/* $OpenBSD: route.c,v 1.49 2002/09/23 17:48:46 deraadt Exp $ */ /* $NetBSD: route.c,v 1.15 1996/05/07 02:55:06 thorpej Exp $ */ /* * Copyright (c) 1983, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint #if 0 static char sccsid[] = "from: @(#)route.c 8.3 (Berkeley) 3/9/94"; #else static char *rcsid = "$OpenBSD: route.c,v 1.49 2002/09/23 17:48:46 deraadt Exp $"; #endif #endif /* not lint */ #include #include #include #include #include #include #include #define _KERNEL #include #undef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef INET #define INET #endif #include #include #include "netstat.h" #define kget(p, d) (kread((u_long)(p), (char *)&(d), sizeof (d))) /* alignment constraint for routing socket */ #define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) /* * Definitions for showing gateway flags. */ struct bits { short b_mask; char b_val; } bits[] = { { RTF_UP, 'U' }, { RTF_GATEWAY, 'G' }, { RTF_HOST, 'H' }, { RTF_REJECT, 'R' }, { RTF_BLACKHOLE, 'B' }, { RTF_DYNAMIC, 'D' }, { RTF_MODIFIED, 'M' }, { RTF_DONE, 'd' }, /* Completed -- for routing messages only */ { RTF_MASK, 'm' }, /* Mask Present -- for routing messages only */ { RTF_CLONING, 'C' }, { RTF_XRESOLVE, 'X' }, { RTF_LLINFO, 'L' }, { RTF_STATIC, 'S' }, { RTF_PROTO1, '1' }, { RTF_PROTO2, '2' }, { RTF_PROTO3, '3' }, { 0 } }; static union { struct sockaddr u_sa; u_int32_t u_data[64]; int u_dummy; /* force word-alignment */ } pt_u; int do_rtent = 0; struct rtentry rtentry; struct radix_node rnode; struct radix_mask rmask; int NewTree = 0; static struct sockaddr *kgetsa(struct sockaddr *); static void p_tree(struct radix_node *); static void p_rtnode(); static void p_rtflags(u_char); static void ntreestuff(); static void np_rtentry(struct rt_msghdr *); static void p_sockaddr(struct sockaddr *, struct sockaddr *, int, int); static void p_flags(int, char *); static void p_rtentry(struct rtentry *); static void encap_print(struct rtentry *); /* * Print routing tables. */ void routepr(rtree) u_long rtree; { struct radix_node_head *rnh, head; int i; printf("Routing tables\n"); if (Aflag == 0 && NewTree) ntreestuff(); else { if (rtree == 0) { printf("rt_tables: symbol not in namelist\n"); return; } kget(rtree, rt_tables); for (i = 0; i <= AF_MAX; i++) { if ((rnh = rt_tables[i]) == 0) continue; kget(rnh, head); if (i == AF_UNSPEC) { if (Aflag && af == 0) { printf("Netmasks:\n"); p_tree(head.rnh_treetop); } } else if (af == AF_UNSPEC || af == i) { pr_family(i); do_rtent = 1; if (i != PF_KEY) pr_rthdr(i); else pr_encaphdr(); p_tree(head.rnh_treetop); } } } } /* * Print address family header before a section of the routing table. */ void pr_family(af) int af; { char *afname; switch (af) { case AF_INET: afname = "Internet"; break; #ifdef INET6 case AF_INET6: afname = "Internet6"; break; #endif case AF_NS: afname = "XNS"; break; case AF_IPX: afname = "IPX"; break; case AF_ISO: afname = "ISO"; break; case AF_CCITT: afname = "X.25"; break; case PF_KEY: afname = "Encap"; break; case AF_APPLETALK: afname = "AppleTalk"; break; default: afname = NULL; break; } if (afname) printf("\n%s:\n", afname); else printf("\nProtocol Family %d:\n", af); } /* column widths; each followed by one space */ #ifndef INET6 #define WID_DST(af) 18 /* width of destination column */ #define WID_GW(af) 18 /* width of gateway column */ #else /* width of destination/gateway column */ #ifdef KAME_SCOPEID /* strlen("fe80::aaaa:bbbb:cccc:dddd@gif0") == 30, strlen("/128") == 4 */ #define WID_DST(af) ((af) == AF_INET6 ? (nflag ? 