/* $OpenBSD: uvm_amap.c,v 1.54 2014/09/14 14:17:27 jsg Exp $ */ /* $NetBSD: uvm_amap.c,v 1.27 2000/11/25 06:27:59 chs Exp $ */ /* * Copyright (c) 1997 Charles D. Cranor and Washington University. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * uvm_amap.c: amap operations * * this file contains functions that perform operations on amaps. see * uvm_amap.h for a brief explanation of the role of amaps in uvm. */ #include #include #include #include #include #include #include /* * pool for allocation of vm_map structures. note that in order to * avoid an endless loop, the amap pool's allocator cannot allocate * memory from an amap (it currently goes through the kernel uobj, so * we are ok). */ struct pool uvm_amap_pool; LIST_HEAD(, vm_amap) amap_list; #define MALLOC_SLOT_UNIT (2 * sizeof(int) + sizeof(struct vm_anon *)) /* * local functions */ static struct vm_amap *amap_alloc1(int, int, int); static __inline void amap_list_insert(struct vm_amap *); static __inline void amap_list_remove(struct vm_amap *); static __inline void amap_list_insert(struct vm_amap *amap) { LIST_INSERT_HEAD(&amap_list, amap, am_list); } static __inline void amap_list_remove(struct vm_amap *amap) { LIST_REMOVE(amap, am_list); } #ifdef UVM_AMAP_PPREF /* * what is ppref? ppref is an _optional_ amap feature which is used * to keep track of reference counts on a per-page basis. it is enabled * when UVM_AMAP_PPREF is defined. * * when enabled, an array of ints is allocated for the pprefs. this * array is allocated only when a partial reference is added to the * map (either by unmapping part of the amap, or gaining a reference * to only a part of an amap). if the malloc of the array fails * (M_NOWAIT), then we set the array pointer to PPREF_NONE to indicate * that we tried to do ppref's but couldn't alloc the array so just * give up (after all, this is an optional feature!). * * the array is divided into page sized "chunks." for chunks of length 1, * the chunk reference count plus one is stored in that chunk's slot. * for chunks of length > 1 the first slot contains (the reference count * plus one) * -1. [the negative value indicates that the length is * greater than one.] the second slot of the chunk contains the length * of the chunk. here is an example: * * actual REFS: 2 2 2 2 3 1 1 0 0 0 4 4 0 1 1 1 * ppref: -3 4 x x 4 -2 2 -1 3 x -5 2 1 -2 3 x * <----------><-><----><-------><----><-><-------> * (x = don't care) * * this allows us to allow one int to contain the ref count for the whole * chunk. note that the "plus one" part is needed because a reference * count of zero is neither positive or negative (need a way to tell * if we've got one zero or a bunch of them). * * here are some in-line functions to help us. */ static __inline void pp_getreflen(int *, int, int *, int *); static __inline void pp_setreflen(int *, int, int, int); /* * pp_getreflen: get the reference and length for a specific offset */ static __inline void pp_getreflen(int *ppref, int offset, int *refp, int *lenp) { if (ppref[offset] > 0) { /* chunk size must be 1 */ *refp = ppref[offset] - 1; /* don't forget to adjust */ *lenp = 1; } else { *refp = (ppref[offset] * -1) - 1; *lenp = ppref[offset+1]; } } /* * pp_setreflen: set the reference and length for a specific offset */ static __inline void pp_setreflen(int *ppref, int offset, int ref, int len) { if (len == 1) { ppref[offset] = ref + 1; } else { ppref[offset] = (ref + 1) * -1; ppref[offset+1] = len; } } #endif /* * amap_init: called at boot time to init global amap data structures */ void amap_init(void) { /* Initialize the vm_amap pool. */ pool_init(&uvm_amap_pool, sizeof(struct vm_amap), 0, 0, 0, "amappl", &pool_allocator_nointr); pool_sethiwat(&uvm_amap_pool, 4096); } /* * amap_alloc1: internal function that allocates an amap, but does not * init the overlay. */ static inline struct vm_amap * amap_alloc1(int slots, int padslots, int waitf) { struct vm_amap *amap; int totalslots; amap = pool_get(&uvm_amap_pool, (waitf == M_WAITOK) ? PR_WAITOK : PR_NOWAIT); if (amap == NULL) return(NULL); totalslots = malloc_roundup((slots + padslots) * MALLOC_SLOT_UNIT) / MALLOC_SLOT_UNIT; amap->am_ref = 1; amap->am_flags = 0; #ifdef UVM_AMAP_PPREF amap->am_ppref = NULL; #endif amap->am_maxslot = totalslots; amap->am_nslot = slots; amap->am_nused = 0; amap->am_slots = malloc(totalslots * MALLOC_SLOT_UNIT, M_UVMAMAP, waitf); if (amap->am_slots == NULL) goto fail1; amap->am_bckptr = (int *)(((char *)amap->am_slots) + totalslots * sizeof(int)); amap->am_anon = (struct vm_anon **)(((char *)amap->am_bckptr) + totalslots * sizeof(int)); return(amap); fail1: pool_put(&uvm_amap_pool, amap); return (NULL); } /* * amap_alloc: allocate an amap to manage "sz" bytes of anonymous VM * * => caller should ensure sz is a multiple of PAGE_SIZE * => reference count to new amap is set to one */ struct vm_amap * amap_alloc(vaddr_t sz, vaddr_t padsz, int waitf) { struct vm_amap *amap; int slots, padslots; AMAP_B2SLOT(slots, sz); /* load slots */ AMAP_B2SLOT(padslots, padsz); amap = amap_alloc1(slots, padslots, waitf); if (amap) { memset(amap->am_anon, 0, amap->am_maxslot * sizeof(struct vm_anon *)); amap_list_insert(amap); } return(amap); } /* * amap_free: free an amap * * => the amap should have a zero reference count and be empty */ void amap_free(struct vm_amap *amap) { KASSERT(amap->am_ref == 0 && amap->am_nused == 0); KASSERT((amap->am_flags & AMAP_SWAPOFF) == 0); free(amap->am_slots, M_UVMAMAP, 0); #ifdef UVM_AMAP_PPREF if (amap->am_ppref && amap->am_ppref != PPREF_NONE) free(amap->am_ppref, M_UVMAMAP, 0); #endif pool_put(&uvm_amap_pool, amap); } /* * amap_extend: extend the size of an amap (if needed) * * => called from uvm_map when we want to extend an amap to cover * a new mapping (rather than allocate a new one) * => to safely extend an amap it should have a reference count of * one (thus it can't be shared) * => XXXCDC: support padding at this level? */ int amap_extend(struct vm_map_entry *entry, vsize_t addsize) { struct vm_amap *amap = entry->aref.ar_amap; int slotoff = entry->aref.ar_pageoff; int slotmapped, slotadd, slotneed, slotalloc; #ifdef UVM_AMAP_PPREF int *newppref, *oldppref; #endif u_int *newsl, *newbck, *oldsl, *oldbck; struct vm_anon **newover, **oldover; int slotadded; /* * first, determine how many slots we need in the amap. don't * forget that ar_pageoff could be non-zero: this means that * there are some unused slots before us in the amap. */ AMAP_B2SLOT(slotmapped, entry->end - entry->start); /* slots mapped */ AMAP_B2SLOT(slotadd, addsize); /* slots to add */ slotneed = slotoff + slotmapped + slotadd; /* * case 1: we already have enough slots in the map and thus * only need to bump the reference counts on the slots we are * adding. */ if (amap->am_nslot >= slotneed) { #ifdef UVM_AMAP_PPREF if (amap->am_ppref && amap->am_ppref != PPREF_NONE) { amap_pp_adjref(amap, slotoff + slotmapped, slotadd, 1); } #endif return (0); } /* * case 2: we pre-allocated slots for use and we just need to * bump nslot up to take account for these slots. */ if (amap->am_maxslot >= slotneed) { #ifdef UVM_AMAP_PPREF if (amap->am_ppref && amap->am_ppref != PPREF_NONE) { if ((slotoff + slotmapped) < amap->am_nslot) amap_pp_adjref(amap, slotoff + slotmapped, (amap->am_nslot - (slotoff + slotmapped)), 1); pp_setreflen(amap->am_ppref, amap->am_nslot, 1, slotneed - amap->am_nslot); } #endif amap->am_nslot = slotneed; /* * no need to zero am_anon since that was done at * alloc time and we never shrink an allocation. */ return (0); } /* * case 3: we need to malloc a new amap and copy all the amap * data over from old amap to the new one. * * XXXCDC: could we take advantage of a kernel realloc()? */ if (slotneed >= UVM_AMAP_LARGE) return E2BIG; slotalloc = malloc_roundup(slotneed * MALLOC_SLOT_UNIT) / MALLOC_SLOT_UNIT; #ifdef UVM_AMAP_PPREF newppref = NULL; if (amap->am_ppref && amap->am_ppref != PPREF_NONE) { newppref = malloc(slotalloc *sizeof(int), M_UVMAMAP, M_WAITOK | M_CANFAIL); if (newppref == NULL) { /* give up if malloc fails */ free(amap->am_ppref, M_UVMAMAP, 0); amap->am_ppref = PPREF_NONE; } } #endif newsl = malloc(slotalloc * MALLOC_SLOT_UNIT, M_UVMAMAP, M_WAITOK | M_CANFAIL); if (newsl == NULL) { #ifdef UVM_AMAP_PPREF if (newppref != NULL) { free(newppref, M_UVMAMAP, 0); } #endif return (ENOMEM); } newbck = (int *)(((char *)newsl) + slotalloc * sizeof(int)); newover = (struct vm_anon **)(((char *)newbck) + slotalloc * sizeof(int)); KASSERT(amap->am_maxslot < slotneed); /* now copy everything over to new malloc'd areas... */ slotadded = slotalloc - amap->am_nslot; /* do am_slots */ oldsl = amap->am_slots; memcpy(newsl, oldsl, sizeof(int) * amap->am_nused); amap->am_slots = newsl; /* do am_anon */ oldover = amap->am_anon; memcpy(newover, oldover, sizeof(struct vm_anon *) * amap->am_nslot); memset(newover + amap->am_nslot, 0, sizeof(struct vm_anon *) * slotadded); amap->am_anon = newover; /* do am_bckptr */ oldbck = amap->am_bckptr; memcpy(newbck, oldbck, sizeof(int) * amap->am_nslot); memset(newbck + amap->am_nslot, 0, sizeof(int) * slotadded); /* XXX: needed? */ amap->am_bckptr = newbck; #ifdef UVM_AMAP_PPREF /* do ppref */ oldppref = amap->am_ppref; if (newppref) { memcpy(newppref, oldppref, sizeof(int) * amap->am_nslot); memset(newppref + amap->am_nslot, 0, sizeof(int) * slotadded); amap->am_ppref = newppref; if ((slotoff + slotmapped) < amap->am_nslot) amap_pp_adjref(amap, slotoff + slotmapped, (amap->am_nslot - (slotoff + slotmapped)), 1); pp_setreflen(newppref, amap->am_nslot, 1, slotneed - amap->am_nslot); } #endif /* update master values */ amap->am_nslot = slotneed; amap->am_maxslot = slotalloc; /* and free */ free(oldsl, M_UVMAMAP, 0); #ifdef UVM_AMAP_PPREF if (oldppref && oldppref != PPREF_NONE) free(oldppref, M_UVMAMAP, 0); #endif return (0); } /* * amap_share_protect: change protection of anons in a shared amap * * for shared amaps, given the current data structure layout, it is * not possible for us to directly locate all maps referencing the * shared anon (to change the protection). in order to protect data * in shared maps we use pmap_page_protect(). [this is useful for IPC * mechanisms like map entry passing that may want to write-protect * all mappings of a shared amap.] we traverse am_anon or am_slots * depending on the current state of the amap. */ void amap_share_protect(struct vm_map_entry *entry, vm_prot_t prot) { struct