/* * Copyright (C) Internet Systems Consortium, Inc. ("ISC") * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /*! \file * \author Principal Author: Bob Halley */ /* * XXXRTH Need to document the states a task can be in, and the rules * for changing states. */ #include #include #include #include #include #include #include "task_p.h" /*** *** Types. ***/ typedef enum { task_state_idle, task_state_ready, task_state_running, task_state_done } task_state_t; struct isc_task { /* Not locked. */ isc_taskmgr_t * manager; /* Locked by task lock. */ task_state_t state; unsigned int references; isc_eventlist_t events; isc_eventlist_t on_shutdown; unsigned int nevents; unsigned int quantum; unsigned int flags; time_t now; char name[16]; void * tag; /* Locked by task manager lock. */ LINK(isc_task_t) link; LINK(isc_task_t) ready_link; LINK(isc_task_t) ready_priority_link; }; #define TASK_F_SHUTTINGDOWN 0x01 #define TASK_F_PRIVILEGED 0x02 #define TASK_SHUTTINGDOWN(t) (((t)->flags & TASK_F_SHUTTINGDOWN) \ != 0) typedef ISC_LIST(isc_task_t) isc_tasklist_t; struct isc_taskmgr { /* Not locked. */ /* Locked by task manager lock. */ unsigned int default_quantum; LIST(isc_task_t) tasks; isc_tasklist_t ready_tasks; isc_tasklist_t ready_priority_tasks; isc_taskmgrmode_t mode; unsigned int tasks_running; unsigned int tasks_ready; isc_boolean_t pause_requested; isc_boolean_t exclusive_requested; isc_boolean_t exiting; /* * Multiple threads can read/write 'excl' at the same time, so we need * to protect the access. We can't use 'lock' since isc_task_detach() * will try to acquire it. */ isc_task_t *excl; unsigned int refs; }; #define DEFAULT_TASKMGR_QUANTUM 10 #define DEFAULT_DEFAULT_QUANTUM 5 #define FINISHED(m) ((m)->exiting && EMPTY((m)->tasks)) static isc_taskmgr_t *taskmgr = NULL; static inline isc_boolean_t empty_readyq(isc_taskmgr_t *manager); static inline isc_task_t * pop_readyq(isc_taskmgr_t *manager); static inline void push_readyq(isc_taskmgr_t *manager, isc_task_t *task); /*** *** Tasks. ***/ static void task_finished(isc_task_t *task) { isc_taskmgr_t *manager = task->manager; REQUIRE(EMPTY(task->events)); REQUIRE(task->nevents == 0); REQUIRE(EMPTY(task->on_shutdown)); REQUIRE(task->references == 0); REQUIRE(task->state == task_state_done); UNLINK(manager->tasks, task, link); free(task); } isc_result_t isc_task_create(isc_taskmgr_t *manager, unsigned int quantum, isc_task_t **taskp) { isc_task_t *task; isc_boolean_t exiting; REQUIRE(taskp != NULL && *taskp == NULL); task = malloc(sizeof(*task)); if (task == NULL) return (ISC_R_NOMEMORY); task->manager = manager; task->state = task_state_idle; task->references = 1; INIT_LIST(task->events); INIT_LIST(task->on_shutdown); task->nevents = 0; task->quantum = quantum; task->flags = 0; task->now = 0; memset(task->name, 0, sizeof(task->name)); task->tag = NULL; INIT_LINK(task, link); INIT_LINK(task, ready_link); INIT_LINK(task, ready_priority_link); exiting = ISC_FALSE; if (!manager->exiting) { if (task->quantum == 0) task->quantum = manager->default_quantum; APPEND(manager->tasks, task, link); } else exiting = ISC_TRUE; if (exiting) { free(task); return (ISC_R_SHUTTINGDOWN); } *taskp = (isc_task_t *)task; return (ISC_R_SUCCESS); } void isc_task_attach(isc_task_t *source0, isc_task_t **targetp) { isc_task_t *source = (isc_task_t *)source0; /* * Attach *targetp to source. */ REQUIRE(targetp != NULL && *targetp == NULL); source->references++; *targetp = (isc_task_t *)source; } static inline