34 : 18) : 18) #define WID_GW(af) ((af) == AF_INET6 ? (nflag ? 30 : 18) : 18) #else /* strlen("fe80::aaaa:bbbb:cccc:dddd") == 25, strlen("/128") == 4 */ #define WID_DST(af) ((af) == AF_INET6 ? (nflag ? 29 : 18) : 18) #define WID_GW(af) ((af) == AF_INET6 ? (nflag ? 25 : 18) : 18) #endif #endif /* INET6 */ /* * Print header for routing table columns. */ void pr_rthdr(af) int af; { if (Aflag) printf("%-*.*s ", PLEN, PLEN, "Address"); printf("%-*.*s %-*.*s %-6.6s %6.6s %6.6s %6.6s %s\n", WID_DST(af), WID_DST(af), "Destination", WID_GW(af), WID_GW(af), "Gateway", "Flags", "Refs", "Use", "Mtu", "Interface"); } /* * Print header for PF_KEY entries. */ void pr_encaphdr() { if (Aflag) printf("%-*s ", PLEN, "Address"); printf("%-18s %-5s %-18s %-5s %-5s %-22s\n", "Source", "Port", "Destination", "Port", "Proto", "SA(Address/Proto/Type/Direction)"); } static struct sockaddr * kgetsa(dst) struct sockaddr *dst; { kget(dst, pt_u.u_sa); if (pt_u.u_sa.sa_len > sizeof (pt_u.u_sa)) kread((u_long)dst, (char *)pt_u.u_data, pt_u.u_sa.sa_len); return (&pt_u.u_sa); } static void p_tree(rn) struct radix_node *rn; { again: kget(rn, rnode); if (rnode.rn_b < 0) { if (Aflag) printf("%-16p ", rn); if (rnode.rn_flags & RNF_ROOT) { if (Aflag) printf("(root node)%s", rnode.rn_dupedkey ? " =>\n" : "\n"); } else if (do_rtent) { kget(rn, rtentry); p_rtentry(&rtentry); if (Aflag) p_rtnode(); } else { p_sockaddr(kgetsa((struct sockaddr *)rnode.rn_key), 0, 0, 44); putchar('\n'); } if ((rn = rnode.rn_dupedkey)) goto again; } else { if (Aflag && do_rtent) { printf("%-16p ", rn); p_rtnode(); } rn = rnode.rn_r; p_tree(rnode.rn_l); p_tree(rn); } } static void p_rtflags(u_char flags) { putchar('<'); if (flags & RNF_NORMAL) putchar('N'); if (flags & RNF_ROOT) putchar('R'); if (flags & RNF_ACTIVE) putchar('A'); if (flags & RNF_IGNORE) putchar('I'); if (flags & ~(RNF_NORMAL | RNF_ROOT | RNF_ACTIVE | RNF_IGNORE)) printf("/0x%02x", flags); putchar('>'); } char nbuf[25]; static void p_rtnode() { struct radix_mask *rm = rnode.rn_mklist; if (rnode.rn_b < 0) { if (rnode.rn_mask) { printf("\t mask "); p_sockaddr(kgetsa((struct sockaddr *)rnode.rn_mask), 0, 0, -1); } else if (rm == 0) return; } else { snprintf(nbuf, sizeof nbuf, "(%d)", rnode.rn_b); printf("%6.6s %16p : %16p", nbuf, rnode.rn_l, rnode.rn_r); } putchar(' '); p_rtflags(rnode.rn_flags); while (rm) { kget(rm, rmask); snprintf(nbuf, sizeof nbuf, " %d refs, ", rmask.rm_refs); printf(" mk = %16p {(%d),%s", rm, -1 - rmask.rm_b, rmask.rm_refs ? nbuf : " "); p_rtflags(rmask.rm_flags); printf(", "); if (rmask.rm_flags & RNF_NORMAL) { struct radix_node rnode_aux; printf("leaf = %p ", rmask.rm_leaf); kget(rmask.rm_leaf, rnode_aux); p_sockaddr(kgetsa((struct sockaddr *)rnode_aux.rn_mask), 0, 0, -1); } else p_sockaddr(kgetsa((struct