (error); } ACQUIRE_LOCK(&lk); break; case D_ALLOCINDIR: aip = WK_ALLOCINDIR(wk); if (aip->ai_state & DEPCOMPLETE) break; nbp = aip->ai_buf; gotit = getdirtybuf(nbp, waitfor); if (gotit == 0) break; else if (gotit == -1) goto loop; FREE_LOCK(&lk); if (waitfor == MNT_NOWAIT) { bawrite(nbp); } else if ((error = VOP_BWRITE(nbp)) != 0) { bawrite(bp); return (error); } ACQUIRE_LOCK(&lk); break; case D_INDIRDEP: restart: LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { if (aip->ai_state & DEPCOMPLETE) continue; nbp = aip->ai_buf; if (getdirtybuf(nbp, MNT_WAIT) <= 0) goto restart; FREE_LOCK(&lk); if ((error = VOP_BWRITE(nbp)) != 0) { bawrite(bp); return (error); } ACQUIRE_LOCK(&lk); goto restart; } break; case D_INODEDEP: if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, WK_INODEDEP(wk)->id_ino)) != 0) { FREE_LOCK(&lk); bawrite(bp); return (error); } break; case D_PAGEDEP: /* * We are trying to sync a directory that may * have dependencies on both its own metadata * and/or dependencies on the inodes of any * recently allocated files. We walk its diradd * lists pushing out the associated inode. */ pagedep = WK_PAGEDEP(wk); for (i = 0; i < DAHASHSZ; i++) { if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL) continue; if ((error = flush_pagedep_deps(vp, pagedep->pd_mnt, &pagedep->pd_diraddhd[i]))) { FREE_LOCK(&lk); bawrite(bp); return (error); } } break; case D_MKDIR: /* * This case should never happen if the vnode has * been properly sync'ed. However, if this function * is used at a place where the vnode has not yet * been sync'ed, this dependency can show up. So, * rather than panic, just flush it. */ nbp = WK_MKDIR(wk)->md_buf; gotit = getdirtybuf(nbp, waitfor); if (gotit == 0) break; else if (gotit == -1) goto loop; FREE_LOCK(&lk); if (waitfor == MNT_NOWAIT) { bawrite(nbp); } else if ((error = VOP_BWRITE(nbp)) != 0) { bawrite(bp); return (error); } ACQUIRE_LOCK(&lk); break; case D_BMSAFEMAP: /* * This case should never happen if the vnode has * been properly sync'ed. However, if this function * is used at a place where the vnode has not yet * been sync'ed, this dependency can show up. So, * rather than panic, just flush it. */ nbp = WK_BMSAFEMAP(wk)->sm_buf; gotit = getdirtybuf(nbp, waitfor); if (gotit == 0) break; else if (gotit == -1) goto loop; FREE_LOCK(&lk); if (waitfor == MNT_NOWAIT) { bawrite(nbp); } else if ((error = VOP_BWRITE(nbp)) != 0) { bawrite(bp); return (error); } ACQUIRE_LOCK(&lk); break; default: FREE_LOCK(&lk); panic("softdep_sync_metadata: Unknown type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } do { nbp = LIST_NEXT(bp, b_vnbufs); gotit = getdirtybuf(nbp, MNT_WAIT); } while (gotit == -1); FREE_LOCK(&lk); bawrite(bp); ACQUIRE_LOCK(&lk); if (nbp != NULL) { bp = nbp; goto loop; } /* * The brief unlock is to allow any pent up dependency * processing to be done. Then proceed with the second pass. */ if (waitfor == MNT_NOWAIT) { waitfor = MNT_WAIT; FREE_LOCK(&lk); ACQUIRE_LOCK(&lk); goto top; } /* * If we have managed to get rid of all the dirty buffers, * then we are done. For certain directories and block * devices, we may need to do further work. * * We must wait for any I/O in progress to finish so that * all potential buffers on the dirty list will be visible. */ drain_output(vp, 1); if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { FREE_LOCK(&lk); return (0); } FREE_LOCK(&lk); /* * If we are trying to sync a block device, some of its buffers may * contain metadata that cannot be written until the contents of some * partially written files have been written to disk. The only easy * way to accomplish this is to sync the entire filesystem (luckily * this happens rarely). */ if (vn_isdisk(vp, NULL) && vp->v_specmountpoint && !VOP_ISLOCKED(vp) && (error = VFS_SYNC(vp->v_specmountpoint, MNT_WAIT, ap->a_cred, ap->a_p)) != 0) return (error); return (0); } /* * Flush the