%{ /* $OpenBSD: date.y,v 1.1 2006/04/26 02:55:13 joris Exp $ */ /* ** Originally written by Steven M. Bellovin while ** at the University of North Carolina at Chapel Hill. Later tweaked by ** a couple of people on Usenet. Completely overhauled by Rich $alz ** and Jim Berets in August, 1990; ** ** This grammar has 10 shift/reduce conflicts. ** ** This code is in the public domain and has no copyright. */ /* SUPPRESS 287 on yaccpar_sccsid *//* Unused static variable */ /* SUPPRESS 288 on yyerrlab *//* Label unused */ #include "includes.h" #include "rcsprog.h" #define YEAR_EPOCH 1970 #define YEAR_TMORIGIN 1900 #define HOUR(x) ((time_t)(x) * 60) #define SECSPERDAY (24L * 60L * 60L) /* An entry in the lexical lookup table */ typedef struct _TABLE { char *name; int type; time_t value; } TABLE; /* Daylight-savings mode: on, off, or not yet known. */ typedef enum _DSTMODE { DSTon, DSToff, DSTmaybe } DSTMODE; /* Meridian: am, pm, or 24-hour style. */ typedef enum _MERIDIAN { MERam, MERpm, MER24 } MERIDIAN; /* * Global variables. We could get rid of most of these by using a good * union as the yacc stack. (This routine was originally written before * yacc had the %union construct.) Maybe someday; right now we only use * the %union very rarely. */ static const char *yyInput; static DSTMODE yyDSTmode; static time_t yyDayOrdinal; static time_t yyDayNumber; static int yyHaveDate; static int yyHaveDay; static int yyHaveRel; static int yyHaveTime; static int yyHaveZone; static time_t yyTimezone; static time_t yyDay; static time_t yyHour; static time_t yyMinutes; static time_t yyMonth; static time_t yySeconds; static time_t yyYear; static MERIDIAN yyMeridian; static time_t yyRelMonth; static time_t yyRelSeconds; static int yyerror (const char *); static int yylex (void); static int yyparse (void); static int lookup (char *); %} %union { time_t Number; enum _MERIDIAN Meridian; } %token tAGO tDAY tDAYZONE tID tMERIDIAN tMINUTE_UNIT tMONTH tMONTH_UNIT %token tSEC_UNIT tSNUMBER tUNUMBER tZONE tDST %type tDAY tDAYZONE tMINUTE_UNIT tMONTH tMONTH_UNIT %type tSEC_UNIT tSNUMBER tUNUMBER tZONE %type tMERIDIAN o_merid %% spec : /* NULL */ | spec item ; item : time { yyHaveTime++; } | zone { yyHaveZone++; } | date { yyHaveDate++; } | day { yyHaveDay++; } | rel { yyHaveRel++; } | number ; time : tUNUMBER tMERIDIAN { yyHour = $1; yyMinutes = 0; yySeconds = 0; yyMeridian = $2; } | tUNUMBER ':' tUNUMBER o_merid { yyHour = $1; yyMinutes = $3; yySeconds = 0; yyMeridian = $4; } | tUNUMBER ':' tUNUMBER tSNUMBER { yyHour = $1; yyMinutes = $3; yyMeridian = MER24; yyDSTmode = DSToff; yyTimezone = - ($4 % 100 + ($4 / 100) * 60); } | tUNUMBER ':' tUNUMBER ':' tUNUMBER o_merid { yyHour = $1; yyMinutes = $3; yySeconds = $5; yyMeridian = $6; } | tUNUMBER ':' tUNUMBER ':' tUNUMBER tSNUMBER { yyHour = $1; yyMinutes = $3; yySeconds = $5; yyMeridian = MER24; yyDSTmode = DSToff; yyTimezone = - ($6 % 100 + ($6 / 100) * 60); } ; zone : tZONE { yyTimezone = $1; yyDSTmode = DSToff; } | tDAYZONE { yyTimezone = $1; yyDSTmode = DSTon; } | tZONE tDST { yyTimezone = $1; yyDSTmode = DSTon; } ; day : tDAY { yyDayOrdinal = 1; yyDayNumber = $1; } | tDAY ',' { yyDayOrdinal = 1; yyDayNumber = $1; } | tUNUMBER tDAY { yyDayOrdinal = $1; yyDayNumber = $2; } ; date : tUNUMBER '/' tUNUMBER { yyMonth = $1; yyDay = $3; } | tUNUMBER '/' tUNUMBER '/' tUNUMBER { if ($1 >= 100) { yyYear = $1; yyMonth = $3; yyDay = $5; } else { yyMonth = $1; yyDay = $3; yyYear = $5; } } | tUNUMBER tSNUMBER tSNUMBER { /* ISO 8601 format. yyyy-mm-dd. */ yyYear = $1; yyMonth = -$2; yyDay = -$3; } | tUNUMBER tMONTH tSNUMBER { /* e.g. 17-JUN-1992. */ yyDay = $1; yyMonth = $2; yyYear = -$3; } | tMONTH tUNUMBER { yyMonth = $1; yyDay = $2; } | tMONTH tUNUMBER ',' tUNUMBER { yyMonth = $1; yyDay = $2; yyYear = $4; } | tUNUMBER tMONTH { yyMonth = $2; yyDay = $1; } | tUNUMBER tMONTH tUNUMBER { yyMonth = $2; yyDay = $1; yyYear = $3; } ; rel : relunit tAGO { yyRelSeconds = -yyRelSeconds; yyRelMonth = -yyRelMonth; } | relunit ; relunit : tUNUMBER tMINUTE_UNIT { yyRelSeconds += $1 * $2 * 60L; } | tSNUMBER tMINUTE_UNIT { yyRelSeconds += $1 * $2 * 60L; } | tMINUTE_UNIT { yyRelSeconds += $1 * 60L; } | tSNUMBER tSEC_UNIT { yyRelSeconds += $1; } | tUNUMBER tSEC_UNIT { yyRelSeconds += $1; } | tSEC_UNIT { yyRelSeconds++; } | tSNUMBER tMONTH_UNIT { yyRelMonth += $1 * $2; } | tUNUMBER tMONTH_UNIT { yyRelMonth += $1 * $2; } | tMONTH_UNIT { yyRelMonth += $1; } ; number : tUNUMBER { if (yyHaveTime && yyHaveDate && !yyHaveRel) yyYear = $1; else { if ($1 > 10000) { yyHaveDate++; yyDay= ($1)%100; yyMonth= ($1/100)%100; yyYear = $1/10000; } else { yyHaveTime++; if ($1 < 100) { yyHour = $1; yyMinutes = 0; } else { yyHour = $1 / 100; yyMinutes = $1 % 100; } yySeconds = 0; yyMeridian = MER24; } } } ; o_merid : /* NULL */ { $$ = MER24; } | tMERIDIAN { $$ = $1; } ; %% /* Month and day table. */ static TABLE const MonthDayTable[] = { { "january", tMONTH, 1 }, { "february", tMONTH, 2 }, { "march", tMONTH, 3 }, { "april", tMONTH, 4 }, { "may", tMONTH, 5 }, { "june", tMONTH, 6 }, { "july", tMONTH, 7 }, { "august", tMONTH, 8 }, { "september", tMONTH, 9 }, { "sept", tMONTH, 9 }, { "october", tMONTH, 10 }, { "november", tMONTH, 11 }, { "december", tMONTH, 12 }, { "sunday", tDAY, 0 }, { "monday", tDAY, 1 }, { "tuesday", tDAY, 2 }, { "tues", tDAY, 2 }, { "wednesday", tDAY, 3 }, { "wednes", tDAY, 3 }, { "thursday", tDAY, 4 }, { "thur", tDAY, 4 }, { "thurs", tDAY, 4 }, { "friday", tDAY, 5 }, { "saturday", tDAY, 6 }, { NULL } }; /* Time units table. */ static TABLE const UnitsTable[] = { { "year", tMONTH_UNIT, 12 }, { "month", tMONTH_UNIT, 1 }, { "fortnight", tMINUTE_UNIT, 