/* $OpenBSD: fsort.c,v 1.11 2004/07/20 03:50:27 deraadt Exp $ */ /*- * Copyright (c) 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Peter McIlroy. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef lint #if 0 static char sccsid[] = "@(#)fsort.c 8.1 (Berkeley) 6/6/93"; #else static char rcsid[] = "$OpenBSD: fsort.c,v 1.11 2004/07/20 03:50:27 deraadt Exp $"; #endif #endif /* not lint */ /* * Read in the next bin. If it fits in one segment sort it; * otherwise refine it by segment deeper by one character, * and try again on smaller bins. Sort the final bin at this level * of recursion to keep the head of fstack at 0. * After PANIC passes, abort to merge sort. */ #include "sort.h" #include "fsort.h" #include #include u_char **keylist = 0, *buffer = 0, *linebuf = 0; size_t bufsize, linebuf_size; struct tempfile fstack[MAXFCT]; extern char *toutpath; #define FSORTMAX 4 int PANIC = FSORTMAX; void fsort(int binno, int depth, union f_handle infiles, int nfiles, FILE *outfp, struct field *ftbl) { u_char *bufend, **keypos, *tmpbuf; u_char *weights; int ntfiles, mfct = 0, total, i, maxb, lastb, panic = 0; int c, nelem; long sizes[NBINS+1]; union f_handle tfiles, mstart = {MAXFCT-16}; int (*get)(int, union f_handle, int, RECHEADER *, u_char *, struct field *); RECHEADER *crec; struct field tfield[2]; FILE *prevfp, *tailfp[FSORTMAX+1]; memset(tailfp, 0, sizeof(tailfp)); prevfp = outfp; memset(tfield, 0, sizeof(tfield)); if (ftbl[0].flags & R) tfield[0].weights = Rascii; else tfield[0].weights = ascii; tfield[0].icol.num = 1; weights = ftbl[0].weights; if (!buffer) { bufsize = BUFSIZE; if ((buffer = malloc(bufsize + 1)) == NULL || (keylist = calloc(MAXNUM, sizeof(u_char *))) == NULL) errx(2, "cannot allocate memory"); if (!SINGL_FLD) { linebuf_size = MAXLLEN; if ((linebuf = malloc(linebuf_size)) == NULL) errx(2, "cannot allocate memory"); } } bufend = buffer + bufsize; if (binno >= 0) { tfiles.top = infiles.top + nfiles; get = getnext; } else { tfiles.top = 0; if (SINGL_FLD) get = makeline; else get = makekey; } for (;;) { memset(sizes, 0, sizeof(sizes)); c = ntfiles = 0; if (binno == weights[REC_D] && !(SINGL_FLD && ftbl[0].flags & F)) { /* pop */ rd_append(weights[REC_D], infiles, nfiles, prevfp, buffer, bufend); break; } else if (binno == weights[REC_D]) { depth = 0; /* start over on flat weights */ ftbl = tfield; weights = ftbl[0].weights; } while (c != EOF) { keypos = keylist; nelem = 0; crec = (RECHEADER *) buffer; while((c = get(binno, infiles, nfiles, crec, bufend, ftbl)) == 0) { *keypos++ = crec->data + depth; if (++nelem == MAXNUM) { c = BUFFEND; break; } crec =(RECHEADER *) ((char *) crec + SALIGN(crec->length) + sizeof(TRECHEADER)); } /* * buffer was too small for data, allocate * a bigger buffer. */ if (c == BUFFEND && nelem == 0) { bufsize *= 2; buffer = realloc(buffer, bufsize); if (!buffer) err(2, "failed to realloc buffer"); bufend = buffer + bufsize; continue; } if (c == BUFFEND || ntfiles || mfct) { /* push */ if (panic >= PANIC) { fstack[MAXFCT-16+mfct].fp = ftmp(); if (radixsort((const u_char **)keylist, nelem, weights, REC_D)) err(2, NULL); append(keylist, nelem, depth, fstack[ MAXFCT-16+mfct].fp, putrec, ftbl); mfct++; /* reduce number of open files */ if (mfct == 16 ||(c == EOF && ntfiles)) { /* * Only copy extra incomplete * crec data if there is any. */ int nodata = (bufend >= (u_char *)crec && bufend <= crec->data); size_t sz = 0; if (!nodata) { sz = bufend - crec->data; tmpbuf = malloc(sz); if (tmpbuf == NULL) errx(2, "cannot" " allocate" " memory"); memmove(tmpbuf, crec->data, sz); } fstack[tfiles.top + ntfiles].fp = ftmp(); fmerge(0, mstart, mfct, geteasy, fstack[tfiles.top+ntfiles].fp, putrec, ftbl); ntfiles++; mfct = 0; if (!nodata) { memmove(crec->data, tmpbuf, sz); free(tmpbuf); } } } else { fstack[tfiles.top + ntfiles].fp= ftmp(); onepass(keylist, depth, nelem, sizes, weights, fstack[tfiles.top+ntfiles].fp); ntfiles++; } } } get = getnext; if (!ntfiles && !mfct) { /* everything in memory--pop */ if (nelem > 1 && radixsort((const u_char **)keylist, nelem, weights, REC_D)) err(2, NULL); append(keylist, nelem, depth, outfp, putline, ftbl); break; /* pop */ } if (panic >= PANIC) { if (!ntfiles) fmerge(0, mstart, mfct, geteasy, outfp, putline, ftbl); else fmerge(0, tfiles, ntfiles, geteasy, outfp, putline, ftbl); break; } total = maxb = lastb = 0; /* find if one bin dominates */ for (i = 0; i < NBINS; i++) if (sizes[i]) { if (sizes[i] > sizes[maxb]) maxb = i; lastb = i; total += sizes[i]; } if (sizes[maxb] < max((total / 2) , BUFSIZE)) maxb = lastb; /* otherwise pop after last bin */ fstack[tfiles.top].lastb = lastb; fstack[tfiles.top].maxb = maxb; /* start refining next level. */ get(-1, tfiles, ntfiles, crec, bufend, 0); /* rewind */ for (i = 0; i < maxb; i++) { if (!sizes[i]) /* bin empty; step ahead file offset */ get(i, tfiles, ntfiles, crec, bufend, 0); else fsort(i, depth+1, tfiles, ntfiles, outfp, ftbl); } if (lastb != maxb) { if (prevfp != outfp) tailfp[panic] = prevfp; prevfp = ftmp(); for (i = maxb+1; i <= lastb; i++) if (!sizes[i]) get(i, tfiles, ntfiles, crec, bufend,0); else fsort(i, depth+1, tfiles, ntfiles, prevfp, ftbl); } /* sort biggest (or last) bin at this level */ depth++; panic++; binno = maxb; infiles.top = tfiles.top; /* getnext will free tfiles, */ nfiles = ntfiles; /* so overwrite them */ } if (prevfp != outfp) { concat(outfp, prevfp); fclose(prevfp); } for (i = panic; i >= 0; --i) if (tailfp[i]) { concat(outfp, tailfp[i]); fclose(tailfp[i]); } } /* * This is one pass of radix exchange, dumping the bins to disk. */ #define swap(a, b, t) t = a, a = b, b = t void onepass(u_char **a, int depth, long n, long sizes[], u_char *tr, FILE *fp) { size_t tsizes[NBINS+1]; u_char **bin[257], **top[256], ***bp, ***bpmax, ***tp; static int histo[256]; int *hp; int c; u_char **an, *t, **aj; u_char **ak, *r; memset(tsizes, 0, sizeof(tsizes)); depth += sizeof(TRECHEADER); an = &a[n]; for (ak = a; ak < an; ak++) { histo[c = tr[**ak]]++; tsizes[c] += ((RECHEADER *) (*ak -= depth))->length; } bin[0] = a; bpmax = bin + 256; tp = top, hp = histo; for (bp = bin; bp < bpmax; bp++) { *tp++ = *(bp+1) = *bp + (c = *hp); *hp++ = 0; if (c <= 1) continue; } for (aj = a; aj < an; *aj = r, aj = bin[c+1]) for(r = *aj; aj < (ak = --top[c = tr[r[depth]]]) ;) swap(*ak, r, t); for (ak = a, c = 0; c < 256; c++) { an = bin[c+1]; n = an - ak; tsizes[c] += n * sizeof(TRECHEADER); /* tell getnext how many elements in this bin, this segment. */ EWRITE(&tsizes[c], sizeof(size_t), 1, fp); sizes[c] += tsizes[c]; for (; ak < an; ++ak) putrec((RECHEADER *) *ak, fp); } }