/* $OpenBSD: bdes.c,v 1.6 2001/11/19 19:02:13 mpech Exp $ */ /* $NetBSD: bdes.c,v 1.2 1995/03/26 03:33:19 glass Exp $ */ /*- * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Matt Bishop of Dartmouth College. * * The United States Government has rights in this work pursuant * to contract no. NAG 2-680 between the National Aeronautics and * Space Administration and Dartmouth College. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint static char copyright[] = "@(#) Copyright (c) 1991, 1993\n\ The Regents of the University of California. All rights reserved.\n"; #endif /* not lint */ #ifndef lint #if 0 static char sccsid[] = "@(#)bdes.c 8.1 (Berkeley) 6/6/93"; #else static char rcsid[] = "$OpenBSD: bdes.c,v 1.6 2001/11/19 19:02:13 mpech Exp $"; #endif #endif /* not lint */ /* * BDES -- DES encryption package for Berkeley Software Distribution 4.4 * options: * -a key is in ASCII * -b use ECB (electronic code book) mode * -d invert (decrypt) input * -f b use b-bit CFB (cipher feedback) mode * -F b use b-bit CFB (cipher feedback) alternative mode * -k key use key as the cryptographic key * -m b generate a MAC of length b * -o b use b-bit OFB (output feedback) mode * -p don't reset the parity bit * -v v use v as the initialization vector (ignored for ECB) * note: the last character of the last block is the integer indicating * how many characters of that block are to be output * * Author: Matt Bishop * Department of Mathematics and Computer Science * Dartmouth College * Hanover, NH 03755 * Email: Matt.Bishop@dartmouth.edu * ...!decvax!dartvax!Matt.Bishop * * See Technical Report PCS-TR91-158, Department of Mathematics and Computer * Science, Dartmouth College, for a detailed description of the implemen- * tation and differences between it and Sun's. The DES is described in * FIPS PUB 46, and the modes in FIPS PUB 81 (see either the manual page * or the technical report for a complete reference). */ #include #include #include #include #include #include #include typedef char Desbuf[8]; int tobinhexi __P((char, int)); void cvtkey __P((char *, char *)); int setbits __P((char *, int)); void makekey __P((Desbuf)); void ecbenc __P((void)); void ecbdec __P((void)); void cbcenc __P((void)); void cbcdec __P((void)); void cbcauth __P((void)); void cfbenc __P((void)); void cfbdec __P((void)); void cfbaenc __P((void)); void cfbadec __P((void)); void cfbauth __P((void)); void ofbdec __P((void)); void ofbenc __P((void)); void usage __P((void)); /* * BSD and System V systems offer special library calls that do * block moves and fills, so if possible we take advantage of them */ #define MEMCPY(dest,src,len) bcopy((src),(dest),(len)) #define MEMZERO(dest,len) bzero((dest),(len)) /* Hide the calls to the primitive encryption routines. */ #define FASTWAY #ifdef FASTWAY #define DES_KEY(buf) \ if (des_setkey(buf)) \ err(1, "des_setkey"); #define DES_XFORM(buf) \ if (des_cipher(buf, buf, 0L, (inverse ? -1 : 1))) \ err(1, "des_cipher"); #else #define DES_KEY(buf) { \ char bits1[64]; /* bits of key */ \ expand(buf, bits1); \ if (setkey(bits1)) \ err(1, "setkey"); \ } #define DES_XFORM(buf) { \ char bits1[64]; /* bits of message */ \ expand(buf, bits1); \ if (encrypt(bits1, inverse)) \ err(1, "encrypt"); \ compress(bits1, buf); \ } #endif /* * this does an error-checking write */ #define READ(buf, n) fread(buf, sizeof(char), n, stdin) #define WRITE(buf,n) \ if (fwrite(buf, sizeof(char), n, stdout) != n) \ err(1, "block %d", bn); /* * some things to make references easier */ #define CHAR(x,i) (x[i]) #define UCHAR(x,i) (x[i]) #define BUFFER(x) (x) #define UBUFFER(x) (x) /* * global variables and related macros */ #define KEY_DEFAULT 0 /* interpret radix of key from key */ #define KEY_ASCII 1 /* key is in ASCII characters */ int keybase = KEY_DEFAULT; /* how to interpret the key */ enum { /* encrypt, decrypt, authenticate */ MODE_ENCRYPT, MODE_DECRYPT, MODE_AUTHENTICATE } mode = MODE_ENCRYPT; enum { /* ecb, cbc, cfb, cfba, ofb? */ ALG_ECB, ALG_CBC, ALG_CFB, ALG_OFB, ALG_CFBA } alg = ALG_CBC; Desbuf ivec; /* initialization vector */ char bits[] = { /* used to extract bits from a char */ '\200', '\100', '\040', '\020', '\010', '\004', '\002', '\001' }; int inverse; /* 0 to encrypt, 1 to decrypt */ int macbits = -1; /* number of bits in authentication */ int fbbits = -1; /* number of feedback bits */ int pflag; /* 1 to preserve parity bits */ int main(ac, av) int ac; /* arg count */ char **av; /* arg vector */ { extern int optind; /* option (argument) number */ extern char *optarg; /* argument to option if any */ int i; /* counter in a for loop */ char *p; /* used to obtain the key */ Desbuf msgbuf; /* I/O buffer */ int kflag; /* command-line encryptiooon key */ int argc; /* the real arg count */ char **argv; /* the real argument vector */ /* * Hide the arguments from ps(1) by making private copies of them * and clobbering the global (visible to ps(1)) ones. */ argc = ac; ac = 1; argv = malloc((argc + 1) * sizeof(char *)); for (i = 0; i < argc; ++i) { argv[i] = strdup(av[i]); MEMZERO(av[i], strlen(av[i])); } argv[argc] = NULL; /* initialize the initialization vctor */ MEMZERO(ivec, 8); /* process the argument list */ kflag = 0; while ((i = getopt(argc, argv, "abdF:f:k:m:o:pv:")) != -1) switch(i) { case 'a': /* key is ASCII */ keybase = KEY_ASCII; break; case 'b': /* use ECB mode */ alg = ALG_ECB; break; case 'd': /* decrypt */ mode = MODE_DECRYPT; break; case 'F': /* use alternative CFB mode */ alg = ALG_CFBA; if ((fbbits = setbits(optarg, 7)) > 56 || fbbits == 0) err(1, "-F: number must be 1-56 inclusive"); else if (fbbits == -1) err(1, "-F: number must be a multiple of 7"); break; case 'f': /* use CFB mode */ alg = ALG_CFB; if ((fbbits = setbits(optarg, 8)) > 64 || fbbits == 0) err(1, "-f: number must be 1-64 inclusive"); else if (fbbits == -1) err(1, "-f: number must be a multiple of 8"); break; case 'k': /* encryption key */ kflag = 1; cvtkey(BUFFER(msgbuf), optarg); break; case 'm': /* number of bits for MACing */ mode = MODE_AUTHENTICATE; if ((macbits = setbits(optarg, 1)) > 64) err(1, "-m: number must be 0-64 inclusive"); break; case 'o': /* use OFB mode */ alg = ALG_OFB; if ((fbbits = setbits(optarg, 8)) > 64 || fbbits == 0) err(1, "-o: number must be 1-64 inclusive"); else if (fbbits == -1) err(1, "-o: number must be a multiple of 8"); break; case 'p': /* preserve parity bits */ pflag = 1; break; case 'v': /* set initialization vector */ cvtkey(BUFFER(ivec), optarg); break; default: /* error */ usage(); } if (!kflag) { /* * if the key's not ASCII, assume it is */ keybase = KEY_ASCII; /* * get the key */ p = getpass("Enter key: "); /* * copy it, nul-padded, into the key area */ cvtkey(BUFFER(msgbuf), p); } makekey(msgbuf); inverse = (alg == ALG_CBC || alg == ALG_ECB) && mode == MODE_DECRYPT; switch(alg) { case ALG_CBC: switch(mode) { case MODE_AUTHENTICATE: /* authenticate using CBC mode */ cbcauth(); break; case MODE_DECRYPT: /* decrypt using CBC mode */ cbcdec(); break; case MODE_ENCRYPT: /* encrypt using CBC mode */ cbcenc(); break; } break; case ALG_CFB: switch(mode) { case MODE_AUTHENTICATE: /* authenticate using CFB mode */ cfbauth(); break; case MODE_DECRYPT: /* decrypt using CFB mode */ cfbdec(); break; case MODE_ENCRYPT: /* encrypt using CFB mode */ cfbenc(); break; } break; case ALG_CFBA: switch(mode) { case MODE_AUTHENTICATE: /* authenticate using CFBA mode */ err(1, "can't authenticate with CFBA mode"); break; case MODE_DECRYPT: /* decrypt using CFBA mode */ cfbadec(); break; case MODE_ENCRYPT: /* encrypt using CFBA mode */ cfbaenc(); break; } break; case ALG_ECB: switch(mode) { case MODE_AUTHENTICATE: /* authenticate using ECB mode */ err(1, "can't authenticate with ECB mode"); break; case MODE_DECRYPT: /* decrypt using ECB mode */ ecbdec(); break; case MODE_ENCRYPT: /* encrypt using ECB mode */ ecbenc(); break; } break; case ALG_OFB: switch(mode) { case MODE_AUTHENTICATE: /* authenticate using OFB mode */ err(1, "can't authenticate with OFB mode"); break; case MODE_DECRYPT: /* decrypt using OFB mode */ ofbdec(); break; case MODE_ENCRYPT: /* encrypt using OFB mode */ ofbenc(); break; } break; } exit(0); } /* * map a hex character to an integer */ int tobinhex(c, radix) char c; /* char to be converted */ int radix; /* base (2 to 16) */ { switch(c) { case '0': return(0x0); case '1': return(0x1); case '2': return(radix > 2 ? 0x2 : -1); case '3': return(radix > 3 ? 0x3 : -1); case '4': return(radix > 4 ? 0x4 : -1); case '5': return(radix > 5 ? 0x5 : -1); case '6': return(radix > 6 ? 0x6 : -1); case '7': return(radix > 7 ? 0x7 : -1); case '8': return(radix > 8 ? 0x8 : -1); case '9': return(radix > 9 ? 0x9 : -1); case 'A': case 'a': return(radix > 10 ? 0xa : -1); case 'B': case 'b': return(radix > 11 ? 0xb : -1); case 'C': case 'c': return(radix > 12 ? 0xc : -1); case 'D': case 'd': return(radix > 13 ? 0xd : -1); case 'E': case 'e': return(radix > 14 ? 0xe : -1); case 'F': case 'f': return(radix > 15 ? 0xf : -1); } /* * invalid character */ return(-1); } /* * convert the key to a bit pattern */ void cvtkey(obuf, ibuf) char *obuf; /* bit pattern */ char *ibuf; /* the key itself */ { int i, j; /* counter in a for loop */ int nbuf[64]; /* used for hex/key translation */ /* * just switch on the key base */ switch(keybase) { case KEY_ASCII: /* ascii to integer */ (void)strncpy(obuf, ibuf, 8); return; case KEY_DEFAULT: /* tell from context */ /* * leading '0x' or '0X' == hex key */ if (ibuf[0] == '0' && (ibuf[1] == 'x' || ibuf[1] == 'X')) { ibuf = &ibuf[2]; /* * now translate it, bombing on any illegal hex digit */ for (i = 0; ibuf[i] && i < 16; i++) if ((nbuf[i] = tobinhex(ibuf[i], 16)) == -1) err(1, "bad hex digit in key"); while (i < 16) nbuf[i++] = 0; for (i = 0; i < 8; i++) obuf[i] = ((nbuf[2*i]&0xf)<<4) | (nbuf[2*i+1]&0xf); /* preserve parity bits */ pflag = 1; return; } /* * leading '0b' or '0B' == binary key */ if (ibuf[0] == '0' && (ibuf[1] == 'b' || ibuf[1] == 'B')) { ibuf = &ibuf[2]; /* * now translate it, bombing on any illegal binary digit */ for (i = 0; ibuf[i] && i < 16; i++) if ((nbuf[i] = tobinhex(ibuf[i], 2)) == -1) err(1, "bad binary digit in key"); while (i < 64) nbuf[i++] = 0; for (i = 0; i < 8; i++) for (j = 0; j < 8; j++) obuf[i] = (obuf[i]<<1)|nbuf[8*i+j]; /* preserve parity bits */ pflag = 1; return; } /* * no