dependencies associated with an inodedep. * Called with splbio blocked. */ STATIC int flush_inodedep_deps(struct fs *fs, ufsino_t ino) { struct inodedep *inodedep; struct allocdirect *adp; int gotit, error, waitfor; struct buf *bp; splassert(IPL_BIO); /* * This work is done in two passes. The first pass grabs most * of the buffers and begins asynchronously writing them. The * only way to wait for these asynchronous writes is to sleep * on the filesystem vnode which may stay busy for a long time * if the filesystem is active. So, instead, we make a second * pass over the dependencies blocking on each write. In the * usual case we will be blocking against a write that we * initiated, so when it is done the dependency will have been * resolved. Thus the second pass is expected to end quickly. * We give a brief window at the top of the loop to allow * any pending I/O to complete. */ for (waitfor = MNT_NOWAIT; ; ) { retry_ino: FREE_LOCK(&lk); ACQUIRE_LOCK(&lk); if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) return (0); TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) { if (adp->ad_state & DEPCOMPLETE) continue; bp = adp->ad_buf; gotit = getdirtybuf(bp, waitfor); if (gotit == 0) { if (waitfor == MNT_NOWAIT) continue; break; } else if (gotit == -1) goto retry_ino; FREE_LOCK(&lk); if (waitfor == MNT_NOWAIT) { bawrite(bp); } else if ((error = VOP_BWRITE(bp)) != 0) { ACQUIRE_LOCK(&lk); return (error); } ACQUIRE_LOCK(&lk); break; } if (adp != NULL) continue; retry_newino: TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) { if (adp->ad_state & DEPCOMPLETE) continue; bp = adp->ad_buf; gotit = getdirtybuf(bp, waitfor); if (gotit == 0) { if (waitfor == MNT_NOWAIT) continue; break; } else if (gotit == -1) goto retry_newino; FREE_LOCK(&lk); if (waitfor == MNT_NOWAIT) { bawrite(bp); } else if ((error = VOP_BWRITE(bp)) != 0) { ACQUIRE_LOCK(&lk); return (error); } ACQUIRE_LOCK(&lk); break; } if (adp != NULL) continue; /* * If pass2, we are done, otherwise do pass 2. */ if (waitfor == MNT_WAIT) break; waitfor = MNT_WAIT; } /* * Try freeing inodedep in case all dependencies have been removed. */ if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) (void) free_inodedep(inodedep); return (0); } /* * Eliminate a pagedep dependency by flushing out all its diradd dependencies. * Called with splbio blocked. */ STATIC int flush_pagedep_deps(struct vnode *pvp, struct mount *mp, struct diraddhd *diraddhdp) { struct proc *p = CURPROC; /* XXX */ struct worklist *wk; struct inodedep *inodedep; struct ufsmount *ump; struct diradd *dap; struct vnode *vp; int gotit, error = 0; struct buf *bp; ufsino_t inum; splassert(IPL_BIO); ump = VFSTOUFS(mp); while ((dap = LIST_FIRST(diraddhdp)) != NULL) { /* * Flush ourselves if this directory entry * has a MKDIR_PARENT dependency. */ if (dap->da_state & MKDIR_PARENT) { FREE_LOCK(&lk); if ((error = UFS_UPDATE(VTOI(pvp), 1))) break; ACQUIRE_LOCK(&lk); /* * If that cleared dependencies, go on to next. */ if (dap != LIST_FIRST(diraddhdp)) continue; if (dap->da_state & MKDIR_PARENT) { FREE_LOCK(&lk); panic("flush_pagedep_deps: MKDIR_PARENT"); } } /* * A newly allocated directory must have its "." and * ".." entries written out before its name can be * committed in its parent. We do not want or need * the full semantics of a synchronous VOP_FSYNC as * that may end up here again, once for each directory * level in the filesystem. Instead, we push the blocks * and wait for them to clear. We have to fsync twice * because the first call may choose to defer blocks * that still have dependencies, but deferral will * happen at most once. */ inum = dap->da_newinum; if (dap->da_state & MKDIR_BODY) { FREE_LOCK(&lk); if ((error = VFS_VGET(mp, inum, &vp)) != 0) break; if ((error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)) || (error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) { vput(vp); break; } drain_output(vp, 