vm_amap *amap = entry->aref.ar_amap; int slots, lcv, slot, stop; AMAP_B2SLOT(slots, (entry->end - entry->start)); stop = entry->aref.ar_pageoff + slots; if (slots < amap->am_nused) { /* cheaper to traverse am_anon */ for (lcv = entry->aref.ar_pageoff ; lcv < stop ; lcv++) { if (amap->am_anon[lcv] == NULL) continue; if (amap->am_anon[lcv]->an_page != NULL) pmap_page_protect(amap->am_anon[lcv]->an_page, prot); } return; } /* cheaper to traverse am_slots */ for (lcv = 0 ; lcv < amap->am_nused ; lcv++) { slot = amap->am_slots[lcv]; if (slot < entry->aref.ar_pageoff || slot >= stop) continue; if (amap->am_anon[slot]->an_page != NULL) pmap_page_protect(amap->am_anon[slot]->an_page, prot); } return; } /* * amap_wipeout: wipeout all anon's in an amap; then free the amap! * * => called from amap_unref when the final reference to an amap is * discarded (i.e. when reference count == 1) */ void amap_wipeout(struct vm_amap *amap) { int lcv, slot; struct vm_anon *anon; KASSERT(amap->am_ref == 0); if (__predict_false((amap->am_flags & AMAP_SWAPOFF) != 0)) { /* amap_swap_off will call us again. */ return; } amap_list_remove(amap); for (lcv = 0 ; lcv < amap->am_nused ; lcv++) { int refs; slot = amap->am_slots[lcv]; anon = amap->am_anon[slot]; if (anon == NULL || anon->an_ref == 0) panic("amap_wipeout: corrupt amap"); refs = --anon->an_ref; if (refs == 0) { /* we had the last reference to a vm_anon. free it. */ uvm_anfree(anon); } } /* now we free the map */ amap->am_ref = 0; /* ... was one */ amap->am_nused = 0; amap_free(amap); /* will free amap */ } /* * amap_copy: ensure that a map entry's "needs_copy" flag is false * by copying the amap if necessary. * * => an entry with a null amap pointer will get a new (blank) one. * => if canchunk is true, then we may clip the entry into a chunk * => "startva" and "endva" are used only if canchunk is true. they are * used to limit chunking (e.g. if you have a large space that you * know you are going to need to allocate amaps for, there is no point * in allowing that to be chunked) */ void amap_copy(struct vm_map *map, struct vm_map_entry *entry, int waitf, boolean_t canchunk, vaddr_t startva, vaddr_t endva) { struct vm_amap *amap, *srcamap; int slots, lcv; vaddr_t chunksize; /* is there a map to copy? if not, create one from scratch. */ if (entry->aref.ar_amap == NULL) { /* * check to see if we have a large amap that we can * chunk. we align startva/endva to chunk-sized * boundaries and then clip to them. */ if (canchunk && atop(entry->end - entry->start) >= UVM_AMAP_LARGE) { /* convert slots to bytes */ chunksize = UVM_AMAP_CHUNK << PAGE_SHIFT; startva = (startva / chunksize) * chunksize; endva = roundup(endva, chunksize); UVM_MAP_CLIP_START(map, entry, startva); /* watch out for endva wrap-around! */ if (endva >= startva) UVM_MAP_CLIP_END(map, entry, endva); } entry->aref.ar_pageoff = 0; entry->aref.ar_amap = amap_alloc(entry->end - entry->start, 0, waitf); if (entry->aref.ar_amap != NULL) entry->etype &= ~UVM_ET_NEEDSCOPY; return; } /* * first check and see if we are the only map entry * referencing the amap we currently have. if so, then we can * just take it over rather than copying it. the value can only * be one if we have the only reference to the amap */ if (entry->aref.ar_amap->am_ref == 1) { entry->etype &= ~UVM_ET_NEEDSCOPY; return; } /* looks like we need to copy the map. */ AMAP_B2SLOT(slots, entry->end - entry->start); amap = amap_alloc1(slots, 0, waitf); if (amap == NULL) return; srcamap = entry->aref.ar_amap; /* * need to double check reference count now. the reference count * could have changed while we were in malloc. if the reference count * dropped down to one we take over the old map rather than * copying the amap. */ if (srcamap->am_ref == 1) { /* take it over? */ entry->etype &= ~UVM_ET_NEEDSCOPY; amap->am_ref--; /* drop final reference to map */ amap_free(amap); /* dispose of new (unused) amap */ return; } /* we must copy it now. */ for (lcv = 0 ; lcv < slots; lcv++) { amap->am_anon[lcv] = srcamap->am_anon[entry->aref.ar_pageoff + lcv]; if (amap->am_anon[lcv] == NULL) continue; amap->am_anon[lcv]->an_ref++; amap->am_bckptr[lcv] = amap->am_nused; amap->am_slots[amap->am_nused] = lcv; amap->am_nused++; } memset(&amap->am_anon[lcv], 0, (amap->am_maxslot - lcv) * sizeof(struct vm_anon *)); /* * drop our reference to the old amap (srcamap). * we know that the reference count on srcamap is greater than * one (we checked above), so there is no way we could drop * the count to zero. [and no need to worry about freeing it] */ srcamap->am_ref--; if (srcamap->am_ref == 1 && (srcamap->am_flags & AMAP_SHARED) != 0) srcamap->am_flags &= ~AMAP_SHARED; /* clear shared flag */ #ifdef UVM_AMAP_PPREF if (srcamap->am_ppref && srcamap->am_ppref != PPREF_NONE) { amap_pp_adjref(srcamap, entry->aref.ar_pageoff, (entry->end - entry->start) >> PAGE_SHIFT, -1); } #endif /* install new amap. */ entry->aref.ar_pageoff = 0; entry->aref.ar_amap = amap; entry->etype &= ~UVM_ET_NEEDSCOPY; amap_list_insert(amap); } /* * amap_cow_now: resolve all copy-on-write faults in an amap now for fork(2) * * called during fork(2) when the parent process has a wired map * entry. in that case we want to avoid write-protecting pages * in the parent's map (e.g. like what you'd do for a COW page) * so we resolve the COW here. * * => assume parent's entry was wired, thus all pages are resident. * => assume pages that are loaned out (loan_count) are already mapped * read-only in all maps, and thus no need for us to worry about them * => caller passes child's map/entry in to us * => XXXCDC: out of memory should cause fork to fail, but there is * currently no easy way to do this (needs fix) */ void amap_cow_now(struct vm_map *map, struct vm_map_entry *entry) { struct vm_amap *amap = entry->aref.ar_amap; int lcv, slot; struct vm_anon *anon, *nanon; struct vm_page *pg, *npg; /* * note that if we wait, we must ReStart the "lcv" for loop because * some other process could reorder the anon's in the * am_anon[] array on us. */ ReStart: for (lcv = 0 ; lcv < amap->am_nused ; lcv++) { /* get the page */ slot = amap->am_slots[lcv]; anon = amap->am_anon[slot]; pg = anon->an_page; /* page must be resident since parent is wired */ if (pg == NULL) panic("amap_cow_now: non-resident wired page" " in anon %p", anon); /* * if the anon ref count is one and the page is not loaned, * then we are safe (the child has exclusive access to the * page). if the page is loaned, then it must already be * mapped read-only. * * we only need to get involved when these are not true. * [note: if loan_count == 0, then the anon must own the page] */ if (anon->an_ref > 1 && pg->loan_count == 0) { /* * if the page is busy then we have to wait for * it and then restart. */ if (pg->pg_flags & PG_BUSY) { atomic_setbits_int(&pg->pg_flags, PG_WANTED); UVM_WAIT(pg, FALSE, "cownow", 0); goto ReStart; } /* ok, time to do a copy-on-write to a new anon */ nanon = uvm_analloc(); if (nanon) { npg = uvm_pagealloc(NULL, 0, nanon, 0); } else npg = NULL; /* XXX: quiet gcc warning */ if (nanon == NULL || npg == NULL) { /* out of memory */ /* * XXXCDC: we should cause fork to fail, but * we can't ... */ if (nanon) { uvm_anfree(nanon); } uvm_wait("cownowpage"); goto ReStart; } /* * got it... now we can copy the data and replace anon * with our new one... */ uvm_pagecopy(pg, npg); /* old -> new */ anon->an_ref--; /* can't drop to zero */ amap->am_anon[slot] = nanon; /* replace */ /* * drop PG_BUSY on new page ... since we have had its * owner locked the whole time it can't be * PG_RELEASED | PG_WANTED. */ atomic_clearbits_int(&npg->pg_flags, PG_BUSY|PG_FAKE); UVM_PAGE_OWN(npg, NULL); uvm_lock_pageq(); uvm_pageactivate(npg); uvm_unlock_pageq(); } } } /* * amap_splitref: split a single reference into two separate references * * => called from uvm_map's clip routines */ void amap_splitref(struct vm_aref *origref, struct vm_aref *splitref, vaddr_t offset) { int leftslots; AMAP_B2SLOT(leftslots, offset); if (leftslots == 0) panic("amap_splitref: split at zero offset"); /* now: we have a valid am_mapped array. */ if (origref->ar_amap->am_nslot - origref->ar_pageoff - leftslots <= 0) panic("amap_splitref: map size check failed"); #ifdef UVM_AMAP_PPREF /* establish ppref before we add a duplicate reference to the amap */ if (origref->ar_amap->am_ppref == NULL) amap_pp_establish(origref->ar_amap); #endif splitref->ar_amap = origref->ar_amap; splitref->ar_amap->am_ref++; /* not a share reference */ splitref->ar_pageoff = origref->ar_pageoff + leftslots; } #ifdef UVM_AMAP_PPREF /* * amap_pp_establish: add a ppref array to an amap, if possible */ void amap_pp_establish(struct vm_amap *amap) { amap->am_ppref = malloc(sizeof(int) * amap->am_maxslot, M_UVMAMAP, M_NOWAIT|M_ZERO); /* if we fail then we just won't use ppref for this amap */ if (amap->am_ppref == NULL) { amap->am_ppref = PPREF_NONE; /* not using it */ return; } /* init ppref */ pp_setreflen(amap->am_ppref, 0, amap->am_ref, amap->am_nslot); } /* * amap_pp_adjref: adjust reference count to a part of an amap using the * per-page reference count array. * * => caller must check that ppref != PPREF_NONE before calling */ void amap_pp_adjref(struct vm_amap *amap, int curslot, vsize_t slotlen, int adjval) { int stopslot, *ppref, lcv, prevlcv; int ref, len, prevref, prevlen; stopslot = curslot + slotlen; ppref = amap->am_ppref; prevlcv = 0; /* * first advance to the correct place in the ppref array, * fragment if needed. */ for (lcv = 0 ; lcv < curslot ; lcv += len) { pp_getreflen(ppref, lcv, &ref, &len); if (lcv + len > curslot) { /* goes past start? */ pp_setreflen(ppref, lcv, ref, curslot - lcv); pp_setreflen(ppref, curslot, ref, len - (curslot -lcv)); len = curslot - lcv; /* new length of entry @ lcv */ } prevlcv = lcv; } if (lcv != 0) pp_getreflen(ppref, prevlcv, &prevref, &prevlen); else { /* Ensure that the "prevref == ref" test below always * fails, since we're starting from the beginning of * the ppref array; that is, there is no previous * chunk. */ prevref = -1; prevlen = 0; } /* * now adjust reference counts in range. merge the first * changed entry with the last unchanged entry if possible. */ if (lcv != curslot) panic("amap_pp_adjref: overshot target"); for (/* lcv already set */; lcv < stopslot ; lcv += len) { pp_getreflen(ppref, lcv, &ref, &len); if (lcv + len > stopslot) { /* goes past end? */ pp_setreflen(ppref, lcv, ref, stopslot - lcv); pp_setreflen(ppref, stopslot, ref, len - (stopslot - lcv)); len = stopslot - lcv; } ref += adjval; if (ref < 0) panic("amap_pp_adjref: negative reference count"); if (lcv == prevlcv + prevlen && ref == prevref) { pp_setreflen(ppref, prevlcv, ref, prevlen + len); } else { pp_setreflen(ppref, lcv, ref, len); } if (ref == 0) amap_wiperange(amap, lcv, len); } } /* * amap_wiperange: wipe out a range of an amap * [different from amap_wipeout because the amap is kept intact] */ void amap_wiperange(struct vm_amap *amap, int slotoff, int slots) { int byanon, lcv, stop, curslot, ptr, slotend; struct vm_anon *anon; /* * we can either traverse the amap by am_anon or by am_slots depending * on which is cheaper. decide now. */ if (slots < amap->am_nused) { byanon = TRUE; lcv = slotoff; stop = slotoff + slots; } else { byanon = FALSE; lcv = 0; stop = amap->am_nused; slotend = slotoff + slots; } while (lcv < stop) { int refs; if (byanon) { curslot = lcv++; /* lcv advances here */ if (amap->am_anon[curslot] == NULL) continue; } else { curslot = amap->am_slots[lcv]; if (curslot < slotoff || curslot >= slotend) { lcv++; /* lcv advances here */ continue; } stop--; /* drop stop, since anon will be removed */ } anon = amap->am_anon[curslot]; /* remove it from the amap */ amap->am_anon[curslot] = NULL; ptr = amap->am_bckptr[curslot]; if (ptr != (amap->am_nused - 1)) { amap->am_slots[ptr] = amap->am_slots[amap->am_nused - 1]; amap->am_bckptr[amap->am_slots[ptr]] = ptr; /* back ptr. */ } amap->am_nused--; /* drop anon reference count */ refs = --anon->an_ref; if (refs == 0) { /* * we just eliminated the last reference to an anon. * free it. */ uvm_anfree(anon); } } } #endif /* * amap_swap_off: pagein anonymous pages in amaps and drop swap slots. * * => note that we don't always traverse all anons. * eg. amaps being wiped out, released anons. * => return TRUE if failed. */ boolean_t amap_swap_off(int startslot, int endslot) { struct vm_amap *am; struct vm_amap *am_next; struct vm_amap marker_prev; struct vm_amap marker_next; boolean_t rv = FALSE; #if defined(DIAGNOSTIC) memset(&marker_prev, 0, sizeof(marker_prev)); memset(&marker_next, 0, sizeof(marker_next)); #endif /* defined(DIAGNOSTIC) */ for (am = LIST_FIRST(&amap_list); am != NULL && !rv; am = am_next) { int i; LIST_INSERT_BEFORE(am, &marker_prev, am_list); LIST_INSERT_AFTER(am, &marker_next, am_list); if (am->am_nused <= 0) { goto next; } for (i = 0; i < am->am_nused; i++) { int slot; int swslot; struct vm_anon *anon; slot = am->am_slots[i]; anon = am->am_anon[slot]; swslot = anon->an_swslot; if (swslot < startslot || endslot <= swslot) { continue; } am->am_flags |= AMAP_SWAPOFF; rv = uvm_anon_pagein(anon); am->am_flags &= ~AMAP_SWAPOFF; if (amap_refs(am) == 0) { amap_wipeout(am); am = NULL; break; } if (rv) { break; } i = 0; } next: KASSERT(LIST_NEXT(&marker_prev, am_list) == &marker_next || LIST_NEXT(LIST_NEXT(&marker_prev, am_list), am_list) == &marker_next); am_next = LIST_NEXT(&marker_next, am_list); LIST_REMOVE(&marker_prev, am_list); LIST_REMOVE(&marker_next, am_list); } return rv; } /* * amap_lookup: look up a page in an amap */ struct vm_anon * amap_lookup(struct vm_aref *aref, vaddr_t offset) { int slot; struct vm_amap *amap = aref->ar_amap; AMAP_B2SLOT(slot, offset); slot += aref->ar_pageoff; if (slot >= amap->am_nslot) panic("amap_lookup: offset out of range"); return(amap->am_anon[slot]); } /* * amap_lookups: look up a range of pages in an