sockaddr *)rmask.rm_mask), 0, 0, -1); putchar('}'); if ((rm = rmask.rm_mklist)) printf(" ->"); } putchar('\n'); } static void ntreestuff() { size_t needed; int mib[6]; char *buf, *next, *lim; struct rt_msghdr *rtm; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; mib[3] = 0; mib[4] = NET_RT_DUMP; mib[5] = 0; if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0) { perror("route-sysctl-estimate"); exit(1); } if ((buf = malloc(needed)) == 0) { printf("out of space\n"); exit(1); } if (sysctl(mib, 6, buf, &needed, NULL, 0) < 0) { perror("sysctl of routing table"); exit(1); } lim = buf + needed; for (next = buf; next < lim; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)next; np_rtentry(rtm); } } static void np_rtentry(rtm) struct rt_msghdr *rtm; { struct sockaddr *sa = (struct sockaddr *)(rtm + 1); #ifdef notdef static int masks_done, banner_printed; #endif static int old_af; int af = 0, interesting = RTF_UP | RTF_GATEWAY | RTF_HOST; #ifdef notdef /* for the moment, netmasks are skipped over */ if (!banner_printed) { printf("Netmasks:\n"); banner_printed = 1; } if (masks_done == 0) { if (rtm->rtm_addrs != RTA_DST ) { masks_done = 1; af = sa->sa_family; } } else #endif af = sa->sa_family; if (af != old_af) { pr_family(af); old_af = af; } if (rtm->rtm_addrs == RTA_DST) p_sockaddr(sa, 0, 0, 36); else { p_sockaddr(sa, 0, rtm->rtm_flags, 16); sa = (struct sockaddr *)(ROUNDUP(sa->sa_len) + (char *)sa); p_sockaddr(sa, 0, 0, 18); } p_flags(rtm->rtm_flags & interesting, "%-6.6s "); putchar('\n'); } static void p_sockaddr(sa, mask, flags, width) struct sockaddr *sa, *mask; int flags, width; { char workbuf[128], *cplim; char *cp = workbuf; size_t n; switch (sa->sa_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)sa; struct sockaddr_in *msin = (struct sockaddr_in *)mask; cp = (sin->sin_addr.s_addr == 0) ? "default" : ((flags & RTF_HOST) || mask == NULL ? routename(sin->sin_addr.s_addr) : netname(sin->sin_addr.s_addr, msin->sin_addr.s_addr)); break; } #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa; #ifdef KAME_SCOPEID struct in6_addr *in6 = &sa6->sin6_addr; /* * XXX: This is a special workaround for KAME kernels. * sin6_scope_id field of SA should be set in the future. */ if (IN6_IS_ADDR_LINKLOCAL(in6) || IN6_IS_ADDR_MC_LINKLOCAL(in6)) { /* XXX: override is ok? */ sa6->sin6_scope_id = (u_int32_t)ntohs(*(u_short *) &in6->s6_addr[2]); *(u_short *)&in6->s6_addr[2] = 0; } #endif if (flags & RTF_HOST) cp = routename6(sa6); else if (mask) { cp = netname6(sa6, &((struct sockaddr_in6 *)mask)->sin6_addr); } else cp = netname6(sa6, NULL); break; } #endif case AF_NS: cp = ns_print(sa); break; case AF_IPX: cp = ipx_print(sa); break; case AF_LINK: { struct sockaddr_dl *sdl = (struct sockaddr_dl *)sa; if (sdl->sdl_nlen == 0 && sdl->sdl_alen == 0 && sdl->sdl_slen == 0) (void) snprintf(workbuf, sizeof workbuf, "link#%d", sdl->sdl_index); else switch (sdl->sdl_type) { case IFT_ETHER: { int i; u_char *lla = (u_char *)sdl->sdl_data + sdl->sdl_nlen; cplim = ""; for (i = 0; i < sdl->sdl_alen; i++, lla++) { n = snprintf(cp, workbuf + sizeof (workbuf) - cp, "%s%x", cplim, *lla); cplim = ":"; if (n < 0) /* What