0); /* * If first block is still dirty with a D_MKDIR * dependency then it needs to be written now. */ for (;;) { error = 0; ACQUIRE_LOCK(&lk); bp = incore(vp, 0); if (bp == NULL) { FREE_LOCK(&lk); break; } LIST_FOREACH(wk, &bp->b_dep, wk_list) if (wk->wk_type == D_MKDIR) break; if (wk) { gotit = getdirtybuf(bp, MNT_WAIT); FREE_LOCK(&lk); if (gotit == -1) continue; if (gotit && (error = bwrite(bp)) != 0) break; } else FREE_LOCK(&lk); break; } vput(vp); /* Flushing of first block failed */ if (error) break; ACQUIRE_LOCK(&lk); /* * If that cleared dependencies, go on to next. */ if (dap != LIST_FIRST(diraddhdp)) continue; if (dap->da_state & MKDIR_BODY) { FREE_LOCK(&lk); panic("flush_pagedep_deps: MKDIR_BODY"); } } /* * Flush the inode on which the directory entry depends. * Having accounted for MKDIR_PARENT and MKDIR_BODY above, * the only remaining dependency is that the updated inode * count must get pushed to disk. The inode has already * been pushed into its inode buffer (via VOP_UPDATE) at * the time of the reference count change. So we need only * locate that buffer, ensure that there will be no rollback * caused by a bitmap dependency, then write the inode buffer. */ if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) { FREE_LOCK(&lk); panic("flush_pagedep_deps: lost inode"); } /* * If the inode still has bitmap dependencies, * push them to disk. */ retry: if ((inodedep->id_state & DEPCOMPLETE) == 0) { bp = inodedep->id_buf; gotit = getdirtybuf(bp, MNT_WAIT); if (gotit == -1) goto retry; FREE_LOCK(&lk); if (gotit && (error = bwrite(bp)) != 0) break; ACQUIRE_LOCK(&lk); if (dap != LIST_FIRST(diraddhdp)) continue; } /* * If the inode is still sitting in a buffer waiting * to be written, push it to disk. */ FREE_LOCK(&lk); if ((error = bread(ump->um_devvp, fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), (int)ump->um_fs->fs_bsize, &bp)) != 0) { brelse(bp); break; } if ((error = bwrite(bp)) != 0) break; ACQUIRE_LOCK(&lk); /* * If we have failed to get rid of all the dependencies * then something is seriously wrong. */ if (dap == LIST_FIRST(diraddhdp)) { FREE_LOCK(&lk); panic("flush_pagedep_deps: flush failed"); } } if (error) ACQUIRE_LOCK(&lk); return (error); } /* * A large burst of file addition or deletion activity can drive the * memory load excessively high. First attempt to slow things down * using the techniques below. If that fails, this routine requests * the offending operations to fall back to running synchronously * until the memory load returns to a reasonable level. */ int softdep_slowdown(struct vnode *vp) { int max_softdeps_hard; max_softdeps_hard = max_softdeps * 11 / 10; if (num_dirrem < max_softdeps_hard / 2 && num_inodedep < max_softdeps_hard) return (0); stat_sync_limit_hit += 1; return (1); } /* * If memory utilization has gotten too high, deliberately slow things * down and speed up the I/O processing. */ STATIC int request_cleanup(int resource, int islocked) { struct proc *p = CURPROC; int s; /* * We never hold up the filesystem syncer process. */ if (p == filesys_syncer || (p->p_flag & P_SOFTDEP)) return (0); /* * First check to see if the work list has gotten backlogged. * If it has, co-opt this process to help clean up two entries. * Because this process may hold inodes locked, we cannot * handle any remove requests that might block on a locked * inode as that could lead to deadlock. We set P_SOFTDEP * to avoid recursively processing the worklist. */ if (num_on_worklist > max_softdeps / 10) { atomic_setbits_int(&p->p_flag, P_SOFTDEP); if (islocked) FREE_LOCK(&lk); process_worklist_item(NULL, LK_NOWAIT); process_worklist_item(NULL, LK_NOWAIT); atomic_clearbits_int(&p->p_flag, P_SOFTDEP); stat_worklist_push += 2; if (islocked) ACQUIRE_LOCK(&lk); return(1); } /* * Next, we attempt to speed up the syncer process. If that * is successful, then we