isc_boolean_t task_shutdown(isc_task_t *task) { isc_boolean_t was_idle = ISC_FALSE; isc_event_t *event, *prev; /* * Caller must be holding the task's lock. */ if (! TASK_SHUTTINGDOWN(task)) { task->flags |= TASK_F_SHUTTINGDOWN; if (task->state == task_state_idle) { INSIST(EMPTY(task->events)); task->state = task_state_ready; was_idle = ISC_TRUE; } INSIST(task->state == task_state_ready || task->state == task_state_running); /* * Note that we post shutdown events LIFO. */ for (event = TAIL(task->on_shutdown); event != NULL; event = prev) { prev = PREV(event, ev_link); DEQUEUE(task->on_shutdown, event, ev_link); ENQUEUE(task->events, event, ev_link); task->nevents++; } } return (was_idle); } /* * Moves a task onto the appropriate run queue. * * Caller must NOT hold manager lock. */ static inline void task_ready(isc_task_t *task) { isc_taskmgr_t *manager = task->manager; REQUIRE(task->state == task_state_ready); push_readyq(manager, task); } static inline isc_boolean_t task_detach(isc_task_t *task) { /* * Caller must be holding the task lock. */ REQUIRE(task->references > 0); task->references--; if (task->references == 0 && task->state == task_state_idle) { INSIST(EMPTY(task->events)); /* * There are no references to this task, and no * pending events. We could try to optimize and * either initiate shutdown or clean up the task, * depending on its state, but it's easier to just * make the task ready and allow run() or the event * loop to deal with shutting down and termination. */ task->state = task_state_ready; return (ISC_TRUE); } return (ISC_FALSE); } void isc_task_detach(isc_task_t **taskp) { isc_task_t *task; isc_boolean_t was_idle; /* * Detach *taskp from its task. */ REQUIRE(taskp != NULL); task = (isc_task_t *)*taskp; was_idle = task_detach(task); if (was_idle) task_ready(task); *taskp = NULL; } static inline isc_boolean_t task_send(isc_task_t *task, isc_event_t **eventp) { isc_boolean_t was_idle = ISC_FALSE; isc_event_t *event; /* * Caller must be holding the task lock. */ REQUIRE(eventp != NULL); event = *eventp; REQUIRE(event != NULL); REQUIRE(event->ev_type > 0); REQUIRE(task->state != task_state_done); REQUIRE(!ISC_LINK_LINKED(event, ev_ratelink)); if (task->state == task_state_idle) { was_idle = ISC_TRUE; INSIST(EMPTY(task->events)); task->state = task_state_ready; } INSIST(task->state == task_state_ready || task->state == task_state_running); ENQUEUE(task->events, event, ev_link); task->nevents++; *eventp = NULL; return (was_idle); } void isc_task_send(isc_task_t *task, isc_event_t **eventp) { isc_boolean_t was_idle; /* * Send '*event' to 'task'. */ /* * We're trying hard to hold locks for as short a time as possible. * We're also trying to hold as few locks as possible. This is why * some processing is deferred until after the lock is released. */ was_idle = task_send(task, eventp); if (was_idle) { /* * We need to add this task to the ready queue. * * We've waited until now to do it because making a task * ready requires locking the manager. If we tried to do * this while holding the task lock, we could deadlock. * * We've changed the state to ready, so no one else will * be trying to add this task to the ready queue. The * only way to leave the ready state is by executing the * task. It thus doesn't matter if events are added, * removed, or a shutdown is started in the interval * between the time we released the task lock, and the time * we add the task to the ready queue. */ task_ready(task); } } void isc_task_sendanddetach(isc_task_t **taskp, isc_event_t **eventp) { isc_boolean_t idle1, idle2; isc_task_t *task; /* * Send '*event' to '*taskp' and then detach '*taskp' from its * task. */ REQUIRE(taskp != NULL); task = (isc_task_t *)*taskp; idle1 = task_send(task, eventp); idle2 = task_detach(task); /* * If idle1, then idle2 shouldn't be true as well since we're holding * the task lock, and thus the task cannot switch from ready back to * idle. */ INSIST(!