/*      $OpenBSD: bc.library,v 1.1 2003/09/25 19:34:22 otto Exp $	*/

/*
 * Copyright (C) Caldera International Inc.  2001-2002.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code and documentation must retain the above
 *    copyright notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *      This product includes software developed or owned by Caldera
 *      International, Inc.
 * 4. Neither the name of Caldera International, Inc. nor the names of other
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * USE OF THE SOFTWARE PROVIDED FOR UNDER THIS LICENSE BY CALDERA
 * INTERNATIONAL, INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL CALDERA INTERNATIONAL, INC. BE LIABLE FOR ANY DIRECT,
 * INDIRECT INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 *	@(#)bc.library	5.1 (Berkeley) 4/17/91
 */

scale = 20
define e(x){
	auto a, b, c, d, e, g, t, w, y

	t = scale
	scale = t + .434*x + 1

	w = 0
	if(x<0){
		x = -x
		w = 1
	}
	y = 0
	while(x>2){
		x = x/2
		y = y + 1
	}

	a=1
	b=1
	c=b
	d=1
	e=1
	for(a=1;1==1;a++){
		b=b*x
		c=c*a+b
		d=d*a
		g = c/d
		if(g == e){
			g = g/1
			while(y--){
				g = g*g
			}
			scale = t
			if(w==1) return(1/g)
			return(g/1)
		}
		e=g
	}
}

define l(x){
	auto a, b, c, d, e, f, g, u, s, t
	if(x <=0) return(1-10^scale)
	t = scale

	f=1
	scale = scale + scale(x) - length(x) + 1
	s=scale
	while(x > 2){
		s = s + (length(x)-scale(x))/2 + 1
		if(s>0) scale = s
		x = sqrt(x)
		f=f*2
	}
	while(x < .5){
		s = s + (length(x)-scale(x))/2 + 1
		if(s>0) scale = s
		x = sqrt(x)
		f=f*2
	}

	scale = t + length(f) - scale(f) + 1
	u = (x-1)/(x+1)

	scale = scale + 1.1*length(t) - 1.1*scale(t)
	s = u*u
	b = 2*f
	c = b
	d = 1
	e = 1
	for(a=3;1==1;a=a+2){
		b=b*s
		c=c*a+d*b
		d=d*a
		g=c/d
		if(g==e){
			scale = t
			return(u*c/d)
		}
		e=g
	}
}

define s(x){
	auto a, b, c, s, t, y, p, n, i
	t = scale
	y = x/.7853
	s = t + length(y) - scale(y)
	if(s<t) s=t
	scale = s
	p = a(1)

	scale = 0
	if(x>=0) n = (x/(2*p)+1)/2
	if(x<0) n = (x/(2*p)-1)/2
	x = x - 4*n*p
	if(n%2!=0) x = -x

	scale = t + length(1.2*t) - scale(1.2*t)
	y = -x*x
	a = x
	b = 1
	s = x
	for(i=3; 1==1; i=i+2){
		a = a*y
		b = b*i*(i-1)
		c = a/b
		if(c==0){scale=t; return(s/1)}
		s = s+c
	}
}

define c(x){
	auto t
	t = scale
	scale = scale+1
	x = s(x+2*a(1))
	scale = t
	return(x/1)
}

define a(x){
	auto a, b, c, d, e, f, g, s, t
	if(x==0) return(0)
	if(x==1) {
		if(scale<52) {
			return(.7853981633974483096156608458198757210492923498437764/1)
		}
	}
	t = scale
	f=1
	while(x > .5){
		scale = scale + 1
		x= -(1-sqrt(1.+x*x))/x
		f=f*2
	}
	while(x < -.5){
		scale = scale + 1
		x = -(1-sqrt(1.+x*x))/x
		f=f*2
	}
	s = -x*x
	b = f
	c = f
	d = 1
	e = 1
	for(a=3;1==1;a=a+2){
		b=b*s
		c=c*a+d*b
		d=d*a
		g=c/d
		if(g==e){
			scale = t
			return(x*c/d)
		}
		e=g
	}
}

define j(n,x){
	auto a,b,c,d,e,g,i,s,k,t

	t = scale
	k = 1.36*x + 1.16*t - n
	k = length(k) - scale(k)
	if(k>0) scale = scale + k

	s= -x*x/4
	if(n<0){
		n= -n
		x= -x
	}
	a=1
	c=1
	for(i=1;i<=n;i++){
		a=a*x
		c = c*2*i
	}
	b=a
	d=1
	e=1
	for(i=1;1;i++){
		a=a*s
		b=b*i*(n+i) + a
		c=c*i*(n+i)
		g=b/c
		if(g==e){
			scale = t
			return(g/1)
		}
		e=g
	}
}