allow the process to continue. */ if (speedup_syncer()) return(0); /* * If we are resource constrained on inode dependencies, try * flushing some dirty inodes. Otherwise, we are constrained * by file deletions, so try accelerating flushes of directories * with removal dependencies. We would like to do the cleanup * here, but we probably hold an inode locked at this point and * that might deadlock against one that we try to clean. So, * the best that we can do is request the syncer daemon to do * the cleanup for us. */ switch (resource) { case FLUSH_INODES: stat_ino_limit_push += 1; req_clear_inodedeps += 1; stat_countp = &stat_ino_limit_hit; break; case FLUSH_REMOVE: stat_blk_limit_push += 1; req_clear_remove += 1; stat_countp = &stat_blk_limit_hit; break; default: if (islocked) FREE_LOCK(&lk); panic("request_cleanup: unknown type"); } /* * Hopefully the syncer daemon will catch up and awaken us. * We wait at most tickdelay before proceeding in any case. */ if (islocked == 0) ACQUIRE_LOCK(&lk); proc_waiting += 1; if (!timeout_pending(&proc_waiting_timeout)) timeout_add(&proc_waiting_timeout, tickdelay > 2 ? tickdelay : 2); s = FREE_LOCK_INTERLOCKED(&lk); (void) tsleep((caddr_t)&proc_waiting, PPAUSE, "softupdate", 0); ACQUIRE_LOCK_INTERLOCKED(&lk, s); proc_waiting -= 1; if (islocked == 0) FREE_LOCK(&lk); return (1); } /* * Awaken processes pausing in request_cleanup and clear proc_waiting * to indicate that there is no longer a timer running. */ void pause_timer(void *arg) { *stat_countp += 1; wakeup_one(&proc_waiting); if (proc_waiting > 0) timeout_add(&proc_waiting_timeout, tickdelay > 2 ? tickdelay : 2); } /* * Flush out a directory with at least one removal dependency in an effort to * reduce the number of dirrem, freefile, and freeblks dependency structures. */ STATIC void clear_remove(struct proc *p) { struct pagedep_hashhead *pagedephd; struct pagedep *pagedep; static int next = 0; struct mount *mp; struct vnode *vp; int error, cnt; ufsino_t ino; ACQUIRE_LOCK(&lk); for (cnt = 0; cnt <= pagedep_hash; cnt++) { pagedephd = &pagedep_hashtbl[next++]; if (next > pagedep_hash) next = 0; LIST_FOREACH(pagedep, pagedephd, pd_hash) { if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) continue; mp = pagedep->pd_mnt; ino = pagedep->pd_ino; #if 0 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) continue; #endif FREE_LOCK(&lk); if ((error = VFS_VGET(mp, ino, &vp)) != 0) { softdep_error("clear_remove: vget", error); #if 0 vn_finished_write(mp); #endif return; } if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) softdep_error("clear_remove: fsync", error); drain_output(vp, 0); vput(vp); #if 0 vn_finished_write(mp); #endif return; } } FREE_LOCK(&lk); } /* * Clear out a block of dirty inodes in an effort to reduce * the number of inodedep dependency structures. */ STATIC void clear_inodedeps(struct proc *p) { struct inodedep_hashhead *inodedephd; struct inodedep *inodedep = NULL; static int next = 0; struct mount *mp; struct vnode *vp; struct fs *fs; int error, cnt; ufsino_t firstino, lastino, ino; ACQUIRE_LOCK(&lk); /* * Pick a random inode dependency to be cleared. * We will then gather up all the inodes in its block * that have dependencies and flush them out. */ for (cnt = 0; cnt <= inodedep_hash; cnt++) { inodedephd = &inodedep_hashtbl[next++]; if (next > inodedep_hash) next = 0; if ((inodedep = LIST_FIRST(inodedephd)) != NULL) break; } if (inodedep == NULL) { FREE_LOCK(&lk); return; } /* * Ugly code to find mount point given pointer to superblock. */ fs = inodedep->id_fs; TAILQ_FOREACH(mp, &mountlist, mnt_list) if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) break; /* * Find the last inode in the block with dependencies. */ firstino = inodedep->id_ino & ~(INOPB(fs) - 1); for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) break; /* * Asynchronously push all but the last inode with