/* $OpenBSD: bc.library,v 1.1 2003/09/25 19:34:22 otto Exp $ */ /* * Copyright (C) Caldera International Inc. 2001-2002. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code and documentation must retain the above * copyright notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed or owned by Caldera * International, Inc. * 4. Neither the name of Caldera International, Inc. nor the names of other * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * USE OF THE SOFTWARE PROVIDED FOR UNDER THIS LICENSE BY CALDERA * INTERNATIONAL, INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL CALDERA INTERNATIONAL, INC. BE LIABLE FOR ANY DIRECT, * INDIRECT INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * @(#)bc.library 5.1 (Berkeley) 4/17/91 */ scale = 20 define e(x){ auto a, b, c, d, e, g, t, w, y t = scale scale = t + .434*x + 1 w = 0 if(x<0){ x = -x w = 1 } y = 0 while(x>2){ x = x/2 y = y + 1 } a=1 b=1 c=b d=1 e=1 for(a=1;1==1;a++){ b=b*x c=c*a+b d=d*a g = c/d if(g == e){ g = g/1 while(y--){ g = g*g } scale = t if(w==1) return(1/g) return(g/1) } e=g } } define l(x){ auto a, b, c, d, e, f, g, u, s, t if(x <=0) return(1-10^scale) t = scale f=1 scale = scale + scale(x) - length(x) + 1 s=scale while(x > 2){ s = s + (length(x)-scale(x))/2 + 1 if(s>0) scale = s x = sqrt(x) f=f*2 } while(x < .5){ s = s + (length(x)-scale(x))/2 + 1 if(s>0) scale = s x = sqrt(x) f=f*2 } scale = t + length(f) - scale(f) + 1 u = (x-1)/(x+1) scale = scale + 1.1*length(t) - 1.1*scale(t) s = u*u b = 2*f c = b d = 1 e = 1 for(a=3;1==1;a=a+2){ b=b*s c=c*a+d*b d=d*a g=c/d if(g==e){ scale = t return(u*c/d) } e=g } } define s(x){ auto a, b, c, s, t, y, p, n, i t = scale y = x/.7853 s = t + length(y) - scale(y) if(s<t) s=t scale = s p = a(1) scale = 0 if(x>=0) n = (x/(2*p)+1)/2 if(x<0) n = (x/(2*p)-1)/2 x = x - 4*n*p if(n%2!=0) x = -x scale = t + length(1.2*t) - scale(1.2*t) y = -x*x a = x b = 1 s = x for(i=3; 1==1; i=i+2){ a = a*y b = b*i*(i-1) c = a/b if(c==0){scale=t; return(s/1)} s = s+c } } define c(x){ auto t t = scale scale = scale+1 x = s(x+2*a(1)) scale = t return(x/1) } define a(x){ auto a, b, c, d, e, f, g, s, t if(x==0) return(0) if(x==1) { if(scale<52) { return(.7853981633974483096156608458198757210492923498437764/1) } } t = scale f=1 while(x > .5){ scale = scale + 1 x= -(1-sqrt(1.+x*x))/x f=f*2 } while(x < -.5){ scale = scale + 1 x = -(1-sqrt(1.+x*x))/x f=f*2 } s = -x*x b = f c = f d = 1 e = 1 for(a=3;1==1;a=a+2){ b=b*s c=c*a+d*b d=d*a g=c/d if(g==e){ scale = t return(x*c/d) } e=g } } define j(n,x){ auto a,b,c,d,e,g,i,s,k,t t = scale k = 1.36*x + 1.16*t - n k = length(k) - scale(k) if(k>0) scale = scale + k s= -x*x/4 if(n<0){ n= -n x= -x } a=1 c=1 for(i=1;i<=n;i++){ a=a*x c = c*2*i } b=a d=1 e=1 for(i=1;1;i++){ a=a*s b=b*i*(n+i) + a c=c*i*(n+i) g=b/c if(g==e){ scale = t return(g/1) } e=g } }