special leader -- ASCII */ (void)strncpy(obuf, ibuf, 8); } } /* * convert an ASCII string into a decimal number: * 1. must be between 0 and 64 inclusive * 2. must be a valid decimal number * 3. must be a multiple of mult */ int setbits(s, mult) char *s; /* the ASCII string */ int mult; /* what it must be a multiple of */ { char *p; /* pointer in a for loop */ int n = 0; /* the integer collected */ /* * skip white space */ while (isspace(*s)) s++; /* * get the integer */ for (p = s; *p; p++) { if (isdigit(*p)) n = n * 10 + *p - '0'; else { err(1, "bad decimal digit in MAC length"); } } /* * be sure it's a multiple of mult */ return((n % mult != 0) ? -1 : n); } /***************** * DES FUNCTIONS * *****************/ /* * This sets the DES key and (if you're using the deszip version) * the direction of the transformation. This uses the Sun * to map the 64-bit key onto the 56 bits that the key schedule * generation routines use: the old way, which just uses the user- * supplied 64 bits as is, and the new way, which resets the parity * bit to be the same as the low-order bit in each character. The * new way generates a greater variety of key schedules, since many * systems set the parity (high) bit of each character to 0, and the * DES ignores the low order bit of each character. */ void makekey(buf) Desbuf buf; /* key block */ { int i, j; /* counter in a for loop */ int par; /* parity counter */ /* * if the parity is not preserved, flip it */ if (!pflag) { for (i = 0; i < 8; i++) { par = 0; for (j = 1; j < 8; j++) if ((bits[j]&UCHAR(buf, i)) != 0) par++; if ((par&01) == 01) UCHAR(buf, i) = UCHAR(buf, i)&0177; else UCHAR(buf, i) = (UCHAR(buf, i)&0177)|0200; } } DES_KEY(UBUFFER(buf)); } /* * This encrypts using the Electronic Code Book mode of DES */ void ecbenc() { int n; /* number of bytes actually read */ int bn; /* block number */ Desbuf msgbuf; /* I/O buffer */ for (bn = 0; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) { /* * do the transformation */ DES_XFORM(UBUFFER(msgbuf)); WRITE(BUFFER(msgbuf), 8); } /* * at EOF or last block -- in either ase, the last byte contains * the character representation of the number of bytes in it */ bn++; MEMZERO(&CHAR(msgbuf, n), 8 - n); CHAR(msgbuf, 7) = n; DES_XFORM(UBUFFER(msgbuf)); WRITE(BUFFER(msgbuf), 8); } /* * This decrypts using the Electronic Code Book mode of DES */ void ecbdec() { int n; /* number of bytes actually read */ int c; /* used to test for EOF */ int bn; /* block number */ Desbuf msgbuf; /* I/O buffer */ for (bn = 1; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) { /* * do the transformation */ DES_XFORM(UBUFFER(msgbuf)); /* * if the last one, handle it specially */ if ((c = getchar()) == EOF) { n = CHAR(msgbuf, 7); if (n < 0 || n > 7) err(1, "decryption failed (block %d corrupted)", bn); } else (void)ungetc(c, stdin); WRITE(BUFFER(msgbuf), n); } if (n > 0) err(1, "decryption failed (block %d incomplete)", bn); } /* * This encrypts using the Cipher Block Chaining mode of DES */ void cbcenc() { int n; /* number of bytes actually read */ int bn; /* block number */ Desbuf msgbuf; /* I/O buffer */ /* * do the transformation */ for (bn = 1; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) { for (n = 0; n < 8; n++) CHAR(msgbuf, n) ^= CHAR(ivec, n); DES_XFORM(UBUFFER(msgbuf)); MEMCPY(BUFFER(ivec), BUFFER(msgbuf), 8); WRITE(BUFFER(msgbuf), 8); } /* * at EOF or last block -- in either case, the last