else to do ? */ continue; if (n >= workbuf + sizeof (workbuf) - cp) n = workbuf + sizeof (workbuf) - cp - 1; cp += n; } cp = workbuf; break; } default: cp = link_ntoa(sdl); break; } break; } case AF_APPLETALK: { /* XXX could do better */ cp = atalk_print(sa,11); break; } default: { u_char *s = (u_char *)sa->sa_data, *slim; slim = sa->sa_len + (u_char *) sa; cplim = cp + sizeof(workbuf) - 6; if ((n = snprintf(cp, cplim - cp, "(%d)", sa->sa_family)) >= cplim - cp) n = cplim - cp - 1; if (n > 0) cp += n; while (s < slim && cp < cplim) { if ((n = snprintf(cp, workbuf + sizeof (workbuf) - cp, " %02x", *s++)) >= workbuf + sizeof (workbuf) - cp) n = workbuf + sizeof (workbuf) - cp - 1; if (n > 0) cp += n; if (s < slim) { if ((n = snprintf(cp, workbuf + sizeof (workbuf) - cp, "%02x", *s++)) >= workbuf + sizeof (workbuf) - cp) n = workbuf + sizeof (workbuf) - cp - 1; if (n > 0) cp += n; } } cp = workbuf; } } if (width < 0 ) printf("%s ", cp); else { if (nflag) printf("%-*s ", width, cp); else printf("%-*.*s ", width, width, cp); } } static void p_flags(f, format) int f; char *format; { char name[33], *flags; struct bits *p = bits; for (flags = name; p->b_mask; p++) if (p->b_mask & f) *flags++ = p->b_val; *flags = '\0'; printf(format, name); } static void p_rtentry(rt) struct rtentry *rt; { static struct ifnet ifnet, *lastif; struct sockaddr_storage sock1, sock2; struct sockaddr *sa = (struct sockaddr *)&sock1; struct sockaddr *mask = (struct sockaddr *)&sock2; bcopy(kgetsa(rt_key(rt)), sa, sizeof(struct sockaddr)); if (sa->sa_len > sizeof(struct sockaddr)) bcopy(kgetsa(rt_key(rt)), sa, sa->sa_len); if (sa->sa_family == PF_KEY) { encap_print(rt); return; } if (rt_mask(rt)) { bcopy(kgetsa(rt_mask(rt)), mask, sizeof(struct sockaddr)); if (sa->sa_len > sizeof(struct sockaddr)) bcopy(kgetsa(rt_mask(rt)), mask, sa->sa_len); } else mask = 0; p_sockaddr(sa, mask, rt->rt_flags, WID_DST(sa->sa_family)); p_sockaddr(kgetsa(rt->rt_gateway), 0, RTF_HOST, WID_GW(sa->sa_family)); p_flags(rt->rt_flags, "%-6.6s "); printf("%6d %8ld ", rt->rt_refcnt, rt->rt_use); if (rt->rt_rmx.rmx_mtu) printf("%6ld ", rt->rt_rmx.rmx_mtu); else printf("%6s ", "-"); putchar((rt->rt_rmx.rmx_locks & RTV_MTU) ? 'L' : ' '); if (rt->rt_ifp) { if (rt->rt_ifp != lastif) { kget(rt->rt_ifp, ifnet); lastif = rt->rt_ifp; } printf(" %.16s%s", ifnet.if_xname, rt->rt_nodes[0].rn_dupedkey ? " =>" : ""); } putchar('\n'); if (vflag) { printf("\texpire %10lu%c recvpipe %10ld%c " "sendpipe %10ld%c\n", rt->rt_rmx.rmx_expire, (rt->rt_rmx.rmx_locks & RTV_EXPIRE) ? 'L' : ' ', rt->rt_rmx.rmx_recvpipe, (rt->rt_rmx.rmx_locks & RTV_RPIPE) ? 'L' : ' ', rt->rt_rmx.rmx_sendpipe, (rt->rt_rmx.rmx_locks & RTV_SPIPE) ? 'L' : ' '); printf("\tssthresh %10lu%c rtt %10ld%c " "rttvar %10ld%c\n", rt->rt_rmx.rmx_ssthresh, (rt->rt_rmx.rmx_locks & RTV_SSTHRESH) ? 'L' : ' ', rt->rt_rmx.rmx_rtt, (rt->rt_rmx.rmx_locks & RTV_RTT) ? 'L' : ' ', rt->rt_rmx.rmx_rttvar, (rt->rt_rmx.rmx_locks & RTV_RTTVAR) ? 