14 * 24 * 60 }, { "week", tMINUTE_UNIT, 7 * 24 * 60 }, { "day", tMINUTE_UNIT, 1 * 24 * 60 }, { "hour", tMINUTE_UNIT, 60 }, { "minute", tMINUTE_UNIT, 1 }, { "min", tMINUTE_UNIT, 1 }, { "second", tSEC_UNIT, 1 }, { "sec", tSEC_UNIT, 1 }, { NULL } }; /* Assorted relative-time words. */ static TABLE const OtherTable[] = { { "tomorrow", tMINUTE_UNIT, 1 * 24 * 60 }, { "yesterday", tMINUTE_UNIT, -1 * 24 * 60 }, { "today", tMINUTE_UNIT, 0 }, { "now", tMINUTE_UNIT, 0 }, { "last", tUNUMBER, -1 }, { "this", tMINUTE_UNIT, 0 }, { "next", tUNUMBER, 2 }, { "first", tUNUMBER, 1 }, /* { "second", tUNUMBER, 2 }, */ { "third", tUNUMBER, 3 }, { "fourth", tUNUMBER, 4 }, { "fifth", tUNUMBER, 5 }, { "sixth", tUNUMBER, 6 }, { "seventh", tUNUMBER, 7 }, { "eighth", tUNUMBER, 8 }, { "ninth", tUNUMBER, 9 }, { "tenth", tUNUMBER, 10 }, { "eleventh", tUNUMBER, 11 }, { "twelfth", tUNUMBER, 12 }, { "ago", tAGO, 1 }, { NULL } }; /* The timezone table. */ /* Some of these are commented out because a time_t can't store a float. */ static TABLE const TimezoneTable[] = { { "gmt", tZONE, HOUR( 0) }, /* Greenwich Mean */ { "ut", tZONE, HOUR( 0) }, /* Universal (Coordinated) */ { "utc", tZONE, HOUR( 0) }, { "wet", tZONE, HOUR( 0) }, /* Western European */ { "bst", tDAYZONE, HOUR( 0) }, /* British Summer */ { "wat", tZONE, HOUR( 1) }, /* West Africa */ { "at", tZONE, HOUR( 2) }, /* Azores */ #if 0 /* For completeness. BST is also British Summer, and GST is * also Guam Standard. */ { "bst", tZONE, HOUR( 3) }, /* Brazil Standard */ { "gst", tZONE, HOUR( 3) }, /* Greenland Standard */ #endif #if 0 { "nft", tZONE, HOUR(3.5) }, /* Newfoundland */ { "nst", tZONE, HOUR(3.5) }, /* Newfoundland Standard */ { "ndt", tDAYZONE, HOUR(3.5) }, /* Newfoundland Daylight */ #endif { "ast", tZONE, HOUR( 4) }, /* Atlantic Standard */ { "adt", tDAYZONE, HOUR( 4) }, /* Atlantic Daylight */ { "est", tZONE, HOUR( 5) }, /* Eastern Standard */ { "edt", tDAYZONE, HOUR( 5) }, /* Eastern Daylight */ { "cst", tZONE, HOUR( 6) }, /* Central Standard */ { "cdt", tDAYZONE, HOUR( 6) }, /* Central Daylight */ { "mst", tZONE, HOUR( 7) }, /* Mountain Standard */ { "mdt", tDAYZONE, HOUR( 7) }, /* Mountain Daylight */ { "pst", tZONE, HOUR( 8) }, /* Pacific Standard */ { "pdt", tDAYZONE, HOUR( 8) }, /* Pacific Daylight */ { "yst", tZONE, HOUR( 9) }, /* Yukon Standard */ { "ydt", tDAYZONE, HOUR( 9) }, /* Yukon Daylight */ { "hst", tZONE, HOUR(10) }, /* Hawaii Standard */ { "hdt", tDAYZONE, HOUR(10) }, /* Hawaii Daylight */ { "cat", tZONE, HOUR(10) }, /* Central Alaska */ { "ahst", tZONE, HOUR(10) }, /* Alaska-Hawaii Standard */ { "nt", tZONE, HOUR(11) }, /* Nome */ { "idlw", tZONE, HOUR(12) }, /* International Date Line West */ { "cet", tZONE, -HOUR(1) }, /* Central European */ { "met", tZONE, -HOUR(1) }, /* Middle European */ { "mewt", tZONE, -HOUR(1) }, /* Middle European Winter */ { "mest", tDAYZONE, -HOUR(1) }, /* Middle European Summer */ { "swt", tZONE, -HOUR(1) }, /* Swedish Winter */ { "sst", tDAYZONE, -HOUR(1) }, /* Swedish Summer */ { "fwt", tZONE, -HOUR(1) }, /* French Winter */ { "fst", tDAYZONE, -HOUR(1) }, /* French Summer */ { "eet", tZONE, -HOUR(2) }, /* Eastern Europe, USSR Zone 1 */ { "bt", tZONE, -HOUR(3) }, /* Baghdad, USSR Zone 2 */ #if 0 { "it", tZONE, -HOUR(3.5) },/* Iran */ #endif { "zp4", tZONE, -HOUR(4) }, /* USSR Zone 3 */ { "zp5", tZONE, -HOUR(5) }, /* USSR Zone 4 */ #if 0 { "ist", tZONE, -HOUR(5.5) },/* Indian Standard */ #endif { "zp6", tZONE, -HOUR(6) }, /* USSR Zone 5 */ #if 0 /* For completeness. NST is also Newfoundland Stanard, and SST is * also Swedish Summer. */ { "nst", tZONE, -HOUR(6.5) },/* North Sumatra */ { "sst", tZONE, -HOUR(7) }, /* South Sumatra, USSR Zone 6 */ #endif /* 0 */ { "wast", tZONE, -HOUR(7) }, /* West Australian Standard */ { "wadt", tDAYZONE, -HOUR(7) }, /* West Australian Daylight */ #if 0 { "jt", tZONE, -HOUR(7.5) },/* Java (3pm in Cronusland!) */ #endif { "cct", tZONE, -HOUR(8) }, /* China Coast, USSR Zone 7 */ { "jst", tZONE, -HOUR(9) }, /* Japan Standard, USSR Zone 8 */ #if 0 { "cast", tZONE, -HOUR(9.5) },/* Central Australian Standard */ { "cadt", tDAYZONE, -HOUR(9.5) },/* Central Australian Daylight */ #endif { "east", tZONE, -HOUR(10) }, /* Eastern Australian Standard */ { "eadt", tDAYZONE, -HOUR(10) }, /* Eastern Australian Daylight */ { "gst", tZONE, -HOUR(10) }, /* Guam Standard, USSR Zone 9 */ { "nzt", tZONE, -HOUR(12) }, /* New Zealand */ { "nzst", tZONE, -HOUR(12) }, /* New Zealand Standard */ { "nzdt", tDAYZONE, -HOUR(12) }, /* New Zealand Daylight */ { "idle", tZONE, -HOUR(12) }, /* International Date Line East */ { NULL } }; /* Military timezone table. */ static TABLE const MilitaryTable[] = { { "a", tZONE, HOUR( 1) }, { "b", tZONE, HOUR( 2) }, { "c", tZONE, HOUR( 3) }, { "d", tZONE, HOUR( 4) }, { "e", tZONE, HOUR( 5) }, { "f", tZONE, HOUR( 6) }, { "g", tZONE, HOUR( 7) }, { "h", tZONE, HOUR( 8) }, { "i", tZONE, HOUR( 9) }, { "k", tZONE, HOUR( 10) }, { "l", tZONE, HOUR( 11) }, { "m", tZONE, HOUR( 12) }, { "n", tZONE, HOUR(- 1) }, { "o", tZONE, HOUR(- 2) }, { "p", tZONE, HOUR(- 3) }, { "q", tZONE, HOUR(- 4) }, { "r", tZONE, HOUR(- 5) }, { "s", tZONE, HOUR(- 6) }, { "t", tZONE, HOUR(- 7) }, { "u", tZONE, HOUR(- 8) }, { "v", tZONE, HOUR(- 9) }, { "w", tZONE, HOUR(-10) }, { "x", tZONE, HOUR(-11) }, { "y", tZONE, HOUR(-12) }, { "z", tZONE, HOUR( 0) }, { NULL } }; static int yyerror(const char *s) { char *str; int n; if (isspace(yyInput[0]) || !isprint(yyInput[0])) n = asprintf(&str, "%s: unexpected char 0x%02x in date string", s, yyInput[0]); else n = asprintf(&str, "%s: unexpected %s in date string", s, yyInput); if (n == -1) return (0); #if