byte contains * the character representation of the number of bytes in it */ bn++; MEMZERO(&CHAR(msgbuf, n), 8 - n); CHAR(msgbuf, 7) = n; for (n = 0; n < 8; n++) CHAR(msgbuf, n) ^= CHAR(ivec, n); DES_XFORM(UBUFFER(msgbuf)); WRITE(BUFFER(msgbuf), 8); } /* * This decrypts using the Cipher Block Chaining mode of DES */ void cbcdec() { int n; /* number of bytes actually read */ Desbuf msgbuf; /* I/O buffer */ Desbuf ibuf; /* temp buffer for initialization vector */ int c; /* used to test for EOF */ int bn; /* block number */ for (bn = 0; (n = READ(BUFFER(msgbuf), 8)) == 8; bn++) { /* * do the transformation */ MEMCPY(BUFFER(ibuf), BUFFER(msgbuf), 8); DES_XFORM(UBUFFER(msgbuf)); for (c = 0; c < 8; c++) UCHAR(msgbuf, c) ^= UCHAR(ivec, c); MEMCPY(BUFFER(ivec), BUFFER(ibuf), 8); /* * if the last one, handle it specially */ if ((c = getchar()) == EOF) { n = CHAR(msgbuf, 7); if (n < 0 || n > 7) err(1, "decryption failed (block %d corrupted)", bn); } else (void)ungetc(c, stdin); WRITE(BUFFER(msgbuf), n); } if (n > 0) err(1, "decryption failed (block %d incomplete)", bn); } /* * This authenticates using the Cipher Block Chaining mode of DES */ void cbcauth() { int n, j; /* number of bytes actually read */ Desbuf msgbuf; /* I/O buffer */ Desbuf encbuf; /* encryption buffer */ /* * do the transformation * note we DISCARD the encrypted block; * we only care about the last one */ while ((n = READ(BUFFER(msgbuf), 8)) == 8) { for (n = 0; n < 8; n++) CHAR(encbuf, n) = CHAR(msgbuf, n) ^ CHAR(ivec, n); DES_XFORM(UBUFFER(encbuf)); MEMCPY(BUFFER(ivec), BUFFER(encbuf), 8); } /* * now compute the last one, right padding with '\0' if need be */ if (n > 0) { MEMZERO(&CHAR(msgbuf, n), 8 - n); for (n = 0; n < 8; n++) CHAR(encbuf, n) = CHAR(msgbuf, n) ^ CHAR(ivec, n); DES_XFORM(UBUFFER(encbuf)); } /* * drop the bits * we write chars until fewer than 7 bits, * and then pad the last one with 0 bits */ for (n = 0; macbits > 7; n++, macbits -= 8) (void)putchar(CHAR(encbuf, n)); if (macbits > 0) { CHAR(msgbuf, 0) = 0x00; for (j = 0; j < macbits; j++) CHAR(msgbuf, 0) |= (CHAR(encbuf, n)&bits[j]); (void)putchar(CHAR(msgbuf, 0)); } } /* * This encrypts using the Cipher FeedBack mode of DES */ void cfbenc() { int n; /* number of bytes actually read */ int nbytes; /* number of bytes to read */ int bn; /* block number */ char ibuf[8]; /* input buffer */ Desbuf msgbuf; /* encryption buffer */ /* * do things in bytes, not bits */ nbytes = fbbits / 8; /* * do the transformation */ for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) { MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (n = 0; n < 8 - nbytes; n++) UCHAR(ivec, n) = UCHAR(ivec, n+nbytes); for (n = 0; n < nbytes; n++) UCHAR(ivec, 8-nbytes+n) = ibuf[n] ^ UCHAR(msgbuf, n); WRITE(&CHAR(ivec, 8-nbytes), nbytes); } /* * at EOF or last block -- in either case, the last byte contains * the character representation of the number of bytes in it */ bn++; MEMZERO(&ibuf[n], nbytes - n); ibuf[nbytes - 1] = n; MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (n = 0; n < nbytes; n++) ibuf[n] ^= UCHAR(msgbuf, n); WRITE(ibuf, nbytes); } /* * This decrypts using the Cipher Block Chaining mode of DES */ void cfbdec() { int n; /* number of bytes actually read */ int c; /* used to test for EOF */ int nbytes; /* number of bytes to read */ int bn; /* block number */ char ibuf[8]; /* input buffer */ char obuf[8]; /* output buffer */ Desbuf msgbuf; /* encryption