'L' : ' '); } } char * routename(in) in_addr_t in; { char *cp; static char line[MAXHOSTNAMELEN]; struct hostent *hp; static char domain[MAXHOSTNAMELEN]; static int first = 1; if (first) { first = 0; if (gethostname(domain, sizeof domain) == 0 && (cp = strchr(domain, '.'))) (void) strlcpy(domain, cp + 1, sizeof domain); else domain[0] = '\0'; } cp = 0; if (!nflag) { hp = gethostbyaddr((char *)&in, sizeof (struct in_addr), AF_INET); if (hp) { if ((cp = strchr(hp->h_name, '.')) && !strcmp(cp + 1, domain)) *cp = 0; cp = hp->h_name; } } if (cp) { strlcpy(line, cp, sizeof(line)); } else { #define C(x) ((x) & 0xff) in = ntohl(in); snprintf(line, sizeof line, "%u.%u.%u.%u", C(in >> 24), C(in >> 16), C(in >> 8), C(in)); } return (line); } /* * Return the name of the network whose address is given. * The address is assumed to be that of a net or subnet, not a host. */ char * netname(in, mask) in_addr_t in, mask; { char *cp = 0; static char line[MAXHOSTNAMELEN]; struct netent *np = 0; int mbits; in = ntohl(in); mask = ntohl(mask); if (!nflag && in != INADDR_ANY) { if ((np = getnetbyaddr(in, AF_INET)) != NULL) cp = np->n_name; } mbits = mask ? 33 - ffs(mask) : 0; if (cp) { strlcpy(line, cp, sizeof(line)); } else if (mbits < 9) snprintf(line, sizeof line, "%u/%d", C(in >> 24), mbits); else if (mbits < 17) snprintf(line, sizeof line, "%u.%u/%d", C(in >> 24) , C(in >> 16), mbits); else if (mbits < 25) snprintf(line, sizeof line, "%u.%u.%u/%d", C(in >> 24), C(in >> 16), C(in >> 8), mbits); else snprintf(line, sizeof line, "%u.%u.%u.%u/%d", C(in >> 24), C(in >> 16), C(in >> 8), C(in), mbits); return (line); } #ifdef INET6 char * netname6(sa6, mask) struct sockaddr_in6 *sa6; struct in6_addr *mask; { static char line[MAXHOSTNAMELEN + 1]; struct sockaddr_in6 sin6; u_char *p; u_char *lim; int masklen, final = 0, illegal = 0; int i; char hbuf[NI_MAXHOST]; #ifdef NI_WITHSCOPEID int flag = NI_WITHSCOPEID; #else int flag = 0; #endif int error; sin6 = *sa6; masklen = 0; lim = (u_char *)(mask + 1); i = 0; if (mask) { for (p = (u_char *)mask; p < lim; p++) { if (final && *p) { illegal++; sin6.sin6_addr.s6_addr[i++] = 0x00; continue; } switch (*p & 0xff) { case 0xff: masklen += 8; break; case 0xfe: masklen += 7; final++; break; case 0xfc: masklen += 6; final++; break; case 0xf8: masklen += 5; final++; break; case 0xf0: masklen += 4; final++; break; case 0xe0: masklen += 3; final++; break; case 0xc0: masklen += 2; final++; break; case 0x80: masklen += 1; final++; break; case 0x00: final++; break; default: final++; illegal++; break; } if (!illegal) sin6.sin6_addr.s6_addr[i++] &= *p; else sin6.sin6_addr.s6_addr[i++] = 0x00; } } else masklen = 128; if (masklen == 0 && IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) return("default"); if (illegal) fprintf(stderr, "illegal prefixlen\n"); if (nflag) flag |= NI_NUMERICHOST; error = getnameinfo((struct sockaddr *)&sin6, sin6.sin6_len, hbuf, sizeof(hbuf), NULL, 0, flag); if (error) snprintf(hbuf, sizeof(hbuf), "invalid"); snprintf(line, sizeof(line), "%s/%d", hbuf, masklen); return line; } char * routename6(sa6) struct sockaddr_in6 *sa6; { static char line[NI_MAXHOST]; #ifdef NI_WITHSCOPEID const int niflag = NI_NUMERICHOST | NI_WITHSCOPEID; #else const int niflag = NI_NUMERICHOST; #endif if (getnameinfo((struct sockaddr *)sa6, sa6->sin6_len, line, sizeof(line), NULL, 