/* $OpenBSD: uvm_glue.c,v 1.87 2024/10/28 08:25:32 mpi Exp $ */ /* $NetBSD: uvm_glue.c,v 1.44 2001/02/06 19:54:44 eeh Exp $ */ /* * Copyright (c) 1997 Charles D. Cranor and Washington University. * Copyright (c) 1991, 1993, The Regents of the University of California. * * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * uvm_glue.c: glue functions */ #include #include #include #include #include #ifdef SYSVSHM #include #endif #include /* * uvm_kernacc: can the kernel access a region of memory * * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c) */ boolean_t uvm_kernacc(caddr_t addr, size_t len, int rw) { boolean_t rv; vaddr_t saddr, eaddr; vm_prot_t prot = rw == B_READ ? PROT_READ : PROT_WRITE; saddr = trunc_page((vaddr_t)addr); eaddr = round_page((vaddr_t)addr + len); vm_map_lock_read(kernel_map); rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot); vm_map_unlock_read(kernel_map); return rv; } /* * uvm_vslock: wire user memory for I/O * * - called from sys_sysctl */ int uvm_vslock(struct proc *p, caddr_t addr, size_t len, vm_prot_t access_type) { struct vm_map *map = &p->p_vmspace->vm_map; vaddr_t start, end; start = trunc_page((vaddr_t)addr); end = round_page((vaddr_t)addr + len); if (end <= start) return (EINVAL); return uvm_fault_wire(map, start, end, access_type); } /* * uvm_vsunlock: unwire user memory wired by uvm_vslock() * * - called from sys_sysctl */ void uvm_vsunlock(struct proc *p, caddr_t addr, size_t len) { vaddr_t start, end; start = trunc_page((vaddr_t)addr); end = round_page((vaddr_t)addr + len); KASSERT(end > start); uvm_fault_unwire(&p->p_vmspace->vm_map, start, end); } /* * uvm_vslock_device: wire user memory, make sure it's device reachable * and bounce if necessary. * * - called from physio */ int uvm_vslock_device(struct proc *p, void *addr, size_t len, vm_prot_t access_type, void **retp) { struct vm_map *map = &p->p_vmspace->vm_map; struct vm_page *pg; struct pglist pgl; int npages; vaddr_t start, end, off; vaddr_t sva, va; vsize_t sz; int error, mapv, i; start = trunc_page((vaddr_t)addr); end = round_page((vaddr_t)addr + len); sz = end - start; off = (vaddr_t)addr - start; if (end <= start) return (EINVAL); vm_map_lock_read(map); retry: mapv = map->timestamp; vm_map_unlock_read(map); if ((error = uvm_fault_wire(map, start, end, access_type))) return (error); vm_map_lock_read(map); if (mapv != map->timestamp) goto retry; npages = atop(sz); for (i = 0; i < npages; i++) { paddr_t pa; if (!pmap_extract(map->pmap, start + ptoa(i), &pa)) { error = EFAULT; goto out_unwire; } if (!PADDR_IS_DMA_REACHABLE(pa)) break; } if (i == npages) { *retp = NULL; return (0); } va = (vaddr_t)km_alloc(sz, &kv_any, &kp_none, &kd_nowait); if (va == 0) { error = ENOMEM; goto out_unwire; } sva = va; TAILQ_INIT(&pgl); error = uvm_pglistalloc(npages * PAGE_SIZE, dma_constraint.ucr_low, dma_constraint.ucr_high, 0, 0, &pgl, npages, UVM_PLA_WAITOK); if (error) goto out_unmap; while ((pg = TAILQ_FIRST(&pgl)) != NULL) { TAILQ_REMOVE(&pgl, pg, pageq); pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), PROT_READ | PROT_WRITE); va += PAGE_SIZE; } pmap_update(pmap_kernel()); KASSERT(va == sva + sz); *retp = (void *)(sva + off); if ((error = copyin(addr, *retp, len)) == 0) return 0; uvm_km_pgremove_intrsafe(sva, sva + sz); pmap_kremove(sva, sz); pmap_update(pmap_kernel()); out_unmap: km_free((void *)sva, sz, &kv_any, &kp_none); out_unwire: uvm_fault_unwire_locked(map, start, end); vm_map_unlock_read(map); return (error); } /* * uvm_vsunlock_device: unwire user memory wired by uvm_vslock_device() * * - called from physio */ void uvm_vsunlock_device(struct proc *p, void *addr, size_t len, void *map) { vaddr_t start, end; vaddr_t kva; vsize_t sz; start = trunc_page((vaddr_t)addr); end = round_page((vaddr_t)addr + len); KASSERT(end > start); sz = end - start; if (map) copyout(map, addr, len); uvm_fault_unwire_locked(&p->p_vmspace->vm_map, start, end); vm_map_unlock_read(&p->p_vmspace->vm_map); if (!map) return; kva = trunc_page((vaddr_t)map); uvm_km_pgremove_intrsafe(kva, kva + sz); pmap_kremove(kva, sz); pmap_update(pmap_kernel()); uvm_km_free(kernel_map, kva, sz); } const struct kmem_va_mode kv_uarea = { .kv_map = &kernel_map, .kv_align = USPACE_ALIGN }; /* * uvm_uarea_alloc: allocate the u-area for a new thread */ vaddr_t uvm_uarea_alloc(void) { return (vaddr_t)km_alloc(USPACE, &kv_uarea, &kp_zero, &kd_waitok); } /* * uvm_uarea_free: free a dead thread's stack * * - the thread passed to us is a dead thread; we * are running on a different context now (the reaper). */ void uvm_uarea_free(struct proc *p) { km_free(p->p_addr, USPACE, &kv_uarea, &kp_zero); p->p_addr = NULL; } /* * uvm_exit: exit a virtual address space */ void uvm_exit(struct process *pr) { struct vmspace *vm = pr->ps_vmspace; pr->ps_vmspace = NULL; uvmspace_free(vm); } /* * uvm_init_limit: init per-process VM limits * * - called for process 0 and then inherited by all others. */ void uvm_init_limits(struct plimit *limit0) { /* * Set up the initial limits on process VM. Set the maximum * resident set size to be all of (reasonably) available memory. * This causes any single, large process to start random page * replacement once it fills memory. */ limit0->pl_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ; limit0->pl_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ; limit0->pl_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ; limit0->pl_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ; limit0->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free); } #ifdef __HAVE_PMAP_COLLECT #ifdef DEBUG int enableswap = 1; int swapdebug = 0; #define SDB_FOLLOW 1 #define SDB_SWAPIN 2 #define SDB_SWAPOUT 4 #endif /* * swapout_threads: find threads that can be swapped * * - called by the pagedaemon * - try and swap at least one process * - processes that are sleeping or stopped for maxslp or more seconds * are swapped... otherwise the longest-sleeping or stopped process * is swapped, otherwise the longest resident process... */ int uvm_swapout_threads(void) { struct process *pr; struct proc *p, *slpp; struct process *outpr; int free, outpri; int didswap = 0; extern int maxslp; /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */ #ifdef DEBUG if (!enableswap) return; #endif free = uvmexp.free; /* * outpr/outpri : stop/sleep process whose most active thread has * the largest sleeptime < maxslp */ outpr = NULL; outpri = 0; LIST_FOREACH(pr, &allprocess, ps_list) { if (pr->ps_flags & (PS_SYSTEM | PS_EXITING)) continue; /* * slpp: the sleeping or stopped thread in pr with * the smallest p_slptime */ slpp = NULL; TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) { switch (p->p_stat) { case SRUN: case SONPROC: goto next_process; case SSLEEP: case SSTOP: if (slpp == NULL || slpp->p_slptime < p->p_slptime) slpp = p; continue; } } if (slpp != NULL) { if (slpp->p_slptime >= maxslp) { pmap_collect(pr->ps_vmspace->vm_map.pmap); didswap++; } else if (slpp->p_slptime > outpri) { outpr = pr; outpri = slpp->p_slptime; } } next_process: ; } /* * If we didn't get rid of any real duds, toss out the next most * likely sleeping/stopped or running candidate. We only do this * if we are real low on memory since we don't gain much by doing * it. */ if (didswap == 0 && free <= atop(round_page(USPACE)) && outpr != NULL) { #ifdef DEBUG if (swapdebug & SDB_SWAPOUT) printf("swapout_threads: no duds, try procpr %p\n", outpr); #endif pmap_collect(outpr->ps_vmspace->vm_map.pmap); } /* * XXX might return a non-0 value even if pmap_collect() didn't * free anything. */ return (uvmexp.free - free); } #endif /* __HAVE_PMAP_COLLECT */ /* * uvm_atopg: convert KVAs back to their page structures. */ struct vm_page * uvm_atopg(vaddr_t kva) { struct vm_page *pg; paddr_t pa; boolean_t rv; rv = pmap_extract(pmap_kernel(), kva, &pa); KASSERT(rv); pg = PHYS_TO_VM_PAGE(pa); KASSERT(pg != NULL); return (pg); } #ifndef SMALL_KERNEL int fill_vmmap(struct process *pr, struct kinfo_vmentry *kve, size_t *lenp) { struct vm_map *map; if (pr != NULL) map = &pr->ps_vmspace->vm_map; else map = kernel_map; return uvm_map_fill_vmmap(map, kve, lenp); } #endif