buffer */ /* * do things in bytes, not bits */ nbytes = fbbits / 8; /* * do the transformation */ for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) { MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (c = 0; c < 8 - nbytes; c++) CHAR(ivec, c) = CHAR(ivec, c+nbytes); for (c = 0; c < nbytes; c++) { CHAR(ivec, 8-nbytes+c) = ibuf[c]; obuf[c] = ibuf[c] ^ UCHAR(msgbuf, c); } /* * if the last one, handle it specially */ if ((c = getchar()) == EOF) { n = obuf[nbytes-1]; if (n < 0 || n > nbytes-1) err(1, "decryption failed (block %d corrupted)", bn); } else (void)ungetc(c, stdin); WRITE(obuf, n); } if (n > 0) err(1, "decryption failed (block %d incomplete)", bn); } /* * This encrypts using the alternative Cipher FeedBack mode of DES */ void cfbaenc() { int n; /* number of bytes actually read */ int nbytes; /* number of bytes to read */ int bn; /* block number */ char ibuf[8]; /* input buffer */ char obuf[8]; /* output buffer */ Desbuf msgbuf; /* encryption buffer */ /* * do things in bytes, not bits */ nbytes = fbbits / 7; /* * do the transformation */ for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) { MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (n = 0; n < 8 - nbytes; n++) UCHAR(ivec, n) = UCHAR(ivec, n+nbytes); for (n = 0; n < nbytes; n++) UCHAR(ivec, 8-nbytes+n) = (ibuf[n] ^ UCHAR(msgbuf, n)) |0200; for (n = 0; n < nbytes; n++) obuf[n] = CHAR(ivec, 8-nbytes+n)&0177; WRITE(obuf, nbytes); } /* * at EOF or last block -- in either case, the last byte contains * the character representation of the number of bytes in it */ bn++; MEMZERO(&ibuf[n], nbytes - n); ibuf[nbytes - 1] = ('0' + n)|0200; MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (n = 0; n < nbytes; n++) ibuf[n] ^= UCHAR(msgbuf, n); WRITE(ibuf, nbytes); } /* * This decrypts using the alternative Cipher Block Chaining mode of DES */ void cfbadec() { int n; /* number of bytes actually read */ int c; /* used to test for EOF */ int nbytes; /* number of bytes to read */ int bn; /* block number */ char ibuf[8]; /* input buffer */ char obuf[8]; /* output buffer */ Desbuf msgbuf; /* encryption buffer */ /* * do things in bytes, not bits */ nbytes = fbbits / 7; /* * do the transformation */ for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) { MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (c = 0; c < 8 - nbytes; c++) CHAR(ivec, c) = CHAR(ivec, c+nbytes); for (c = 0; c < nbytes; c++) { CHAR(ivec, 8-nbytes+c) = ibuf[c]|0200; obuf[c] = (ibuf[c] ^ UCHAR(msgbuf, c))&0177; } /* * if the last one, handle it specially */ if ((c = getchar()) == EOF) { if ((n = (obuf[nbytes-1] - '0')) < 0 || n > nbytes-1) err(1, "decryption failed (block %d corrupted)", bn); } else (void)ungetc(c, stdin); WRITE(obuf, n); } if (n > 0) err(1, "decryption failed (block %d incomplete)", bn); } /* * This encrypts using the Output FeedBack mode of DES */ void ofbenc() { int n; /* number of bytes actually read */ int c; /* used to test for EOF */ int nbytes; /* number of bytes to read */ int bn; /* block number */ char ibuf[8]; /* input buffer */ char obuf[8]; /* output buffer */ Desbuf msgbuf; /* encryption buffer */ /* * do things in bytes, not bits */ nbytes = fbbits / 8; /* * do the transformation */ for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) { MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (n = 0; n < 8 - nbytes; n++) UCHAR(ivec, n) = UCHAR(ivec, n+nbytes); for (n = 0; n < nbytes; n++) { UCHAR(ivec, 