0, niflag) != 0) strlcpy(line, "", sizeof line); return line; } #endif /*INET6*/ /* * Print routing statistics */ void rt_stats(off) u_long off; { struct rtstat rtstat; if (off == 0) { printf("rtstat: symbol not in namelist\n"); return; } kread(off, (char *)&rtstat, sizeof (rtstat)); printf("routing:\n"); printf("\t%u bad routing redirect%s\n", rtstat.rts_badredirect, plural(rtstat.rts_badredirect)); printf("\t%u dynamically created route%s\n", rtstat.rts_dynamic, plural(rtstat.rts_dynamic)); printf("\t%u new gateway%s due to redirects\n", rtstat.rts_newgateway, plural(rtstat.rts_newgateway)); printf("\t%u destination%s found unreachable\n", rtstat.rts_unreach, plural(rtstat.rts_unreach)); printf("\t%u use%s of a wildcard route\n", rtstat.rts_wildcard, plural(rtstat.rts_wildcard)); } short ns_nullh[] = {0,0,0}; short ns_bh[] = {-1,-1,-1}; char * ns_print(sa) struct sockaddr *sa; { struct sockaddr_ns *sns = (struct sockaddr_ns*)sa; struct ns_addr work; union { union ns_net net_e; u_long long_e; } net; in_port_t port; static char mybuf[50], cport[10], chost[25]; char *host = ""; char *p; u_char *q; work = sns->sns_addr; port = ntohs(work.x_port); work.x_port = 0; net.net_e = work.x_net; if (ns_nullhost(work) && net.long_e == 0) { if (port ) { snprintf(mybuf, sizeof mybuf, "*.%xH", port); upHex(mybuf); } else snprintf(mybuf, sizeof mybuf, "*.*"); return (mybuf); } if (bcmp(ns_bh, work.x_host.c_host, 6) == 0) { host = "any"; } else if (bcmp(ns_nullh, work.x_host.c_host, 6) == 0) { host = "*"; } else { q = work.x_host.c_host; snprintf(chost, sizeof chost, "%02x%02x%02x%02x%02x%02xH", q[0], q[1], q[2], q[3], q[4], q[5]); for (p = chost; *p == '0' && p < chost + 12; p++) continue; host = p; } if (port) snprintf(cport, sizeof cport, ".%xH", htons(port)); else *cport = 0; snprintf(mybuf, sizeof mybuf, "%xH.%s%s", ntohl(net.long_e), host, cport); upHex(mybuf); return(mybuf); } char * ns_phost(sa) struct sockaddr *sa; { struct sockaddr_ns *sns = (struct sockaddr_ns *)sa; struct sockaddr_ns work; static union ns_net ns_zeronet; char *p; work = *sns; work.sns_addr.x_port = 0; work.sns_addr.x_net = ns_zeronet; p = ns_print((struct sockaddr *)&work); if (strncmp("0H.", p, 3) == 0) p += 3; return(p); } u_short ipx_nullh[] = {0,0,0}; u_short ipx_bh[] = {0xffff,0xffff,0xffff}; char * ipx_print(sa) struct sockaddr *sa; { struct sockaddr_ipx *sipx = (struct sockaddr_ipx*)sa; struct ipx_addr work; union { union ipx_net net_e; u_long long_e; } net; in_port_t port; static char mybuf[50], cport[10], chost[25]; char *host = ""; char *q; work = sipx->sipx_addr; port = ntohs(work.ipx_port); work.ipx_port = 0; net.net_e = work.ipx_net; if (ipx_nullhost(work) && net.long_e == 0) { if (port != 0) { snprintf(mybuf, sizeof mybuf, "*.%xH", port); upHex(mybuf); } else snprintf(mybuf, sizeof mybuf, "*.*"); return (mybuf); } if (bcmp(ipx_bh, work.ipx_host.c_host, 6) == 0) { host = "any"; } else if (bcmp(ipx_nullh, work.ipx_host.c_host, 6) == 0) { host = "*"; } else { q = work.ipx_host.c_host; snprintf(chost, sizeof chost, "%02x:%02x:%02x:%02x:%02x:%02x", q[0], q[1], q[2], q[3], q[4], q[5]); host = chost; } if (port) snprintf(cport, sizeof cport, ".