dependencies. * Synchronously push the last inode with dependencies to ensure * that the inode block gets written to free up the inodedeps. */ for (ino = firstino; ino <= lastino; ino++) { if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) continue; FREE_LOCK(&lk); #if 0 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) continue; #endif if ((error = VFS_VGET(mp, ino, &vp)) != 0) { softdep_error("clear_inodedeps: vget", error); #if 0 vn_finished_write(mp); #endif return; } if (ino == lastino) { if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p))) softdep_error("clear_inodedeps: fsync1", error); } else { if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) softdep_error("clear_inodedeps: fsync2", error); drain_output(vp, 0); } vput(vp); #if 0 vn_finished_write(mp); #endif ACQUIRE_LOCK(&lk); } FREE_LOCK(&lk); } /* * Function to determine if the buffer has outstanding dependencies * that will cause a roll-back if the buffer is written. If wantcount * is set, return number of dependencies, otherwise just yes or no. */ int softdep_count_dependencies(struct buf *bp, int wantcount, int islocked) { struct worklist *wk; struct inodedep *inodedep; struct indirdep *indirdep; struct allocindir *aip; struct pagedep *pagedep; struct diradd *dap; int i, retval; retval = 0; if (!islocked) ACQUIRE_LOCK(&lk); LIST_FOREACH(wk, &bp->b_dep, wk_list) { switch (wk->wk_type) { case D_INODEDEP: inodedep = WK_INODEDEP(wk); if ((inodedep->id_state & DEPCOMPLETE) == 0) { /* bitmap allocation dependency */ retval += 1; if (!wantcount) goto out; } if (TAILQ_FIRST(&inodedep->id_inoupdt)) { /* direct block pointer dependency */ retval += 1; if (!wantcount) goto out; } continue; case D_INDIRDEP: indirdep = WK_INDIRDEP(wk); LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { /* indirect block pointer dependency */ retval += 1; if (!wantcount) goto out; } continue; case D_PAGEDEP: pagedep = WK_PAGEDEP(wk); for (i = 0; i < DAHASHSZ; i++) { LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { /* directory entry dependency */ retval += 1; if (!wantcount) goto out; } } continue; case D_BMSAFEMAP: case D_ALLOCDIRECT: case D_ALLOCINDIR: case D_MKDIR: /* never a dependency on these blocks */ continue; default: if (!islocked) FREE_LOCK(&lk); panic("softdep_check_for_rollback: Unexpected type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } out: if (!islocked) FREE_LOCK(&lk); return retval; } /* * Acquire exclusive access to a buffer. * Must be called with splbio blocked. * Returns: * 1 if the buffer was acquired and is dirty; * 0 if the buffer was clean, or we would have slept but had MN_NOWAIT; * -1 if we slept and may try again (but not with this bp). */ STATIC int getdirtybuf(struct buf *bp, int waitfor) { int s; if (bp == NULL) return (0); splassert(IPL_BIO); if (bp->b_flags & B_BUSY) { if (waitfor != MNT_WAIT) return (0); bp->b_flags |= B_WANTED; s = FREE_LOCK_INTERLOCKED(&lk); tsleep((caddr_t)bp, PRIBIO + 1, "sdsdty", 0); ACQUIRE_LOCK_INTERLOCKED(&lk, s); return (-1); } if ((bp->b_flags & B_DELWRI) == 0) return (0); bremfree(bp); buf_acquire(bp); return (1); } /* * Wait for pending output on a vnode to complete. * Must be called with vnode locked. */ STATIC void drain_output(struct vnode *vp, int islocked) { int s; if (!islocked) ACQUIRE_LOCK(&lk); splassert(IPL_BIO); while (vp->v_numoutput) { vp->v_bioflag |= VBIOWAIT; s = FREE_LOCK_INTERLOCKED(&lk); tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "drain_output", 0); ACQUIRE_LOCK_INTERLOCKED(&lk, s); } if (!islocked) FREE_LOCK(&lk); } /* * Called whenever a buffer that is being invalidated or reallocated * contains dependencies. This should only happen if an I/O error has * occurred. The routine is called with the buffer locked. */ void softdep_deallocate_dependencies(struct buf *bp) { if ((bp->b_flags & B_ERROR) == 0) panic("softdep_deallocate_dependencies: dangling