amap * * => XXXCDC: this interface is biased toward array-based amaps. fix. */ void amap_lookups(struct vm_aref *aref, vaddr_t offset, struct vm_anon **anons, int npages) { int slot; struct vm_amap *amap = aref->ar_amap; AMAP_B2SLOT(slot, offset); slot += aref->ar_pageoff; if ((slot + (npages - 1)) >= amap->am_nslot) panic("amap_lookups: offset out of range"); memcpy(anons, &amap->am_anon[slot], npages * sizeof(struct vm_anon *)); return; } /* * amap_add: add (or replace) a page to an amap * * => returns an "offset" which is meaningful to amap_unadd(). */ void amap_add(struct vm_aref *aref, vaddr_t offset, struct vm_anon *anon, boolean_t replace) { int slot; struct vm_amap *amap = aref->ar_amap; AMAP_B2SLOT(slot, offset); slot += aref->ar_pageoff; if (slot >= amap->am_nslot) panic("amap_add: offset out of range"); if (replace) { if (amap->am_anon[slot] == NULL) panic("amap_add: replacing null anon"); if (amap->am_anon[slot]->an_page != NULL && (amap->am_flags & AMAP_SHARED) != 0) { pmap_page_protect(amap->am_anon[slot]->an_page, VM_PROT_NONE); /* * XXX: suppose page is supposed to be wired somewhere? */ } } else { /* !replace */ if (amap->am_anon[slot] != NULL) panic("amap_add: slot in use"); amap->am_bckptr[slot] = amap->am_nused; amap->am_slots[amap->am_nused] = slot; amap->am_nused++; } amap->am_anon[slot] = anon; } /* * amap_unadd: remove a page from an amap */ void amap_unadd(struct vm_aref *aref, vaddr_t offset) { int ptr, slot; struct vm_amap *amap = aref->ar_amap; AMAP_B2SLOT(slot, offset); slot += aref->ar_pageoff; if (slot >= amap->am_nslot) panic("amap_unadd: offset out of range"); if (amap->am_anon[slot] == NULL) panic("amap_unadd: nothing there"); amap->am_anon[slot] = NULL; ptr = amap->am_bckptr[slot]; if (ptr != (amap->am_nused - 1)) { /* swap to keep slots contig? */ amap->am_slots[ptr] = amap->am_slots[amap->am_nused - 1]; amap->am_bckptr[amap->am_slots[ptr]] = ptr; /* back link */ } amap->am_nused--; } /* * amap_ref: gain a reference to an amap * * => "offset" and "len" are in units of pages * => called at fork time to gain the child's reference */ void amap_ref(struct vm_amap *amap, vaddr_t offset, vsize_t len, int flags) { amap->am_ref++; if (flags & AMAP_SHARED) amap->am_flags |= AMAP_SHARED; #ifdef UVM_AMAP_PPREF if (amap->am_ppref == NULL && (flags & AMAP_REFALL) == 0 && len != amap->am_nslot) amap_pp_establish(amap); if (amap->am_ppref && amap->am_ppref != PPREF_NONE) { if (flags & AMAP_REFALL) amap_pp_adjref(amap, 0, amap->am_nslot, 1); else amap_pp_adjref(amap, offset, len, 1); } #endif } /* * amap_unref: remove a reference to an amap * * => caller must remove all pmap-level references to this amap before * dropping the reference * => called from uvm_unmap_detach [only] ... note that entry is no * longer part of a map */ void amap_unref(struct vm_amap *amap, vaddr_t offset, vsize_t len, boolean_t all) { /* if we are the last reference, free the amap and return. */ if (amap->am_ref-- == 1) { amap_wipeout(amap); /* drops final ref and frees */ return; } /* otherwise just drop the reference count(s) */ if (amap->am_ref == 1 && (amap->am_flags & AMAP_SHARED) != 0) amap->am_flags &= ~AMAP_SHARED; /* clear shared flag */ #ifdef UVM_AMAP_PPREF if (amap->am_ppref == NULL && all == 0 && len != amap->am_nslot) amap_pp_establish(amap); if (amap->am_ppref && amap->am_ppref != PPREF_NONE) { if (all) amap_pp_adjref(amap, 0, amap->am_nslot, -1); else amap_pp_adjref(amap, offset, len, -1); } #endif }