(idle1 && idle2)); if (idle1 || idle2) task_ready(task); *taskp = NULL; } #define PURGE_OK(event) (((event)->ev_attributes & ISC_EVENTATTR_NOPURGE) == 0) static unsigned int dequeue_events(isc_task_t *task, void *sender, isc_eventtype_t first, isc_eventtype_t last, void *tag, isc_eventlist_t *events, isc_boolean_t purging) { isc_event_t *event, *next_event; unsigned int count = 0; REQUIRE(last >= first); /* * Events matching 'sender', whose type is >= first and <= last, and * whose tag is 'tag' will be dequeued. If 'purging', matching events * which are marked as unpurgable will not be dequeued. * * sender == NULL means "any sender", and tag == NULL means "any tag". */ for (event = HEAD(task->events); event != NULL; event = next_event) { next_event = NEXT(event, ev_link); if (event->ev_type >= first && event->ev_type <= last && (sender == NULL || event->ev_sender == sender) && (tag == NULL || event->ev_tag == tag) && (!purging || PURGE_OK(event))) { DEQUEUE(task->events, event, ev_link); task->nevents--; ENQUEUE(*events, event, ev_link); count++; } } return (count); } unsigned int isc_task_purgerange(isc_task_t *task, void *sender, isc_eventtype_t first, isc_eventtype_t last, void *tag) { unsigned int count; isc_eventlist_t events; isc_event_t *event, *next_event; /* * Purge events from a task's event queue. */ ISC_LIST_INIT(events); count = dequeue_events(task, sender, first, last, tag, &events, ISC_TRUE); for (event = HEAD(events); event != NULL; event = next_event) { next_event = NEXT(event, ev_link); ISC_LIST_UNLINK(events, event, ev_link); isc_event_free(&event); } /* * Note that purging never changes the state of the task. */ return (count); } void isc_task_setname(isc_task_t *task, const char *name, void *tag) { /* * Name 'task'. */ strlcpy(task->name, name, sizeof(task->name)); task->tag = tag; } /*** *** Task Manager. ***/ /* * Return ISC_TRUE if the current ready list for the manager, which is * either ready_tasks or the ready_priority_tasks, depending on whether * the manager is currently in normal or privileged execution mode. * * Caller must hold the task manager lock. */ static inline isc_boolean_t empty_readyq(isc_taskmgr_t *manager) { isc_tasklist_t queue; if (manager->mode == isc_taskmgrmode_normal) queue = manager->ready_tasks; else queue = manager->ready_priority_tasks; return (ISC_TF(EMPTY(queue))); } /* * Dequeue and return a pointer to the first task on the current ready * list for the manager. * If the task is privileged, dequeue it from the other ready list * as well. * * Caller must hold the task manager lock. */ static inline isc_task_t * pop_readyq(isc_taskmgr_t *manager) { isc_task_t *task; if (manager->mode == isc_taskmgrmode_normal) task = HEAD(manager->ready_tasks); else task = HEAD(manager->ready_priority_tasks); if (task != NULL) { DEQUEUE(manager->ready_tasks, task, ready_link); if (ISC_LINK_LINKED(task, ready_priority_link)) DEQUEUE(manager->ready_priority_tasks, task, ready_priority_link); } return (task); } /* * Push 'task' onto the ready_tasks