8-nbytes+n) = UCHAR(msgbuf, n); obuf[n] = ibuf[n] ^ UCHAR(msgbuf, n); } WRITE(obuf, nbytes); } /* * at EOF or last block -- in either case, the last byte contains * the character representation of the number of bytes in it */ bn++; MEMZERO(&ibuf[n], nbytes - n); ibuf[nbytes - 1] = n; MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (c = 0; c < nbytes; c++) ibuf[c] ^= UCHAR(msgbuf, c); WRITE(ibuf, nbytes); } /* * This decrypts using the Output Block Chaining mode of DES */ void ofbdec() { int n; /* number of bytes actually read */ int c; /* used to test for EOF */ int nbytes; /* number of bytes to read */ int bn; /* block number */ char ibuf[8]; /* input buffer */ char obuf[8]; /* output buffer */ Desbuf msgbuf; /* encryption buffer */ /* * do things in bytes, not bits */ nbytes = fbbits / 8; /* * do the transformation */ for (bn = 1; (n = READ(ibuf, nbytes)) == nbytes; bn++) { MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (c = 0; c < 8 - nbytes; c++) CHAR(ivec, c) = CHAR(ivec, c+nbytes); for (c = 0; c < nbytes; c++) { CHAR(ivec, 8-nbytes+c) = UCHAR(msgbuf, c); obuf[c] = ibuf[c] ^ UCHAR(msgbuf, c); } /* * if the last one, handle it specially */ if ((c = getchar()) == EOF) { n = obuf[nbytes-1]; if (n < 0 || n > nbytes-1) err(1, "decryption failed (block %d corrupted)", bn); } else (void)ungetc(c, stdin); /* * dump it */ WRITE(obuf, n); } if (n > 0) err(1, "decryption failed (block %d incomplete)", bn); } /* * This authenticates using the Cipher FeedBack mode of DES */ void cfbauth() { int n, j; /* number of bytes actually read */ int nbytes; /* number of bytes to read */ char ibuf[8]; /* input buffer */ Desbuf msgbuf; /* encryption buffer */ /* * do things in bytes, not bits */ nbytes = fbbits / 8; /* * do the transformation */ while ((n = READ(ibuf, nbytes)) == nbytes) { MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (n = 0; n < 8 - nbytes; n++) UCHAR(ivec, n) = UCHAR(ivec, n+nbytes); for (n = 0; n < nbytes; n++) UCHAR(ivec, 8-nbytes+n) = ibuf[n] ^ UCHAR(msgbuf, n); } /* * at EOF or last block -- in either case, the last byte contains * the character representation of the number of bytes in it */ MEMZERO(&ibuf[n], nbytes - n); ibuf[nbytes - 1] = '0' + n; MEMCPY(BUFFER(msgbuf), BUFFER(ivec), 8); DES_XFORM(UBUFFER(msgbuf)); for (n = 0; n < nbytes; n++) ibuf[n] ^= UCHAR(msgbuf, n); /* * drop the bits * we write chars until fewer than 7 bits, * and then pad the last one with 0 bits */ for (n = 0; macbits > 7; n++, macbits -= 8) (void)putchar(CHAR(msgbuf, n)); if (macbits > 0) { CHAR(msgbuf, 0) = 0x00; for (j = 0; j < macbits; j++) CHAR(msgbuf, 0) |= (CHAR(msgbuf, n)&bits[j]); (void)putchar(CHAR(msgbuf, 0)); } } #ifndef FASTWAY /* * change from 8 bits/Uchar to 1 bit/Uchar */ expand(from, to) Desbuf from; /* 8bit/unsigned char string */ char *to; /* 1bit/char string */ { int i, j; /* counters in for loop */ for (i = 0; i < 8; i++) for (j = 0; j < 8; j++) *to++ = (CHAR(from, i)>>(7-j))&01; } /* * change from 1 bit/char to 8 bits/Uchar */ compress(from, to) char *from; /* 1bit/char string */ Desbuf to; /* 8bit/unsigned char string */ { int i, j; /* counters in for loop */ for (i = 0; i < 8; i++) { CHAR(to, i) = 0; for (j = 0; j < 8; j++) CHAR(to, i) = ((*from++)<<(7-j))|CHAR(to, i); } } #endif /* * message about usage */ void usage() { (void)fprintf(stderr, "%s\n", "usage: bdes [-abdp] [-F bit] [-f bit] [-k key] [-m bit] [-o bit] [-v vector]"); exit(1); }