/* $OpenBSD: uvm_param.h,v 1.5 2001/11/28 19:28:15 art Exp $ */ /* $NetBSD: uvm_param.h,v 1.11 2001/07/14 06:36:03 matt Exp $ */ /* * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_param.h 8.2 (Berkeley) 1/9/95 * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Machine independent virtual memory parameters. */ #ifndef _VM_PARAM_ #define _VM_PARAM_ #include /* * This belongs in types.h, but breaks too many existing programs. */ typedef int boolean_t; #ifndef TRUE #define TRUE 1 #endif #ifndef FALSE #define FALSE 0 #endif /* * The machine independent pages are refered to as PAGES. A page * is some number of hardware pages, depending on the target machine. */ #define DEFAULT_PAGE_SIZE 4096 #if defined(_KERNEL) && !defined(PAGE_SIZE) /* * All references to the size of a page should be done with PAGE_SIZE * or PAGE_SHIFT. The fact they are variables is hidden here so that * we can easily make them constant if we so desire. */ #define PAGE_SIZE uvmexp.pagesize /* size of page */ #define PAGE_MASK uvmexp.pagemask /* size of page - 1 */ #define PAGE_SHIFT uvmexp.pageshift /* bits to shift for pages */ #endif /* _KERNEL */ /* * CTL_VM identifiers */ #define VM_METER 1 /* struct vmmeter */ #define VM_LOADAVG 2 /* struct loadavg */ #define VM_PSSTRINGS 3 /* PSSTRINGS */ #define VM_UVMEXP 4 /* struct uvmexp */ #define VM_SWAPENCRYPT 5 /* int */ #define VM_NKMEMPAGES 6 /* int - # kmem_map pages */ #define VM_ANONMIN 7 #define VM_VTEXTMIN 8 #define VM_VNODEMIN 9 #define VM_MAXSLP 10 #define VM_USPACE 11 #define VM_MAXID 12 /* number of valid vm ids */ #define CTL_VM_NAMES { \ { 0, 0 }, \ { "vmmeter", CTLTYPE_STRUCT }, \ { "loadavg", CTLTYPE_STRUCT }, \ { "psstrings", CTLTYPE_STRUCT }, \ { "uvmexp", CTLTYPE_STRUCT }, \ { "swapencrypt", CTLTYPE_NODE }, \ { "nkmempages", CTLTYPE_INT }, \ { "anonmin", CTLTYPE_INT }, \ { "vtextmin", CTLTYPE_INT }, \ { "vnodemin", CTLTYPE_INT }, \ { "maxslp", CTLTYPE_INT }, \ { "uspace", CTLTYPE_INT }, \ } struct _ps_strings { void *val; }; #define SWAPSKIPBYTES 8192 /* never use at the start of a swap space */ #ifndef ASSEMBLER /* * Convert addresses to pages and vice versa. * No rounding is used. */ #ifdef _KERNEL #define atop(x) (((paddr_t)(x)) >> PAGE_SHIFT) #define ptoa(x) ((vaddr_t)((vaddr_t)(x) << PAGE_SHIFT)) /* * Round off or truncate to the nearest page. These will work * for either addresses or counts (i.e., 1 byte rounds to 1 page). */ #define round_page(x) (((x) + PAGE_MASK) & ~PAGE_MASK) #define trunc_page(x) ((x) & ~PAGE_MASK) extern psize_t mem_size; /* size of physical memory (bytes) */ extern int ubc_nwins; /* number of UBC mapping windows */ extern int ubc_winshift; /* shift for a UBC mapping window */ #else /* out-of-kernel versions of round_page and trunc_page */ #define round_page(x) \ ((((vaddr_t)(x) + (vm_page_size - 1)) / vm_page_size) * \ vm_page_size) #define trunc_page(x) \ ((((vaddr_t)(x)) / vm_page_size) * vm_page_size) #endif /* _KERNEL */ #endif /* ASSEMBLER */ #endif /* _VM_PARAM_ */