queue. If 'task' has the privilege * flag set, then also push it onto the ready_priority_tasks queue. * * Caller must hold the task manager lock. */ static inline void push_readyq(isc_taskmgr_t *manager, isc_task_t *task) { ENQUEUE(manager->ready_tasks, task, ready_link); if ((task->flags & TASK_F_PRIVILEGED) != 0) ENQUEUE(manager->ready_priority_tasks, task, ready_priority_link); manager->tasks_ready++; } static void dispatch(isc_taskmgr_t *manager) { isc_task_t *task; unsigned int total_dispatch_count = 0; isc_tasklist_t new_ready_tasks; isc_tasklist_t new_priority_tasks; unsigned int tasks_ready = 0; ISC_LIST_INIT(new_ready_tasks); ISC_LIST_INIT(new_priority_tasks); while (!FINISHED(manager)) { if (total_dispatch_count >= DEFAULT_TASKMGR_QUANTUM || empty_readyq(manager)) break; task = pop_readyq(manager); if (task != NULL) { unsigned int dispatch_count = 0; isc_boolean_t done = ISC_FALSE; isc_boolean_t requeue = ISC_FALSE; isc_boolean_t finished = ISC_FALSE; isc_event_t *event; /* * Note we only unlock the manager lock if we actually * have a task to do. We must reacquire the manager * lock before exiting the 'if (task != NULL)' block. */ manager->tasks_ready--; manager->tasks_running++; INSIST(task->state == task_state_ready); task->state = task_state_running; time(&task->now); do { if (!EMPTY(task->events)) { event = HEAD(task->events); DEQUEUE(task->events, event, ev_link); task->nevents--; /* * Execute the event action. */ if (event->ev_action != NULL) { (event->ev_action)( (isc_task_t *)task, event); } dispatch_count++; total_dispatch_count++; } if (task->references == 0 && EMPTY(task->events) && !TASK_SHUTTINGDOWN(task)) { isc_boolean_t was_idle; /* * There are no references and no * pending events for this task, * which means it will not become * runnable again via an external * action (such as sending an event * or detaching). * * We initiate shutdown to prevent * it from becoming a zombie. * * We do this here instead of in * the "if EMPTY(task->events)" block * below because: * * If we post no shutdown events, * we want the task to finish. * * If we did post shutdown events, * will still want the task's * quantum to be applied. */ was_idle = task_shutdown(task); INSIST(!was_idle); } if (EMPTY(task->events)) { /* * Nothing else to do for this task * right now. */ if (task->references == 0 && TASK_SHUTTINGDOWN(task)) { /* * The task is done. */ finished = ISC_TRUE; task->state = task_state_done; } else task->state = task_state_idle; done = ISC_TRUE; } else if (dispatch_count >= task->quantum) { /* * Our quantum has expired, but * there is more work to be done. * We'll requeue it to the ready * queue later. * * We don't check quantum until * dispatching at least one event, * so the minimum quantum is one. */ task->state = task_state_ready; requeue = ISC_TRUE; done = ISC_TRUE; } } while (!done); if (finished) task_finished(task); manager->tasks_running--; if (requeue) { /* * We know we're awake, so we don't have * to wakeup any sleeping threads if the * ready queue is empty before we requeue. * * A possible optimization if the queue is * empty is to 'goto' the 'if (task != NULL)' * block, avoiding the ENQUEUE of the task * and the subsequent immediate DEQUEUE * (since it is the only executable task). * We don't do this because then we'd be * skipping the exit_requested check. The * cost of ENQUEUE is low anyway, especially * when you consider that we'd have to do * an extra EMPTY check to see if we could * do the