/* $OpenBSD: uvm_page.h,v 1.52 2014/01/23 22:06:30 miod Exp $ */ /* $NetBSD: uvm_page.h,v 1.19 2000/12/28 08:24:55 chs Exp $ */ /* * Copyright (c) 1997 Charles D. Cranor and Washington University. * Copyright (c) 1991, 1993, The Regents of the University of California. * * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles D. Cranor, * Washington University, the University of California, Berkeley and * its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_page.h 7.3 (Berkeley) 4/21/91 * from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ #ifndef _UVM_UVM_PAGE_H_ #define _UVM_UVM_PAGE_H_ /* * uvm_page.h */ /* * Resident memory system definitions. */ /* * Management of resident (logical) pages. * * A small structure is kept for each resident * page, indexed by page number. Each structure * contains a list used for manipulating pages, and * a tree structure for in object/offset lookups * * In addition, the structure contains the object * and offset to which this page belongs (for pageout), * and sundry status bits. * * Fields in this structure are possibly locked by the lock on the page * queues (P). */ #include TAILQ_HEAD(pglist, vm_page); struct vm_page { TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO * queue or free list (P) */ RB_ENTRY(vm_page) objt; /* object tree */ struct vm_anon *uanon; /* anon (P) */ struct uvm_object *uobject; /* object (P) */ voff_t offset; /* offset into object (P) */ u_int pg_flags; /* object flags [P] */ u_int pg_version; /* version count */ u_int wire_count; /* wired down map refs [P] */ u_int loan_count; /* number of active loans * to read: [P] * to modify: [P] */ paddr_t phys_addr; /* physical address of page */ psize_t fpgsz; /* free page range size */ struct vm_page_md mdpage; /* pmap-specific data */ #if defined(UVM_PAGE_TRKOWN) /* debugging fields to track page ownership */ pid_t owner; /* proc that set PG_BUSY */ char *owner_tag; /* why it was set busy */ #endif }; /* * These are the flags defined for vm_page. * * Note: PG_FILLED and PG_DIRTY are added for the filesystems. */ /* * locking rules: * PQ_ ==> lock by page queue lock * PQ_FREE is locked by free queue lock and is mutex with all other PQs * pg_flags may only be changed using the atomic operations. * * PG_ZERO is used to indicate that a page has been pre-zero'd. This flag * is only set when the page is on no queues, and is cleared when the page * is placed on the free list. */ #define PG_BUSY 0x00000001 /* page is locked */ #define PG_WANTED 0x00000002 /* someone is waiting for page */ #define PG_TABLED 0x00000004 /* page is in VP table */ #define PG_CLEAN 0x00000008 /* page has not been modified */ #define PG_CLEANCHK 0x00000010 /* clean bit has been checked */ #define PG_RELEASED 0x00000020 /* page released while paging */ #define PG_FAKE 0x00000040 /* page is not yet initialized */ #define PG_RDONLY 0x00000080 /* page must be mapped read-only */ #define PG_ZERO 0x00000100 /* page is pre-zero'd */ #define PG_DEV 0x00000200 /* page is in device space, lay off */ #define PG_PAGER1 0x00001000 /* pager-specific flag */ #define PG_MASK 0x0000ffff #define PQ_FREE 0x00010000 /* page is on free list */ #define PQ_INACTIVE 0x00020000 /* page is in inactive list */ #define PQ_ACTIVE 0x00040000 /* page is in active list */ #define PQ_ANON 0x00100000 /* page is part of an anon, rather than an uvm_object */ #define PQ_AOBJ 0x00200000 /* page is part of an anonymous uvm_object */ #define PQ_SWAPBACKED (PQ_ANON|PQ_AOBJ) #define PQ_ENCRYPT 0x00400000 /* page needs {en,de}cryption */ #define PQ_MASK 0x00ff0000 #define PG_PMAP0 0x01000000 /* Used by some pmaps. */ #define PG_PMAP1 0x02000000 /* Used by some pmaps. */ #define PG_PMAP2 0x04000000 /* Used by some pmaps. */ #define