defined(TEST) printf("%s", str); #else warnx("%s", str); #endif free(str); return (0); } static time_t ToSeconds(time_t Hours, time_t Minutes, time_t Seconds, MERIDIAN Meridian) { if (Minutes < 0 || Minutes > 59 || Seconds < 0 || Seconds > 59) return (-1); switch (Meridian) { case MER24: if (Hours < 0 || Hours > 23) return (-1); return (Hours * 60L + Minutes) * 60L + Seconds; case MERam: if (Hours < 1 || Hours > 12) return (-1); if (Hours == 12) Hours = 0; return (Hours * 60L + Minutes) * 60L + Seconds; case MERpm: if (Hours < 1 || Hours > 12) return (-1); if (Hours == 12) Hours = 0; return ((Hours + 12) * 60L + Minutes) * 60L + Seconds; default: abort(); } /* NOTREACHED */ } /* Year is either * A negative number, which means to use its absolute value (why?) * A number from 0 to 99, which means a year from 1900 to 1999, or * The actual year (>=100). */ static time_t Convert(time_t Month, time_t Day, time_t Year, time_t Hours, time_t Minutes, time_t Seconds, MERIDIAN Meridian, DSTMODE DSTmode) { static int DaysInMonth[12] = { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; time_t tod; time_t julian; int i; if (Year < 0) Year = -Year; if (Year < 69) Year += 2000; else if (Year < 100) { Year += 1900; if (Year < YEAR_EPOCH) Year += 100; } DaysInMonth[1] = Year % 4 == 0 && (Year % 100 != 0 || Year % 400 == 0) ? 29 : 28; /* Checking for 2038 bogusly assumes that time_t is 32 bits. But I'm too lazy to try to check for time_t overflow in another way. */ if (Year < YEAR_EPOCH || Year > 2038 || Month < 1 || Month > 12 || /* Lint fluff: "conversion from long may lose accuracy" */ Day < 1 || Day > DaysInMonth[(int)--Month]) return (-1); for (julian = Day - 1, i = 0; i < Month; i++) julian += DaysInMonth[i]; for (i = YEAR_EPOCH; i < Year; i++) julian += 365 + (i % 4 == 0); julian *= SECSPERDAY; julian += yyTimezone * 60L; if ((tod = ToSeconds(Hours, Minutes, Seconds, Meridian)) < 0) return (-1); julian += tod; if ((DSTmode == DSTon) || (DSTmode == DSTmaybe && localtime(&julian)->tm_isdst)) julian -= 60 * 60; return (julian); } static time_t DSTcorrect(time_t Start, time_t Future) { time_t StartDay; time_t FutureDay; StartDay = (localtime(&Start)->tm_hour + 1) % 24; FutureDay = (localtime(&Future)->tm_hour + 1) % 24; return (Future - Start) + (StartDay - FutureDay) * 60L * 60L; } static time_t RelativeDate(time_t Start, time_t DayOrdinal, time_t DayNumber) { struct tm *tm; time_t now; now = Start; tm = localtime(&now); now += SECSPERDAY * ((DayNumber - tm->tm_wday + 7) % 7); now += 7 * SECSPERDAY * (DayOrdinal <= 0 ? DayOrdinal : DayOrdinal - 1); return DSTcorrect(Start, now); } static time_t RelativeMonth(time_t Start, time_t RelMonth) { struct tm *tm; time_t Month; time_t Year; if (RelMonth == 0) return (0); tm = localtime(&Start); Month = 12 * (tm->tm_year + 1900) + tm->tm_mon + RelMonth; Year = Month / 12; Month = Month % 12 + 1; return DSTcorrect(Start, Convert(Month, (time_t)tm->tm_mday, Year, (time_t)tm->tm_hour, (time_t)tm->tm_min, (time_t)tm->tm_sec, MER24, DSTmaybe)); } static int lookup(char *buff) { char *p, *q; int i, abbrev; const TABLE *tp; /* Make it lowercase. */ for (p = buff; *p; p++) if (isupper(*p)) *p = tolower(*p); if (strcmp(buff, "am") == 0 || strcmp(buff, "a.m.") == 0) { yylval.Meridian = MERam; return (tMERIDIAN); } if (strcmp(buff, "pm") == 0 || strcmp(buff, "p.m.") == 0) { yylval.Meridian = MERpm; return (tMERIDIAN); } /* See if we have an abbreviation for a month. */ if (strlen(buff) == 3) abbrev = 1; else if (strlen(buff) == 4 && buff[3] == '.') { abbrev = 1; buff[3] = '\0'; } else abbrev = 0; for (tp = MonthDayTable; tp->name; tp++) { if (abbrev) { if (strncmp(buff, tp->name, 3) == 0) { yylval.Number = tp->value; return (tp->type); } } else if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return (tp->type); } } for (tp = TimezoneTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return (tp->type); } if (strcmp(buff, "dst") == 0) return (tDST); for (tp = UnitsTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return (tp->type); } /* Strip off any plural and try the units table again. */ i = strlen(buff) - 1; if (buff[i] == 's') { buff[i] = '\0'; for (tp = UnitsTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return (tp->type); } buff[i] = 's'; /* Put back for "this" in OtherTable. */ } for (tp = OtherTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return (tp->type); } /* Military timezones. */ if (buff[1] == '\0' && isalpha(*buff)) { for (tp = MilitaryTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return (tp->type); } } /* Drop out any periods and try the timezone table again. */ for (i = 0, p = q = buff; *q; q++) if (*q != '.') *p++ = *q; else i++; *p = '\0'; if (i) for (tp = TimezoneTable; tp->name; tp++) if (strcmp(buff, tp->name) == 0) { yylval.Number = tp->value; return (tp->type); } return (tID); } static int yylex(void) { char c, *p, buff[20]; int count, sign; for (;;) { while (isspace(*yyInput)) yyInput++; if (isdigit(c = *yyInput) || c == '-' || c == '+') { if (c == '-' || c == '+') { sign = c == '-' ? -1 : 1; if (!isdigit(*++yyInput)) /* skip the '-' sign */ continue; } else sign = 0; for (yylval.Number = 0; isdigit(c = *yyInput++); ) yylval.Number = 10 * yylval.Number + c - '0'; yyInput--; if (sign < 0) yylval.Number = -yylval.Number; return sign ? tSNUMBER : tUNUMBER; } if (isalpha(c)) { for (p = buff; isalpha(c = *yyInput++) || c == '.'; ) if (p < &buff[sizeof buff - 1]) *p++ = c; *p = '\0'; yyInput--; return lookup(buff); } if (c != '(') return *yyInput++; count = 0; do { c = *yyInput++; if (c == '\0') return (c); if (c == '(') count++; else if (c == ')') count--; } while (count > 0); } } /* Yield A - B, measured in seconds. */ static long difftm(struct tm *a, struct tm *b) { int ay = a->tm_year + (YEAR_TMORIGIN - 1); int by = b->tm_year + (YEAR_TMORIGIN - 1); int days = ( /* difference in day of year */ a->tm_yday - b->tm_yday /* + intervening leap days */ + ((ay >> 2) - (by >> 2)) - (ay/100 - by/100) + ((ay/100 >> 2) - (by/100 >> 2)) /* + difference in years * 365 */ + (long)(ay-by) * 365); return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour)) + (a->tm_min - b->tm_min)) + (a->tm_sec - b->tm_sec)); } /* * rcs_date_parse() * * Returns the number of seconds since the Epoch corresponding to the date. */ time_t rcs_date_parse(const char *p) { struct tm *tm, gmt; struct timeb ftz, *now; time_t Start, tod, nowtime; now = NULL; yyInput = p; if (now == NULL) { struct tm *gmt_ptr; now = &ftz; (void)time(&nowtime); gmt_ptr = gmtime(&nowtime); if (gmt_ptr != NULL) { /* Make a copy, in case localtime modifies *tm (I think * that comment now applies to *gmt_ptr, but I am too * lazy to dig into how gmtime and locatime allocate the * structures they return pointers to). */ gmt = *gmt_ptr; } if (!(tm = localtime(&nowtime))) return (-1); if (gmt_ptr != NULL) ftz.timezone = difftm(&gmt, tm) / 60; if (tm->tm_isdst) ftz.timezone += 60; } else { nowtime = now->time; } tm = localtime(&nowtime); yyYear = tm->tm_year + 1900; yyMonth = tm->tm_mon + 1; yyDay = tm->tm_mday; yyTimezone = now->timezone; yyDSTmode = DSTmaybe; yyHour = 0; yyMinutes = 0; yySeconds = 0; yyMeridian = MER24; yyRelSeconds = 0; yyRelMonth = 0; yyHaveDate = 0; yyHaveDay = 0; yyHaveRel = 0; yyHaveTime = 0; yyHaveZone = 0; if (yyparse() || yyHaveTime > 1 || yyHaveZone > 1 || yyHaveDate > 1 || yyHaveDay > 1) return (-1); if (yyHaveDate || yyHaveTime || yyHaveDay) { Start = Convert(yyMonth, yyDay, yyYear, yyHour, yyMinutes, yySeconds, yyMeridian, yyDSTmode); if (Start < 0) return (-1); } else { Start = nowtime; if (!yyHaveRel) Start -= ((tm->tm_hour * 60L + tm->tm_min) * 60L) + tm->tm_sec; } Start += yyRelSeconds; Start += RelativeMonth(Start, yyRelMonth); if (yyHaveDay && !yyHaveDate) { tod = RelativeDate(Start, yyDayOrdinal, yyDayNumber); Start += tod; } /* Have to do *something* with a legitimate -1 so it's distinguishable * from the error return value. (Alternately could set errno on error.) */ return (Start == -1) ? (0) : (Start); } #if defined(TEST) /* ARGSUSED */ int main(int argc, char **argv) { char buff[128]; time_t d; (void)printf("Enter date, or blank line to exit.\n\t> "); (void)fflush(stdout); while (fgets(buff, sizeof(buff), stdin) && buff[0]) { d = rcs_date_parse(buff); if (d == -1) (void)printf("Bad format - couldn't convert.\n"); else (void)printf("%s", ctime(&d)); (void)printf("\t> "); (void)fflush(stdout); } return (0); } #endif /* defined(TEST) */