deps"); softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); panic("softdep_deallocate_dependencies: unrecovered I/O error"); } /* * Function to handle asynchronous write errors in the filesystem. */ void softdep_error(char *func, int error) { /* XXX should do something better! */ printf("%s: got error %d while accessing filesystem\n", func, error); } #ifdef DDB #include #include #include void softdep_print(struct buf *bp, int full, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) { struct worklist *wk; (*pr)(" deps:\n"); LIST_FOREACH(wk, &bp->b_dep, wk_list) worklist_print(wk, full, pr); } void worklist_print(struct worklist *wk, int full, int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) { struct pagedep *pagedep; struct inodedep *inodedep; struct newblk *newblk; struct bmsafemap *bmsafemap; struct allocdirect *adp; struct indirdep *indirdep; struct allocindir *aip; struct freefrag *freefrag; struct freeblks *freeblks; struct freefile *freefile; struct diradd *dap; struct mkdir *mkdir; struct dirrem *dirrem; struct newdirblk *newdirblk; char prefix[33]; int i; for (prefix[i = 2 * MIN(16, full)] = '\0'; i--; prefix[i] = ' ') ; (*pr)("%s%s(%p) state %b\n%s", prefix, TYPENAME(wk->wk_type), wk, wk->wk_state, DEP_BITS, prefix); switch (wk->wk_type) { case D_PAGEDEP: pagedep = WK_PAGEDEP(wk); (*pr)("mount %p ino %u lbn %lld\n", pagedep->pd_mnt, pagedep->pd_ino, (long long)pagedep->pd_lbn); break; case D_INODEDEP: inodedep = WK_INODEDEP(wk); (*pr)("fs %p ino %u nlinkdelta %u dino %p\n" "%s bp %p savsz %lld\n", inodedep->id_fs, inodedep->id_ino, inodedep->id_nlinkdelta, inodedep->id_un.idu_savedino1, prefix, inodedep->id_buf, inodedep->id_savedsize); break; case D_NEWBLK: newblk = WK_NEWBLK(wk); (*pr)("fs %p newblk %lld state %d bmsafemap %p\n", newblk->nb_fs, (long long)newblk->nb_newblkno, newblk->nb_state, newblk->nb_bmsafemap); break; case D_BMSAFEMAP: bmsafemap = WK_BMSAFEMAP(wk); (*pr)("buf %p\n", bmsafemap->sm_buf); break; case D_ALLOCDIRECT: adp = WK_ALLOCDIRECT(wk); (*pr)("lbn %lld newlbk %lld oldblk %lld newsize %ld olsize " "%ld\n%s bp %p inodedep %p freefrag %p\n", (long long)adp->ad_lbn, (long long)adp->ad_newblkno, (long long)adp->ad_oldblkno, adp->ad_newsize, adp->ad_oldsize, prefix, adp->ad_buf, adp->ad_inodedep, adp->ad_freefrag); break; case D_INDIRDEP: indirdep = WK_INDIRDEP(wk); (*pr)("savedata %p savebp %p\n", indirdep->ir_saveddata, indirdep->ir_savebp); break; case D_ALLOCINDIR: aip = WK_ALLOCINDIR(wk); (*pr)("off %d newblk %lld oldblk %lld freefrag %p\n" "%s indirdep %p buf %p\n", aip->ai_offset, (long long)aip->ai_newblkno, (long long)aip->ai_oldblkno, aip->ai_freefrag, prefix, aip->ai_indirdep, aip->ai_buf); break; case D_FREEFRAG: freefrag = WK_FREEFRAG(wk); (*pr)("vnode %p mp %p blkno %lld fsize %ld ino %u\n", freefrag->ff_devvp, freefrag->ff_mnt, (long long)freefrag->ff_blkno, freefrag->ff_fragsize, freefrag->ff_inum); break; case D_FREEBLKS: freeblks = WK_FREEBLKS(wk); (*pr)("previno %u devvp %p mp %p oldsz %lld newsz %lld\n" "%s chkcnt %d uid %d\n", freeblks->fb_previousinum, freeblks->fb_devvp, freeblks->fb_mnt, freeblks->fb_oldsize, freeblks->fb_newsize, prefix, freeblks->fb_chkcnt, freeblks->fb_uid); break; case D_FREEFILE: freefile = WK_FREEFILE(wk); (*pr)("mode %x oldino %u vnode %p mp %p\n", freefile->fx_mode, freefile->fx_oldinum, freefile->fx_devvp, freefile->fx_mnt); break; case D_DIRADD: dap = WK_DIRADD(wk); (*pr)("off %d ino %u da_un %p\n", dap->da_offset, dap->da_newinum, dap->da_un.dau_previous); break; case D_MKDIR: mkdir = WK_MKDIR(wk); (*pr)("diradd %p bp %p\n", mkdir->md_diradd, mkdir->md_buf); break; case D_DIRREM: dirrem = WK_DIRREM(wk); (*pr)("mp %p ino %u dm_un %p\n", dirrem->dm_mnt, dirrem->dm_oldinum, dirrem->dm_un.dmu_pagedep); break; case D_NEWDIRBLK: newdirblk = WK_NEWDIRBLK(wk); (*pr)("pagedep %p\n", newdirblk->db_pagedep); break; } } #endif