%xH", htons(port)); else *cport = 0; snprintf(mybuf, sizeof mybuf, "%xH.%s%s", ntohl(net.long_e), host, cport); upHex(mybuf); return(mybuf); } char * ipx_phost(sa) struct sockaddr *sa; { struct sockaddr_ipx *sipx = (struct sockaddr_ipx *)sa; struct sockaddr_ipx work; static union ipx_net ipx_zeronet; char *p; work = *sipx; work.sipx_addr.ipx_port = 0; work.sipx_addr.ipx_net = ipx_zeronet; p = ipx_print((struct sockaddr *)&work); if (strncmp("0H.", p, 3) == 0) p += 3; return(p); } static void encap_print(rt) struct rtentry *rt; { struct sockaddr_encap sen1, sen2, sen3; struct ipsec_policy ipo; #ifdef INET6 struct sockaddr_in6 s61, s62; char ip6addr[64]; #endif /* INET6 */ bcopy(kgetsa(rt_key(rt)), &sen1, sizeof(sen1)); bcopy(kgetsa(rt_mask(rt)), &sen2, sizeof(sen2)); bcopy(kgetsa(rt->rt_gateway), &sen3, sizeof(sen3)); if (sen1.sen_type == SENT_IP4) { printf("%-18s %-5u ", netname(sen1.sen_ip_src.s_addr, sen2.sen_ip_src.s_addr), ntohs(sen1.sen_sport)); printf("%-18s %-5u %-5u ", netname(sen1.sen_ip_dst.s_addr, sen2.sen_ip_dst.s_addr), ntohs(sen1.sen_dport), sen1.sen_proto); } #ifdef INET6 if (sen1.sen_type == SENT_IP6) { bzero(&s61, sizeof(s61)); bzero(&s62, sizeof(s62)); s61.sin6_family = s62.sin6_family = AF_INET6; s61.sin6_len = s62.sin6_len = sizeof(s61); bcopy(&sen1.sen_ip6_src, &s61.sin6_addr, sizeof(struct in6_addr)); bcopy(&sen2.sen_ip6_src, &s62.sin6_addr, sizeof(struct in6_addr)); printf("%-42s %-5u ", netname6(&s61, &s62.sin6_addr), ntohs(sen1.sen_ip6_sport)); bzero(&s61, sizeof(s61)); bzero(&s62, sizeof(s62)); s61.sin6_family = s62.sin6_family = AF_INET6; s61.sin6_len = s62.sin6_len = sizeof(s61); bcopy(&sen1.sen_ip6_dst, &s61.sin6_addr, sizeof(struct in6_addr)); bcopy(&sen2.sen_ip6_dst, &s62.sin6_addr, sizeof(struct in6_addr)); printf("%-42s %-5u %-5u ", netname6(&s61, &s62.sin6_addr), ntohs(sen1.sen_ip6_dport), sen1.sen_ip6_proto); } #endif /* INET6 */ if (sen3.sen_type == SENT_IPSP) { char hostn[NI_MAXHOST]; kget(sen3.sen_ipsp, ipo); if (getnameinfo(&ipo.ipo_dst.sa, ipo.ipo_dst.sa.sa_len, hostn, NI_MAXHOST, NULL, 0, NI_NUMERICHOST) != 0) strlcpy (hostn, "none", NI_MAXHOST); printf("%s", hostn); printf("/%-u", ipo.ipo_sproto); switch (ipo.ipo_type) { case IPSP_IPSEC_REQUIRE: printf("/require"); break; case IPSP_IPSEC_ACQUIRE: printf("/acquire"); break; case IPSP_IPSEC_USE: printf("/use"); break; case IPSP_IPSEC_DONTACQ: printf("/dontacq"); break; case IPSP_PERMIT: printf("/permit"); break; case IPSP_DENY: printf("/deny"); break; default: printf("/"); break; } if ((ipo.ipo_addr.sen_type == SENT_IP4 && ipo.ipo_addr.sen_direction == IPSP_DIRECTION_IN) || (ipo.ipo_addr.sen_type == SENT_IP6 && ipo.ipo_addr.sen_ip6_direction == IPSP_DIRECTION_IN)) printf("/in\n"); else if ((ipo.ipo_addr.sen_type == SENT_IP4 && ipo.ipo_addr.sen_direction == IPSP_DIRECTION_OUT) || (ipo.ipo_addr.sen_type == SENT_IP6 && ipo.ipo_addr.sen_ip6_direction == IPSP_DIRECTION_OUT)) printf("/out\n"); else printf("/\n"); } } void upHex(p0) char *p0; { char *p = p0; for (; *p; p++) switch (*p) { case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': *p += ('A' - 'a'); break; } }