optimization. If the ready queue * were usually nonempty, the 'optimization' * might even hurt rather than help. */ ENQUEUE(new_ready_tasks, task, ready_link); if ((task->flags & TASK_F_PRIVILEGED) != 0) ENQUEUE(new_priority_tasks, task, ready_priority_link); tasks_ready++; } } } ISC_LIST_APPENDLIST(manager->ready_tasks, new_ready_tasks, ready_link); ISC_LIST_APPENDLIST(manager->ready_priority_tasks, new_priority_tasks, ready_priority_link); manager->tasks_ready += tasks_ready; if (empty_readyq(manager)) manager->mode = isc_taskmgrmode_normal; } static void manager_free(isc_taskmgr_t *manager) { free(manager); taskmgr = NULL; } isc_result_t isc_taskmgr_create(unsigned int workers, unsigned int default_quantum, isc_taskmgr_t **managerp) { unsigned int i, started = 0; isc_taskmgr_t *manager; /* * Create a new task manager. */ REQUIRE(workers > 0); REQUIRE(managerp != NULL && *managerp == NULL); UNUSED(i); UNUSED(started); if (taskmgr != NULL) { if (taskmgr->refs == 0) return (ISC_R_SHUTTINGDOWN); taskmgr->refs++; *managerp = (isc_taskmgr_t *)taskmgr; return (ISC_R_SUCCESS); } manager = malloc(sizeof(*manager)); if (manager == NULL) return (ISC_R_NOMEMORY); manager->mode = isc_taskmgrmode_normal; if (default_quantum == 0) default_quantum = DEFAULT_DEFAULT_QUANTUM; manager->default_quantum = default_quantum; INIT_LIST(manager->tasks); INIT_LIST(manager->ready_tasks); INIT_LIST(manager->ready_priority_tasks); manager->tasks_running = 0; manager->tasks_ready = 0; manager->exclusive_requested = ISC_FALSE; manager->pause_requested = ISC_FALSE; manager->exiting = ISC_FALSE; manager->excl = NULL; manager->refs = 1; taskmgr = manager; *managerp = (isc_taskmgr_t *)manager; return (ISC_R_SUCCESS); } void isc_taskmgr_destroy(isc_taskmgr_t **managerp) { isc_taskmgr_t *manager; isc_task_t *task; unsigned int i; /* * Destroy '*managerp'. */ REQUIRE(managerp != NULL); manager = (isc_taskmgr_t *)*managerp; UNUSED(i); manager->refs--; if (manager->refs > 0) { *managerp = NULL; return; } /* * Only one non-worker thread may ever call this routine. * If a worker thread wants to initiate shutdown of the * task manager, it should ask some non-worker thread to call * isc_taskmgr_destroy(), e.g. by signalling a condition variable * that the startup thread is sleeping on. */ /* * Detach the exclusive task before acquiring the manager lock */ if (manager->excl != NULL) isc_task_detach((isc_task_t **) &manager->excl); /* * Make sure we only get called once. */ INSIST(!manager->exiting); manager->exiting = ISC_TRUE; /* * If privileged mode was on, turn it off. */ manager->mode = isc_taskmgrmode_normal; /* * Post shutdown event(s) to every task (if they haven't already been * posted). */ for (task = HEAD(manager->tasks); task != NULL; task = NEXT(task, link)) { if (task_shutdown(task)) push_readyq(manager, task); } /* * Dispatch the shutdown events. */ while (isc_taskmgr_ready((isc_taskmgr_t *)manager)) (void)isc_taskmgr_dispatch((isc_taskmgr_t *)manager); INSIST(ISC_LIST_EMPTY(manager->tasks)); taskmgr = NULL; manager_free(manager); *managerp = NULL; } isc_boolean_t isc_taskmgr_ready(isc_taskmgr_t *manager) { isc_boolean_t is_ready; if (manager == NULL) manager = taskmgr; if (manager == NULL) return (ISC_FALSE); is_ready = !empty_readyq(manager); return (is_ready); } isc_result_t isc_taskmgr_dispatch(isc_taskmgr_t *manager) { if (manager == NULL) manager = taskmgr; if (manager == NULL) return (ISC_R_NOTFOUND); dispatch(manager); return (ISC_R_SUCCESS); }