PG_PMAP3 0x08000000 /* Used by some pmaps. */ /* * physical memory layout structure * * MD vmparam.h must #define: * VM_PHYSEG_MAX = max number of physical memory segments we support * (if this is "1" then we revert to a "contig" case) * VM_PHYSSEG_STRAT: memory sort/search options (for VM_PHYSEG_MAX > 1) * - VM_PSTRAT_RANDOM: linear search (random order) * - VM_PSTRAT_BSEARCH: binary search (sorted by address) * - VM_PSTRAT_BIGFIRST: linear search (sorted by largest segment first) * - others? * XXXCDC: eventually we should purge all left-over global variables... */ #define VM_PSTRAT_RANDOM 1 #define VM_PSTRAT_BSEARCH 2 #define VM_PSTRAT_BIGFIRST 3 /* * vm_physmemseg: describes one segment of physical memory */ struct vm_physseg { paddr_t start; /* PF# of first page in segment */ paddr_t end; /* (PF# of last page in segment) + 1 */ paddr_t avail_start; /* PF# of first free page in segment */ paddr_t avail_end; /* (PF# of last free page in segment) +1 */ struct vm_page *pgs; /* vm_page structures (from start) */ struct vm_page *lastpg; /* vm_page structure for end */ }; #ifdef _KERNEL /* * globals */ extern boolean_t vm_page_zero_enable; /* * physical memory config is stored in vm_physmem. */ extern struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; extern int vm_nphysseg; /* * prototypes: the following prototypes define the interface to pages */ void uvm_page_init(vaddr_t *, vaddr_t *); #if defined(UVM_PAGE_TRKOWN) void uvm_page_own(struct vm_page *, char *); #endif #if !defined(PMAP_STEAL_MEMORY) boolean_t uvm_page_physget(paddr_t *); #endif void uvm_pageidlezero(void); void uvm_pageactivate(struct vm_page *); vaddr_t uvm_pageboot_alloc(vsize_t); void uvm_pagecopy(struct vm_page *, struct vm_page *); void uvm_pagedeactivate(struct vm_page *); void uvm_pagefree(struct vm_page *); void uvm_page_unbusy(struct vm_page **, int); struct vm_page *uvm_pagelookup(struct uvm_object *, voff_t); void uvm_pageunwire(struct vm_page *); void uvm_pagewait(struct vm_page *, int); void uvm_pagewake(struct vm_page *); void uvm_pagewire(struct vm_page *); void uvm_pagezero(struct vm_page *); void uvm_pagealloc_pg(struct vm_page *, struct uvm_object *, voff_t, struct vm_anon *); struct uvm_constraint_range; /* XXX move to uvm_extern.h? */ psize_t uvm_pagecount(struct uvm_constraint_range*); #if VM_PHYSSEG_MAX == 1 /* * Inline functions for archs like the vax where function calls are expensive. */ /* * vm_physseg_find: find vm_physseg structure that belongs to a PA */ static __inline int vm_physseg_find(paddr_t pframe, int *offp) { /* 'contig' case */ if (pframe >= vm_physmem[0].start && pframe < vm_physmem[0].end) { if (offp) *offp = pframe - vm_physmem[0].start; return(0); } return(-1); } /* * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages * back from an I/O mapping (ugh!). used in some MD code as well. */ static __inline struct vm_page * PHYS_TO_VM_PAGE(paddr_t pa) { paddr_t pf = atop(pa); int off; int psi; psi = vm_physseg_find(pf, &off); return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]); } #else /* if VM_PHYSSEG_MAX > 1 they're not inline, they're in uvm_page.c. */ struct vm_page *PHYS_TO_VM_PAGE(paddr_t); int vm_physseg_find(paddr_t, int *); #endif /* * macros */ #define uvm_lock_pageq() /* lock */ #define uvm_unlock_pageq() /* unlock */ #define uvm_lock_fpageq() mtx_enter(&uvm.fpageqlock); #define uvm_unlock_fpageq() mtx_leave(&uvm.fpageqlock); #define UVM_PAGEZERO_TARGET (uvmexp.free) #define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr) #define VM_PAGE_IS_FREE(entry) ((entry)->pg_flags & PQ_FREE) #define PADDR_IS_DMA_REACHABLE(paddr) \ (dma_constraint.ucr_low <= paddr && dma_constraint.ucr_high > paddr) #endif /* _KERNEL */ #endif /* _UVM_UVM_PAGE_H_ */